STATISTICAL MACHINE LEARNING (WS2020) SEMINAR ON ENSEMBLING

Assignment 1. Consider regression with training datasets \mathcal{T}^{m} of size m generated as:

$$
\begin{equation*}
y=f(x)+\epsilon, \tag{1}
\end{equation*}
$$

where ϵ is the noise having $\mathbb{E}[\epsilon]=0$ and $\operatorname{Var}(\epsilon)=\sigma^{2}$. Derive biasvariance decomposition for k-nearest-neighbor regression. The response of the $\mathrm{k}-\mathrm{NN}$ regressor is defined as:

$$
\begin{equation*}
h_{m}(x)=\frac{1}{k} \sum_{i=1}^{k} y_{n(x, i)}=\frac{1}{k} \sum_{i=1}^{k} f\left(x_{n(x, i)}\right)+\epsilon, \tag{2}
\end{equation*}
$$

where $n(x, i)$ gives the index of i-th nearest neighbor of x in \mathcal{T}^{m}. For simplicity assume that all x_{i} are the same for all training datasets \mathcal{T}^{m} in consideration, hence, the randomness arises from the noise ϵ, only.

Give bias ${ }^{2}$:

$$
\begin{equation*}
\mathbb{E}_{x}\left[\left(g_{m}(x)-f(x)\right)^{2}\right]=\mathbb{E}_{x}\left[\left(\mathbb{E}_{\mathcal{T}^{m}}\left[h_{m}(x)\right]-f(x)\right)^{2}\right] \tag{3}
\end{equation*}
$$

and variance:

$$
\begin{equation*}
\operatorname{Var}_{x, \mathcal{T}^{m}}\left(h_{m}(x)\right) \tag{4}
\end{equation*}
$$

Assignment 2. The output of a regression tree is defined as:

$$
\begin{equation*}
h(\boldsymbol{x})=\sum_{r=1}^{M} c_{r} \mathbb{I}\left\{\boldsymbol{x} \in R_{r}\right\} \tag{5}
\end{equation*}
$$

where R_{r} is an input space region defined by the r-th tree leaf and $c_{r} \in \mathbb{R}$ the corresponding region's response. The tree is trained using set $\mathcal{T}^{m}=\left\{\left(\boldsymbol{x}_{i}, y_{i}\right) \mid i=1, \ldots, m\right\}$. Show that the sum of squares loss function $\sum_{i=1}^{m}\left(y_{i}-h\left(\boldsymbol{x}_{i}\right)\right)^{2}$ is minimized by choosing the following region responses:

$$
\begin{equation*}
c_{r}=\frac{1}{\left|S_{r}\right|} \sum_{x_{i} \in R_{r}} y_{i} \tag{6}
\end{equation*}
$$

where $S_{r}=\left\{\left(\boldsymbol{x}_{i}, y_{i}\right):\left(\boldsymbol{x}_{i}, y_{i}\right) \in \mathcal{T}^{m} \wedge \boldsymbol{x}_{i} \in R_{r}\right\}$.
Assignment 3. What is an optimal value of c_{r} when the sum of absolute deviations $\sum_{i=1}^{m}\left|y_{i}-h\left(\boldsymbol{x}_{i}\right)\right|$ is used instead of the squared loss?

Assignment 4. Bootstrapping is a method which produces K datasets \mathcal{T}_{i}^{m} for $i=1, \ldots, K$ by uniformly sampling the original dataset \mathcal{T}^{m} with replacement. Bootstrap datasets have typically the same size as the original dataset $\left|\mathcal{T}_{i}^{m}\right|=\left|\mathcal{T}^{m}\right|=m$. Show that as $m \rightarrow \infty$ the fraction of unique samples in \mathcal{T}_{i}^{m} approaches $1-\frac{1}{e} \approx 63.2 \%$.

Hint: apply exponential of a logarithm to a limit which emerges in a last step in order to solve it.

Assignment 5. Consider the Huber loss:

$$
\ell(y, h(x))= \begin{cases}(y-h(x))^{2} & \text { for }|y-h(x)| \leq \delta \tag{7}\\ 2 \delta|y-h(x)|-\delta^{2} & \text { otherwise } .\end{cases}
$$

Define Gradient Boosting Machine using the Huber loss and discuss differences to the squared loss GBM.

