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1. Why do we need generative learning?

Discriminative learning: p(x,y) unknown

� define a hypothesis class H of predictors h : X →Y,

� given a training set T m, learn hm by empirical risk minimisation.

However:

� what if we need the uncertainty of the prediction hm(x)?

� how to learn the predictor if only a part of the training data is annotated?

� what if the statistical relation between x and y depends on some latent variables z,
which we can not observe in principle? I.e. p(x,y,z), but we never see z in the training
data.

� what if we want to learn models that can generate realistic data x?

http://cmp.felk.cvut.cz
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1. Why do we need generative learning?

Generative learning:

� Try to model the unknown distribution p(x,y) and estimate it from training data T m
⇒ pm(x,y).

� Then predict by
h(x) = argmin

y∈Y

∑
y′∈Y

pm(y′ |x)`(y′,y).

� uncertainty of the prediction can be obtained from pm(y |x),

� data can be generated from pm(x |y).

When trying to estimate pm(x,y), we need to restrict the search to some finite or infinite set
of distributions.

We also need similarity measure(s) for distributions.
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2. Tools & ingredients

Parametrised distribution family: A set of distributions with common structure, defined
up to unknown parameters.
Example 1. Set of all multivariate normal distributions N (µ,V ) on Rn

pµ,V (x) =
1

(2π)n/2|V |1/2
exp
[
−1

2
(x−µ) ·V −1 · (x−µ)

]
parametrised by µ ∈ Rn and a positive (semi) definite m×m matrix V .
Example 2. An exponential family with density

pθ(x) = exp
[
〈φ(x),θ〉−A(θ)

]
,

where
φ(x) ∈ Rn is the sufficient statistic,
θ ∈ Rn is the (natural) parameter and
A(θ) is the cumulant function defined by

A(θ) = log

∫
X

exp
[
〈φ(x),θ〉

]
dx
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2. Tools & ingredients

Kullback-Leibler divergence: Similarity of distributions p(x) and q(x):

DKL(p(x) ‖ q(x)) =
∑
x∈X

p(x) log
p(x)

q(x)

DKL is non-negative and is zero if and only if p(x) = q(x) ∀x ∈ X . This follows from strict
concavity of the function log(x)

−DKL(p ‖ q) =
∑
x∈X

p(x) log
q(x)

p(x)
6 log

∑
x∈X

q(x)p(x)

p(x)
= log1 = 0

� DKL can be generalised for continuous distributions.

� it becomes ∞ if the support of p is not contained in the support of q.
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3. Maximum Likelihood estimator, consistency

Given: a parametrised family of distributions pθ(x,y), θ ∈Θ and an i.i.d. training set
T m =

{
(xj,yj) ∈ X ×Y | j = 1, . . . ,m

}
generated from pθ0(x,y) with unknown θ0.

Task: estimate θ0

Maximum likelihood estimator: estimate θ0 by maximising the joint probability (density)
of the training set w.r.t. θ

θm ∈ argmax
θ∈Θ

m∑
j=1

logpθ(x
j,yj)

Notice that θm depends on T m, thus it is a random variable. MLE has following properties

� MLE can be biased, however

� MLE is asymptotically consistent, i.e. the sequence θm, m→∞ converges in probability
to θ0

� MLE has lowest possible variance (MSE) among all consistent estimators.
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3. Maximum Likelihood estimator, consistency

Example 3. (Gaussian Discriminative Analysis)

x ∈ Rn, y ∈ {0,1} with y ∼Ber(α) and x | y ∼N (µy,V ), i.e.

p(y) = αy(1−α)1−y

p(x |y) =
1

(2π)n/2|V |1/2
exp
[
−1

2
(x−µy)TV −1(x−µy)

]
MLE for training data T m =

{
(xj,yj) | j = 1, . . . ,m

}
:

Denote I1 = {j | yj = 1} and I0 correspondingly.

α∗ =
1

m
|I1|

µ∗0 =
1

|I0|
∑
j∈I0

xj, µ∗1 =
1

|I1|
∑
j∈I1

xj

V ∗ =
1

m

m∑
j=1

(xj−µyj)⊗ (xj−µyj)
4 3 2 1 0 1 2 3 4
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3. Maximum Likelihood estimator, consistency

Let T m =
{
xj
∣∣ j = 1, . . . ,m

}
be i.i.d. generated from pθ0(x), with θ0 ∈Θ unknown.

Which conditions ensure consistency of the MLE θm = argmax
θ∈Θ

logpθ(T m)?

Pθ0

(
‖θ0−θm(T m)‖> ε

) m→∞−−−−→ 0

Denote log-likelihood of training data by L(θ,T m) = 1
m

m∑
i=1

logpθ(x
j)

and expected log-likelihood L(θ) = Eθ0

(
L(θ,T m)

)
=
∑
x∈X

pθ0(x) logpθ(x)

Consider L(θ,T m) = L(θ) +
[
L(θ,T m)−L(θ)

]
� The model should be identifiable, i.e. θ0 = argmax

θ∈Θ
L(θ)

� Ensure that he Uniform Law of Large Numbers (ULLN) holds, i.e.

Pθ0

(
sup
θ∈Θ
|L(θ,T m)−L(θ)|> ε

) m→∞−−−−→ 0

for any ε > 0.
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3. Maximum Likelihood estimator, consistency

Identifiability of the model θ0 is easy to prove if pθ0(x) 6≡ pθ(z) holds ∀θ 6= θ0.

L(θ0)−L(θ) =DKL(pθ0(x) ‖ pθ(x))> 0

and becomes zero if and only if θ = θ0.

ULLN can be ensured e.g. by requiring that

� L(θ,T m) is continuous in θ and Θ⊂ Rk is compact.

� L(θ,T m) can be upper bounded: logpθ(x)6 d(x) ∀θ with Eθ0d(x)<∞.

http://cmp.felk.cvut.cz
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4. The Expectation Maximisation Algorithm

Unsupervised generative learning:

� The joint p.d. pθ(x,y), θ ∈Θ is known up to the parameter θ ∈Θ,

� given training data T m =
{
xj ∈ X

∣∣ i= 1,2, . . . ,m
}
i.i.d. generated from pθ0.

How shall we implement the MLE

θm(T m) = argmax
θ∈Θ

1

m

∑
x∈T m

logpθ(x) = argmax
θ∈Θ

ET m
[
log
∑
y∈Y

pθ(x,y)
]

� If θ is a single parameter or a vector of homogeneous parameters ⇒ maximise the
log-likelihood directly.

� If θ is a collection of heterogeneous parameters ⇒ apply the Expectation
Maximisation Algorithm (Schlesinger, 1968, Sundberg, 1974, Dempster, Laird, and
Rubin, 1977)

http://cmp.felk.cvut.cz
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4. The Expectation Maximisation Algorithm

EM approach:

� Introduce auxiliary variables αx(y)> 0, for each x ∈ T m, s.t.
∑
y∈Y

αx(y) = 1

� Construct a lower bound of the log-likelihood L(θ,T m)> LB(θ,α,T m)

� Maximise this lower bound by block-wise coordinate ascent.

Construct the bound:

L(θ,T m) = ET m
[
log
∑
y∈Y

pθ(x,y)
]

= ET m
[
log
∑
y∈Y

αx(y)

αx(y)
pθ(x,y)

]
>

LB(θ,α,T m) = ET m
∑
y∈Y

[
αx(y) logpθ(x,y)−αx(y) logαx(y)

]

The following equivalent representation shows the difference between L(θ,T m) and
LB(θ,α,T m):

LB(θ,α,T m) = ET m
[
logpθ(x)

]
−ET m

[
DKL(αx(y) ‖ pθ(y |x))

]

http://cmp.felk.cvut.cz
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4. The Expectation Maximisation Algorithm

Maximise LB(θ,α,T m) by block-coordinate ascent:

Start with some θ(0) and iterate

E-step Fix the current θ(t), maximise LB(θ(t),α,T m) w.r.t. α-s. This gives

α(t)
x (y) = pθ(t)(y | x).

M-step Fix the current α(t) and maximise LB(θ,α(t),T m) w.r.t. θ.

θ(t+1) = argmax
θ∈Θ

ET m
[∑
y∈Y

α(t)
x (y) logpθ(x,y)

]

This is equivalent to solving the MLE for annotated training data.

Claims:

� The bound is tight if αx(y) = pθ(y | x),

� The sequence of likelihood values L(θ(t),T m), t= 1,2, . . . is increasing, and the
sequence α(t), t= 1,2, . . . is convergent (under mild assumptions).

http://cmp.felk.cvut.cz
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4. The Expectation Maximisation Algorithm

Example: Latent mode model (mixture) for images of digits

� x= {xi | i ∈D} image on the pixel domain D ∈ Z2,

� xi ∈ {0,1,2, . . . ,255}

� k ∈K latent variable (mode indicator),

� joint distribution - Naive Bayes model

p(x,k) = p(k)
∏
i∈D

p(xi | k)
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Learning problem: Given i.i.d. training data T m =
{
xj
∣∣ j = 1,2, . . . ,m

}
,

estimate the mode probabilities p(k) and the conditional probabilities p(xi | k), ∀xi ∈ B,
k ∈K and i ∈D.

http://cmp.felk.cvut.cz
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4. The Expectation Maximisation Algorithm

Applying the EM algorithm: Start with some model p(0)(k), p(0)(xi | k) and iterate the
following steps until convergence.
E-step Given the current model estimate p(t)(k), p(t)(xi | k), compute the posterior mode

probabilities for each image x in the training data T m

α(t)
x (k) = p(t)(k | x) =

p(t)(k)
∏
i∈D p

(t)(xi | k)∑
k′ p

(t)(k′)
∏
i∈D p

(t)(xi | k′)
.

M-step Re-estimate the model by solving

ET m
[∑
k∈K

α(t)
x (k)

[
logp(k) +

∑
i∈D

logp(xi | k)
]]
→max

p

This gives

p(t+1)(k) = ET m
[
α(t)
x (k)

]
p(t+1)(xi = b | k) =

ET m
[
α

(t)
x (k)

∣∣ xi = b
]

ET m
[
α

(t)
x (k)

]

http://cmp.felk.cvut.cz
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4. The Expectation Maximisation Algorithm

Additional reading:

Schlesinger, Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition,
Chapter 6, Kluwer 2002 (also available in Czech)

Thomas P. Minka, Expectation-Maximization as lower bound maximization, 1998 (short
tutorial, available on the internet)
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