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Learning

� The goal: Find a strategy h : X → Y minimizing R(h) using the
training set of examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . , m}

drawn from i.i.d. according to unknown p(x, y).

� Hypothesis class:
H ⊆ YX = {h : X → Y}

� Learning algorithm: a function

A : ∪∞m=1 (X × Y)m→ H

which returns a strategy hm = A(T m) for a training set T m
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� The ERM based algorithm returns hm such that

hm ∈ Argmin
h∈H

RT m(h) (1)

� Depending on the choince of H and ` and algorithm solving (1) we get
individual instances e.g. Support Vector Machines, Linear Regression,
Logistic Regression, Neural Networks learned by back-propagation,
AdaBoost, Gradient Boosted Trees, ...
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Learning: Empirical Risk Minimization approach

� The expected risk R(h), i.e. the true but unknown objective, is replaced
by the empirical risk computed from the training examples T m,

RT m(h) =
1

m

m∑
i=1

`(yi, h(xi))
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The characters of the play:
� R∗ = infh∈YX R(h) best attainable true risk

� R(hH) best risk in H where hH ∈ Argminh∈HR(h)

� R(hm) risk of hm = A(Tm) learned from T m

Excess error: the quantity we want to minimize(
R(hm)−R∗

)
︸ ︷︷ ︸
excess error

=

(
R(hm)−R(hH)

)
︸ ︷︷ ︸
estimation error

+

(
R(hH)−R∗

)
︸ ︷︷ ︸

approximation error

Questions:
� Which of the quantities are random and which are not ?
� What causes individual errors ?
� How do the errors depend on H and m?
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Excess error = Estimation error + Approximation errors
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Statistically consistent learning algorithm

� The statistically consistent algorithm can make the estimation error
R(hm)−R(hH) arbitrarily small if it has enough examples.

� Is the ERM algorithm statistically consistent ?

Definition 1. The algorithm A : ∪∞m=1 (X × Y)m→ H is statistically
consistent in H ⊆ YX if for any p(x, y) and ε > 0 it holds that

lim
m→∞

P
(

R(hm)−R(hH) ≥ ε

)
= 0

where hm = A(T m) is the hypothesis returned by the algorithm A for
training set T m generated from p(x, y).
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Example: ERM does not work if H is unconstrained

� Let X = [a, b] ⊂ R, Y = {+1,−1}, `(y, y′) = [[y 6= y′]], p(x | y = +1)

and p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8.

� The optimal strategy is h(x) = +1 with the Bayes risk R∗ = 0.2.

� Consider learning algorithm which for a given training set
T m = {(x1, y1), . . . , (xm, ym)} returns strategy

hm(x) =

{
yj if x = xj for some j ∈ {1, . . . , m}
−1 otherwise

� The empirical risk is RT m(hm) = 0 with probability 1 for any m.

� The expected risk is R(hm) = 0.8 for any m.
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Uniform Law of Large Numbers

� We say that training set T m is “bad” for h ∈ H if the generalization
error is |R(h)−RT m(h)| ≥ ε.

� ULLN holds for H provided the probability of seeing at least one “bad
training set” can be made arbitrarily low if we have enough examples.

Definition 2. The hypothesis class H ⊆ YX satisfies the uniform law of
large numbers if for all ε > 0 and p(x, y) generating T m it holds that

lim
m→∞

P
(
sup
h∈H

∣∣∣R(h)−RT m(h)
∣∣∣ ≥ ε

)
= 0

Theorem 1. If H satisfies ULLN then ERM is statistically consistent in H.
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� Hoeffding inequality generalized for finite hypothesis class H:

P
(
max
h∈H

∣∣RT m(h)−R(h)
∣∣ ≥ ε

)
≤
∑

h∈H
P
(
T m ∈ B(h)

)
) = 2 |H| e−

2m ε2

(b−a)2

� Therefore

lim
m→∞

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
= 0

Corrollary 1. The ULLN is satisfied for a finite hypothesis class.

8/14
ULLN for finite hypothesis class

� Assume a finite hypothesis class H = {h1, . . . , hK}.
� Define the set of all “bad” training sets for a strategy h ∈ H as

B(h) =
{
T m ∈ (X × Y)m

∣∣∣∣∣RT m(h)−R(h)
∣∣ ≥ ε

}
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Proof: ULLN implies consistency of ERM

For fixed T m and hm ∈ Argminh∈HRT m(h) we have:

R(hm)−R(hH) =

(
R(hm)−RT m(hm)

)
+

(
RT m(hm)−R(hH)

)
≤
(

R(hm)−RT m(hm)

)
+

(
RT m(hH)−R(hH)

)
≤ 2 sup

h∈H

∣∣∣∣R(h)−RT m(h)

∣∣∣∣
Therefore ε ≤ R(hm)−R(hH) implies ε

2 ≤ suph∈H

∣∣∣∣R(h)−RT m(h)

∣∣∣∣ and
P
(

R(hm)−R(hH) ≥ ε

)
≤ P

(
sup
h∈H

∣∣∣∣R(h)−RT m(h)

∣∣∣∣ ≥ ε

2

)
so if converges the RHS to zero (ULLN) so does the LHS (estimation error).
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Linear classifier minimizing classification error

� X is a set of observations and Y = {+1,−1} a set of hidden labels

� φ : X → Rn is fixed feature map embedding X to Rn

� Task: find linear classification strategy h : X → Y

h(x;w, b) = sign(〈w,φ(x)〉+ b) =

{
+1 if 〈w,φ(x)〉+ b ≥ 0

−1 if 〈w,φ(x)〉+ b < 0

with minimal expected risk

R0/1(h) = E(x,y)∼p

(
`0/1(y, h(x))

)
where `0/1(y, y′) = [[y 6= y′]]

� We are given a set of training examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . , m}

drawn from i.i.d. with the distribution p(x, y).
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ERM learning for linear classifiers

� The Empirical Risk Minimization principle leads to solving

(w∗, b∗) ∈ Argmin
(w,b)∈(Rn×R)

R
0/1
T m(h(·;w, b)) (1)

where the empirical risk is

R
0/1
T m(h(·;w, b)) =

1

m

m∑
i=1

[[yi 6= h(xi;w, b)]]

We will address the following issues:

1. The statistical consitency of the ERM for hypothesis class
H = {h(x) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ Rn × R}.

2. Algorithmic issues (next lecture): in general, there is no known algorithm
solving the task (1) in time polynomial in m.
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Vapnik-Chervonenkis (VC) dimension

Definition 3. Let H ⊆ {−1,+1}X and {x1, . . . , xm} ∈ Xm be a set of m

input observations. The set {x1, . . . , xm} is said to be shattered by H if for
all y ∈ {+1,−1}m there exists h ∈ H such that h(xi) = yi, i ∈ {1, . . . , m}.

Definition 4. Let H ⊆ {−1,+1}X . The Vapnik-Chervonenkis dimension of
H is the cardinality of the largest set of points from X which can be
shattered by H.
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VC dimension of class of two-class linear classifiers

Theorem 2. The VC-dimension of the hypothesis class of all two-class
linear classifiers operating in n-dimensional feature space
H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ (Rn × R)} is n + 1.

Example for n = 2-dimensional feature class
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Consistency of prediction with two classes and 0/1-loss

Theorem 3. Let H ⊆ {+1,−1}X be a hypothesis class with VC dimension
d <∞ and T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m a training set draw
from i.i.d. rand vars with distribution p(x, y). Then, for any ε > 0 it holds

P
(
sup
h∈H

∣∣∣R0/1(h)−R
0/1
T m(h)

∣∣∣ ≥ ε

)
≤ 4

(
2 e m

d

)d

e−
m ε2

8

Corollary 1. Let H ⊆ {+1,−1}X be a hypothesis class with VC dimension
d <∞. Then ULLN applies and hence ERM is statistically consistent in H
w.r.t `0/1 loss function.
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