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The goal: Find a strategy h: X — ) minimizing R(h) using the
training set of examples

T ={(&'y) € (X x V) |i=1,...,m)

drawn from i.i.d. according to unknown p(x,y).

Hypothesis class:
Hgy‘)(:{h:?(%y}

Learning algorithm: a function
A: U@ (X xY)" —H

which returns a strategy h,, = A(T"™) for a training set 7™
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The expected risk R(h), i.e. the true but unknown objective, is replaced
by the empirical risk computed from the training examples 7™,

Ryn(h) = =" U(y', h(e)

1=1

The ERM based algorithm returns h,,, such that

hopn € Argmin Rym(h) (1)
heH
Depending on the choince of H and ¢ and algorithm solving (1) we get
individual instances e.g. Support Vector Machines, Linear Regression,

Logistic Regression, Neural Networks learned by back-propagation,
AdaBoost, Gradient Boosted Trees, ...
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The characters of the play:
R* = inf),cyx R(h) best attainable true risk

R(hy) best risk in H where hy, € Argmin, 4, R(h)

R(hy,) risk of h,, = A(T,) learned from T™

Excess error: the quantity we want to minimize

(R(hm) - R*)/ - \(R(hm) _ R(hH)>J+ \(R(hﬂ) - R*)J

\ &

-~

€XCess error estimation error approximation error

Questions:
Which of the quantities are random and which are not ?

What causes individual errors ?

How do the errors depend on H and m?
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The statistically consistent algorithm can make the estimation error
R(h.,,) — R(hy) arbitrarily small if it has enough examples.

Is the ERM algorithm statistically consistent ?

Definition 1. The algorithm A: U_; (X x V)™ — H is statistically
consistent in H C Y if for any p(x,y) and € > 0 it holds that

mM—r 00

lim P(R(hm) ~ R(hy) > 5) ~ 0

where h,, = A(T™) is the hypothesis returned by the algorithm A for
training set T™ generated from p(x,y).
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Let X = [a,0] CR, ¥ = {+1,—1}, (y,¢/) = [y # ¥/], plz | y = +1)
and p(x | y = —1) be uniform distributions on X and p(y = +1) = 0.8.

The optimal strategy is h(x) = 41 with the Bayes risk R* = 0.2.

Consider learning algorithm which for a given training set
Tm = {(2Yy1),..., (™, y™)} returns strategy

b () = y) if x =127 forsome j€{l,...,m}
Sl =1 otherwise

The empirical risk is Rym(h,,) = 0 with probability 1 for any m.

The expected risk is R(h,,) = 0.8 for any m.
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We say that training set 7™ is “bad” for h € H if the generalization
error is |R(h) — Rym(h)| > €.

ULLN holds for H provided the probability of seeing at least one “bad
training set” can be made arbitrarily low if we have enough examples.

Definition 2. The hypothesis class H C Y% satisfies the uniform law of
large numbers if for all € > 0 and p(x,y) generating T™ it holds that

lim IP( sup [R(h) — RTm(h)| > 5> =0
m—00 heH

Theorem 1. [fH satisfies ULLN then ERM is statistically consistent in H.
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Assume a finite hypothesis class H = {h1,...,hx}.
Define the set of all “bad” training sets for a strategy h € H as

B(h) = {Tm € (X X y)m||RTm(h) — R(h)| > 5}

Hoeffding inequality generalized for finite hypothesis class H.:

2

P(%neaﬁc ‘RT’m(h) — R(h)‘ > 5) < h;H[P(Tm = B(h))) = 2|H|e t-o?

Therefore

lim P(max |Rym(h) — R(h)| > 6) =0

mM— 00 heH o

Corrollary 1. The ULLN is satisfied for a finite hypothesis class.
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For fixed 7™ and h,, € Argmin, o, R7m(h) we have:

Rltn) = R(t0) = (Bltn) = Roen) ) + (Bro(hn) = Rl
< (Rlm) = Brntlin) ) + (B (h) = R

< 2 sup ‘R(h) — RTm(h)‘
heH

Therefore € < R(hy,) — R(hy) implies 5 < supj,cy ‘R(h) — Rym(h)| and

P(R(hm) ~ R(hy) > e> < ]P( sup ‘R(h) _ RTm(h)' > §>

so if converges the RHS to zero (ULLN) so does the LHS (estimation error).
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X is a set of observations and Y = {+1, —1} a set of hidden labels
¢: X — R" is fixed feature map embedding X to R"

Task: find linear classification strategy h: X — Y

h(x;w,b) = sign({w, p(x)) +b) = { ji :i EZ: Zggi 12 i 8

with minimal expected risk
RY1(h) = E(z y)p (50/ 'y, h(w))) where (%1 (y,y") = [y # /]
We are given a set of training examples
T ={(z"y) e (X xW)|i=1,...,m}

drawn from i.i.d. with the distribution p(x, y).
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ERM learning for linear classifiers

The Empirical Risk Minimization principle leads to solving

(w*,b*) €  Argmin RV (h(-;w, b))
(w,b)e(R”xR)

where the empirical risk is

RYA(Gw,0) = — 3"l # hla'sw,b)

We will address the following issues:

1. The statistical consitency of the ERM for hypothesis class
H = {h(z) = sign((w, ¢(z)) +b) | (w,b) € R" x R}.

11/14

(1)

2. Algorithmic issues (next lecture): in general, there is no known algorithm

solving the task (1) in time polynomial in m.
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Definition 3. Let H C {—1,+1}" and {z!,..., 2™} € X™ be a set of m
input observations. The set {z',... 2™} is said to be shattered by H if for
all y € {+1,—1}"™ there exists h € H such that h(z*) =y, i € {1,...,m}.

Definition 4. Let H C {—1,+1}*. The Vapnik-Chervonenkis dimension of
‘H is the cardinality of the largest set of points from X which can be
shattered by H.
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VC dimension of class of two-class linear classifiers

Theorem 2. The VC-dimension of the hypothesis class of all two-class
linear classifiers operating in n-dimensional feature space

H = {h(z;w,b) =sign({w, p(x)) +b) | (w,b) € (R" xR)} isn+ 1.

Example for n = 2-dimensional feature class
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Theorem 3. Let H C {+1,—1}* be a hypothesis class with VC dimension
d<ooand T™={(z',y"),...,(z™,y™)} € (X x V)™ a training set draw
from i.i.d. rand vars with distribution p(x,y). Then, for any € > 0 it holds

d
2 m &2
P(sup RO/l(h)—ROT/T}L(h)| 26) §4< em> e 8
heH d

Corollary 1. Let H C {+1,—1}* be a hypothesis class with VVC dimension
d < oo. Then ULLN applies and hence ERM is statistically consistent in 'H
w.r.t £%/1 loss function.
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