Statistical Machine Learning (BE4M33SSU) Lecture 12: Ensembling

Jan Drchal

Czech Technical University in Prague Faculty of Electrical Engineering Department of Computer Science

Overview

2/45

p

Topics covered in the lecture:

- Ensemble Methods
- ◆ Bias-Variance Decomposition
- \blacklozenge Bagging
- \blacklozenge Random Forests
- \blacklozenge Boosting and Gradient Boosting
- \blacklozenge Gradient Boosted Trees

Ensemble Methods

♦ Inspired in Wisdom of the crowd

- (weighted) averaging or taking majority vote
- cancelling effect of noise of individual opinions,
- examples: politics, trial by jury (vs. trial by judge), sports (figure skating, gymnastics), Wikipedia, Quora, Stack Overflow, ...
- \blacklozenge Learning and aggregating multiple predictors
- \blacklozenge Ensemble may be built using single or different types of predictors

Wikimedia Commons

Ensembling Approaches

4/45

- ♦ Bagging (Bootstrap AGGregatING):
	- sample different training sets from the original training set
	- train high variance low bias predictors based on these sets and average them
	- exploits independence between predictors
- \blacklozenge Boosting:
	- sequentially train low variance high bias predictors
	- subsequent predictors learn to fix the mistakes of the previous ones
	- exploits dependence between learners

Stacking and Mixture of Experts

<https://www.commonlounge.com/discussion/9331c0d004704e89bd4d1da08fd7c7bc>

Prediction Problem: Expected Risk and Error Decomposition

Expected risk for data generated by *p*(*x, y*):

$$
R(h) = \mathbb{E}_{(x,y)\sim p} \Big[\ell(y, h(x)) \Big]
$$

6/45

p

- The best attainable (Bayes) risk is $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$
- \blacklozenge The best predictor in $\mathcal H$ is $h_{\mathcal H} \in \mathop{\rm Argmin}_{h \in \mathcal H} R(h)$
- \blacklozenge The predictor $h_m = A(\mathcal{T}^m)$ learned from \mathcal{T}^m has risk $R(h_m)$

Excess error measures deviation of the learned predictor from the best one:

$$
\underbrace{\left(R(h_m) - R^*\right)}_{\text{excess error}} = \underbrace{\left(R(h_m) - R(h_{\mathcal{H}})\right)}_{\text{estimation error}} + \underbrace{\left(R(h_{\mathcal{H}}) - R^*\right)}_{\text{approximation error}}
$$

Risk Averaged over Datasets

- ♦ How will our predictor behave when sampling different training sets?
- \blacklozenge We can define the errors considering average over models constructed using all possible datasets \mathcal{T}^m , i.e., $\mathbb{E}_{\mathcal{T}^m} \big[$ $R(h_m)$ $\overline{}$

♦ The errors can be redefined as:

$$
\underbrace{\left(\mathbb{E}_{\mathcal{T}^m}\left[R(h_m)\right]-R^*\right)}_{\text{excess error}}=\underbrace{\left(\mathbb{E}_{\mathcal{T}^m}\left[R(h_m)\right]-R(h_{\mathcal{H}})\right)}_{\text{estimation error}}+\underbrace{\left(R(h_{\mathcal{H}})-R^*\right)}_{\text{approximation error}}
$$

Predictors Averaged over Datasets

♦ Let us also define a model averaged over all possible datasets:

$$
g_m(x) = \mathbb{E}_{\mathcal{T}^m} \Big[h_m(x) \Big]
$$

♦ Unlike individual h_m models, g_m has an access to the whole $p(x,y)$

- ♦ Note: in general $g_m \neq h_H$ due to training algorithm *A* involved in h_m .
- ♦ Also: g_m can't be actually evaluated for infinite number of \mathcal{T}^m datasets

Bias-Variance Decomposition for Regression

♦ Consider a regression problem with data generated as follows:

$$
y = h^*(x) + \epsilon
$$

where ϵ is noise: $\mathbb{E}[\epsilon] = 0$ and $\text{Var}(\epsilon) = \sigma^2$, e.g., $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Use squared loss:

$$
\ell(y, h(x)) = (h(x) - y)^2
$$

♦ The optimal predictor $h^*(x)$ has a nonzero risk (for $\sigma^2 > 0$):

$$
R^* = \mathbb{E}_{x,y}\left[\left(h^*(x) - y\right)^2\right] = \mathbb{E}_{\epsilon}\left[\epsilon^2\right] = \text{Var}(\epsilon) = \sigma^2
$$

Bias-Variance Decomposition for Regression 2

♦ The expected risk for *h^m* can be decomposed:

$$
R(h_m) = \mathbb{E}_{x,y,\mathcal{T}^m} \left[\left(h_m(x) - y \right)^2 \right]
$$

= ...
=
$$
\mathbb{E}_{x,\mathcal{T}^m} \left[\left(h_m(x) - g_m(x) \right)^2 \right] +
$$

variance
$$
+ \mathbb{E}_x \left[\left(g_m(x) - h^*(x) \right)^2 \right] + \frac{\sigma^2}{\text{noise}}
$$

The error splits into three terms

 $\mathbb{E}_{\mathcal{T}^m} \Big[$

- variance: difference of h_m from the averaged predictor g_m ,
- \bullet bias 2 : difference of the averaged predictor g_m from the optimal one,
- **noise**: irreducible determined by data

Excess Error vs. Bias and Variance

The excess error is defined as:

$$
\mathbb{E}_{\mathcal{T}^m}\Big[R(h_m)\Big]-R^*
$$

 \blacklozenge As $R^* = \sigma^2$ we get:

$$
\mathbb{E}_{\mathcal{T}^m} \Big[R(h_m) \Big] - R^* = \mathbb{E}_x \Big[\Big(g_m(x) - h^*(x) \Big)^2 \Big] + \mathbb{E}_{x, \mathcal{T}^m} \Big[\Big(h_m(x) - g_m(x) \Big)^2 \Big]
$$

variance

 \blacklozenge Compare

- **bias**² vs. approximation error,
- **variance** vs. estimation error
- averaged model g_m vs. best predictor $h_{\mathcal{H}}$

$$
\begin{array}{c}\n\textcircled{\color{blue}0}\text{m p} \\
\hline\n\end{array}
$$

Derivation of the Bias-Variance Decomposition

Derivation of the Bias-Variance Decomposition 2

We get:

$$
\mathbb{E}_{\mathcal{T}^m} \Big[R(h_m) \Big] = \mathbb{E}_{x, \mathcal{T}^m} \Big[\Big(h_m(x) - g_m(x) \Big)^2 \Big] + \mathbb{E}_{x, y} \Big[\Big(g_m(x) - y \Big)^2 \Big]
$$

=
$$
\text{Var}_{x, \mathcal{T}^m} \Big(h_m(x) \Big) + \mathbb{E}_{x, y} \Big[\Big(g_m(x) - y \Big)^2 \Big]
$$

Note that the second term does not depend on \mathcal{T}^m .

Let us continue with the second term:

$$
\mathbb{E}_{x,y}\left[\left(g_m(x) - y\right)^2\right] = \mathbb{E}_{x,\epsilon}\left[\left(g_m(x) - h^*(x) - \epsilon\right)^2\right]
$$

$$
= \mathbb{E}_{x,\epsilon}\left[\left(g_m(x) - h^*(x)\right)^2 + \epsilon^2 - 2\epsilon\left(g_m(x) - h^*(x)\right)\right]
$$

$$
= \mathbb{E}_x\left[\left(g_m(x) - h^*(x)\right)^2\right] + \mathbb{E}_\epsilon\left[\epsilon^2\right]
$$

$$
-2\mathbb{E}_{x,\epsilon}\left[\epsilon\left(g_m(x) - h^*(x)\right)\right]
$$

$$
= \underbrace{\mathbb{E}_x\left[\left(g_m(x) - h^*(x)\right)^2\right]}_{\text{bias}^2} + \underbrace{\sigma^2}_{\text{noise}}
$$

14/45

 m p

O

Pointwise Bias-Variance

We can express the bias and variance as function of *x* by not integrating over in expected values

$$
\mathbb{E}_{y|x,\mathcal{T}^m} \left[\ell(y, h_m(x)) \right] = \mathbb{E}_{y|x,\mathcal{T}^m} \left[\left(h_m(x) - y \right)^2 \right]
$$

$$
= \underbrace{\text{Var}_{\mathcal{T}^m} \left(h_m(x) \right)}_{\text{variance(x)}} + \underbrace{\left(g_m(x) - h^*(x) \right)^2}_{\text{bias(x)}^2} + \underbrace{\sigma(x)^2}_{\text{noise}}
$$

Bias-Variance: Example

♦ Polynomial regression with a varying degree of polynomial

16/45

 m

p

Figure 4.2: Bias-variance decomposition of the expected generalization error Gilles Louppe: Understanding Random Forests: From Theory to Practice, 2014

Decision/Regression Trees

- $\overline{\mathbf{S}}$. $\overline{\mathbf{S}}$ original training data as well as mutually exclusive subsets of the input Nodes at the same level correspond to mutually exclusive subsets of the \blacklozenge space \mathcal{X}
	- \blacklozenge Inner node further splits its subset

Hastie et al.: The Elements of Statistical Learning, 2009

Decision/Regression Trees (contd.)

- \blacktriangledown Training set: $\mathcal{T}^m = \{(\bm{x}_i, y_i) | i = 1, \ldots, m\}$, $\bm{x}_i = (x_{i1}, x_{i2}, \ldots, x_{ip})$
- ♦ Input space split into regions defined in leaves: R_r , $r \in \{1, \ldots, M\}$
- We can model *region responses* by constants $c_r, \ r \in \{1, \ldots, M\}$ but other possibilities, e.g., linear regression are possible
- ♦ Prediction:

$$
h(\boldsymbol{x}) = \sum_{r=1}^M c_r[\boldsymbol{x} \in R_r]
$$

 \blacklozenge For sum of squares *loss function* $\sum_{i=1}^{m}(y_i-h(\boldsymbol{x}_i))^2$ we set the responses to be the averages over regions:

$$
\hat{c}_r = \frac{1}{|S_r|} \sum_{(\boldsymbol{x}_i, y_i) \in S_r} y_i \qquad \text{(see seminar)}
$$

 \mathbf{w} here $S_r = \{(\boldsymbol{x}_i, y_i): (\boldsymbol{x}_i, y_i) \in \mathcal{T}^m \land \boldsymbol{x}_i \in R_r\}$

Greedy Learning of Decision/Regression Trees

- ♦ How many distinct decision trees with *p* Boolean attributes for binary classification?
	- at least as many as boolean functions of *p* attributes
	- \bullet = number of distinct truth tables with 2^p rows: 2 2*p*
	- For 6 Boolean attributes at least 18,446,744,073,709,551,616 trees!
- ◆ Learning is NP-complete: [Hyafil and Rivest 1976]
- \blacklozenge We need heuristics ⇒ **greedy approach**
- \blacklozenge Recursively choose the "most important" attribute to find a small tree consistent with the training data
- \blacklozenge Split points:
	- **nominal attribute**: try all possibilities
	- **ordinal/continuous attribute**: try attribute values based on all training data samples or their subset

Regression Trees: Which Attribute to Split?

- The "most important" attribute for regression trees would be the one, for which the split reduces the loss (sum of squared errors) by the greatest amount
- \blacklozenge We have:

$$
h(\boldsymbol{x}) = \sum_{r=1}^M c_r[\boldsymbol{x} \in R_r]
$$

 \blacklozenge Consider splitting attribute *j* and split point *s*, we split an original region *R* into a pair of half-planes for an ordinal (e.g., continuous) attribute:

$$
R_L(j,s) = \{ \boldsymbol{x} | \boldsymbol{x} \in R \land x_j \leq s \} \text{ and } R_R(j,s) = \{ \boldsymbol{x} | \boldsymbol{x} \in R \land x_j > s \}
$$

similarly for a nominal attribute:

$$
R_L(j,s) = \{ \boldsymbol{x} | \boldsymbol{x} \in R \land x_j = s \} \text{ and } R_R(j,s) = \{ \boldsymbol{x} | \boldsymbol{x} \in R \land x_j \neq s \}
$$

 \blacklozenge Denote the corresponding subsets of of \mathcal{T}^m as S_L and S_R

Regression Trees: Which Attribute to Split? (contd.)

$$
\min_{c_L} \sum_{(\bm{x}_i, y_i) \in S_L(j,s)} (y_i - c_L)^2 + \min_{c_R} \sum_{(\bm{x}_i, y_i) \in S_R(j,s)} (y_i - c_R)^2
$$

for $(\boldsymbol{x}_i, y_i) \in S$ and $S = S_L \cup S_R$

Inner minimizations (region response values) are solved by averaging tree outputs per region:

$$
\hat{c}_L = \frac{1}{|S_L(j,s)|} \sum_{(\bm{x}_i, y_i) \in S_L(j,s)} y_i \text{ and } \hat{c}_R = \frac{1}{|S_R(j,s)|} \sum_{(\bm{x}_i, y_i) \in S_R(j,s)} y_i
$$

 \blacklozenge Root node: $S = \mathcal{T}^m$

Tree Learning Algorithm


```
BUILD-TREE(S)
 i = \text{IMPUTY}(S) // e.g., the squared loss
 2 \hat{i}, \hat{j}, \hat{s}, \hat{S}_L, \hat{S}_R = 0, 0, 0, \emptyset, \emptyset // current best kept in these
 3 for j \in \{1, \ldots, p\} // iterate over attributes
 4 for s \in \text{SPLIT-POINTS}(S, j) // iterate over all split points
 5 S_L, S_R = \text{SPLIT}(S, j, s)6 i_L = \text{IMPUTY}(S_L)7 i_R = \text{IMPUTY}(S_R)8 if i_L + i_R < \hat{i} and |S_L| > 0 and |S_R| > 0<br>9 \hat{i}, \hat{j}, \hat{s}, \hat{S}_L, \hat{S}_R = (i_L + i_R), j, s, S_L, S_R(\hat{i}, \hat{j}, \hat{s}, \hat{S}_L, \hat{S}_R = (i_L + i_R), j, s, S_L, S_R10 if \hat{i} < i11 N_L = \text{BULD-TREE}(\hat{S}_L)12 N_R = \text{BULD-TREE}(\hat{S}_R)13 return DECISION-NODE(\hat{j}, \hat{s}, N_L, N_R)14 else return LEAF-NODE(S)
```
-
-
-
-

Bias and Variance of Decision Trees

- ◆ Small changes of training data lead to big differences in final trees
- ♦ Decision trees grown deep enough have typically:
	- low bias
	- high variance
	- ⇒ **overfitting**
- \blacklozenge Idea: average multiple models to reduce variance while (happily) not increasing bias much

Averaging Models

♦ Define bagging model *b* as an average of *K* component models:

$$
b(x) = \frac{1}{K} \sum_{i=1}^{K} h_m^{(i)}(x)
$$

trained using a set of i.i.d. datasets of size $m\colon\mathcal{D}^{m}=\{\mathcal{T}_{1}^{m},\ldots,\mathcal{T}_{K}^{m}\}$ so $h_{m}^{(1)}(x)$ is trained using \mathcal{T}_{1}^{m} \mathcal{T}^m_1 , $h^{(2)}_m(x)$ using \mathcal{T}^m_2 2^m , etc.

 \blacklozenge Note that $b(x)$ approximates the *averaging model*:

$$
g_m(x) = \mathbb{E}_{\mathcal{T}^m} \Big[h_m(x) \Big]
$$

 \blacklozenge We can define the *averaging model* for $b(x)$ as well:

$$
g_m^B(x) = \mathbb{E}_{\mathcal{D}^m} \left[b(x) \right]
$$

Averaging Models: Bias

25/45

p

bias
$$
x^2 = (g_m^B(x) - h^*(x))^2
$$

\n
$$
= \left(\mathbb{E}_{\mathcal{D}^m} \left[b(x)\right] - h^*(x)\right)^2
$$

\n
$$
= \left(\mathbb{E}_{\mathcal{D}^m} \left[\frac{1}{K} \sum_{i=1}^K h_m^{(i)}(x)\right] - h^*(x)\right)^2
$$

\n
$$
= \left(\frac{1}{K} \sum_{i=1}^K \mathbb{E}_{\mathcal{T}_i^m} \left[h_m^{(i)}(x)\right] - h^*(x)\right)^2
$$

\n
$$
= \left(\mathbb{E}_{\mathcal{T}^m} \left[h_m(x)\right] - h^*(x)\right)^2 = \left(g_m(x) - h^*(x)\right)^2
$$

Averaging Models: Variance

 \blacklozenge For uncorrelated component models $h_m^{(i)}(x)$:

$$
\operatorname{Var}_{\mathcal{D}^m}\left(b(x)\right) = \operatorname{Var}_{\mathcal{D}^m}\left(\frac{1}{K} \sum_{i=1}^K h_m^{(i)}(x)\right)
$$

$$
= \frac{1}{K^2} \sum_{i=1}^K \operatorname{Var}_{\mathcal{T}_i^m}\left(h_m^{(i)}(x)\right) = \frac{1}{K} \operatorname{Var}_{\mathcal{T}^m}\left(h_m(x)\right)
$$

which is a great improvement based on the very **strong** assumption **There is no improvement for maximum correlation, i.e., for all** component models equal: $h_m^{(i)}(x) = h_m(x)$ for $i = 1, \ldots, K$, we get:

$$
\text{Var}_{\mathcal{D}^m}\Big(b(x)\Big) = \text{Var}_{\mathcal{D}^m}\left(\frac{1}{K}\sum_{i=1}^K h_m^{(i)}(x)\right) = \text{Var}_{\mathcal{T}^m}\Big(h_m(x)\Big)
$$

⇒ we need to train **uncorrelated** (diverse) component models while **keeping their bias reasonably low**

Bootstrapping

- \blacklozenge In practice we have only a single training dataset \mathcal{T}^m
- ♦ Bootstrapping is a method producing datasets \mathcal{T}^m_i \tilde{I}_i^m for $i=1,\ldots K$ by sampling \mathcal{T}^m uniformly with *replacement*
- ◆ Bootstrap datasets have the same size as the original dataset $|\mathcal{T}^m_i| = |\mathcal{T}^m|$
- \blacklozenge \mathcal{T}^m_i \tilde{t}^m_i is expected to have the fraction $1-\frac{1}{e}$ $\frac{1}{e} \approx 63.2\%$ of unique samples from \mathcal{T}^m , others are duplicates (see seminar)

Bagging

- ♦ $Bagging = Bootstrap AGGregating [Breiman 1994]:$
	- 1. Use bootstrapping to generate *K* datasets
	- 2. Train a model $h^{(i)}_m(x)$ on each dataset \mathcal{T}^m_i *i*
	- 3. Average the models getting the bagging model *b*(*x*)
- \blacklozenge When decision trees are used as the models ⇒ **random forests**
- \blacklozenge Low bias is achieved by growing the trees to maximal depth
- Trees are decorrelated by:
	- training each tree on a different bootstrap dataset
	- randomization of split attribute selection

Random Forest Algorithm

- 1. For $i = 1...K$:
	- (a) draw a bootstrap dataset \mathcal{T}^m_i \mathcal{T}^m_i from \mathcal{T}^m , $|\mathcal{T}^m_i| = |\mathcal{T}^m| = m$
	- (b) grow a tree $h_m^{(i)}$ using \mathcal{T}_i^m \tilde{C}^m_i by recursively repeating the following, until the minimum node size n_{min} is reached:
		- i. select *k* attributes at random from the *p* attributes
		- ii. pick the best attribute and split-point among the *k*
		- iii. split the node into two daughter nodes
- 2. Output ensemble of trees $b(x)$ averaging $h^{(i)}_m(x)$ (regression) or selecting a majority vote (classification)
	- \blacklozenge Node size $n_{\sf min}$ is the number of the training dataset samples associated with the node, limits tree depth

Out-of-Bag (OOB) Error

- ♦ Cheap way of generalization error assessment for bagging
- ♦ Bagging produces bootstrapped sets T *m* $\mathcal{T}^m_1, \mathcal{T}^m_2$ $\tau_2^m, \ldots \mathcal{T}_K^m$ *K*
- For each $(\boldsymbol{x}_i, y_i) \in \mathcal{T}^m$ select only trees which were not trained on this sample: $H_i = \{h^{(j)}_m \mid (\boldsymbol{x}_i, y_i) \notin \mathcal{T}^m_i\}$ *j* }
- Average only the OOB trees in H_i when evaluating error for (\boldsymbol{x}_i, y_i)
- \blacklozenge Replacement for K-fold cross-validation

Feature Importance

- ♦ Random forests allow easy evaluation of feature importances
- ♦ Mean Decrease Impurity (MDI):
	- set $f_i = 0$ for all attributes $j = 1, \ldots, p$
	- traverse all trees processing all internal nodes
	- for each node having a split attribute *j* add its impurity decrease multiplied by the proportion of the node size to *f^j*

31/45

D

- \blacklozenge Mean Decrease Accuracy (MDA), permutaion importance:
	- evaluate the forest using OOB
	- do the same with permuted values of an attribute *j*
	- watch decrease in accuracy: low decrease means unimportant feature

Random Forest Summary

- ♦ Easy to use method: robust w.r.t. parameter settings (*K*, node size)
- ♦ While *statistical consistency* is proven for decision trees (both regression and classification) we have only proofs for simplified versions of random forests [Breiman, 1984]
- ♦ Related methods: boosted trees

Boosting

- p **33/45**
- Sequentially train weak learners/predictors low variance high bias
- ♦ Subsequent predictors fix the mistakes of the previous ones reducing bias
- ♦ Methods discussed here:
	- Forward Stagewise Additive Modeling
	- Gradient Boosting Machine
	- Gradient Boosted Trees
	- AdaBoost

Forward Stagewise Additive Modeling (FSAM)

1. Initialize $f_0(x) = 0$

2. For $k=1$ to K :

(a) Find

$$
(\beta_k, \theta_k) = \underset{\beta, \theta}{\text{argmin}} \sum_{i=1}^m \ell\Big(y_i, f_{k-1}(x_i) + \beta b(x_i; \theta)\Big)
$$

 $\mathsf{where} \,\, b(x_i; \theta_k)$ is the *basis function* and β_k the corresponding coefficient (b) Set $f_k(x) = f_{k-1}(x) + \beta_k b(x; \theta_k)$

3. Return $h_m(x) = f_K(x)$

FSAM and Gradient Descent

FSAM update looks very similar to the gradient descent one:

$$
f_k(x) = f_{k-1}(x) + \beta_k b(x; \theta_k)
$$

- ♦ Just think of
	- $\beta_k \approx$ step size (learning rate)
	- $\bullet \ \ b(x_i; \theta_k) \approx \text{the negative of gradient}$

FSAM for Squared Loss

♦ Once again, consider regression with the squared loss:

$$
\ell(y, f(x)) = (y - f(x))^2
$$

♦ For FSAM we get:

$$
\ell(y_i, f_k(x_i)) = \ell(y_i, f_{k-1}(x_i) + \beta_k b(x_i; \theta_k))
$$

= $(y_i - f_{k-1}(x_i) - \beta_k b(x_i; \theta_k))^2$
= $(r_{ik} - \beta_k b(x_i; \theta_k))^2$

where $r_{ik} = y_i - f_{k-1}(x_i)$ is the *residual* of the current model for the *i*-th sample

- \blacklozenge The task of FSAM is to fit the model $\beta_k b(x_i; \theta_k)$ to match the residuals
- \blacklozenge The method is sometimes called the *least-squares boosting*

Gradient Boosting for Regression

 \blacklozenge In case of regression with squared loss we minimize:

$$
\mathcal{L} = \sum_{i=1}^{m} \ell(y_i, f(x_i)) = \sum_{i=1}^{m} \frac{1}{2} (y_i - f(x_i))^2,
$$

37/45

which is same as minimization of the empirical risk

 We can treat $f(x_1), f(x_2), \ldots, f(x_m)$ as parameters and take derivatives:

$$
\frac{\partial \mathcal{L}}{\partial f(x_i)} = \frac{\partial \left(\sum_{j=1}^m \ell(y_j, f(x_j))\right)}{\partial f(x_i)} = \frac{\partial \ell(y_i, f(x_i))}{\partial f(x_i)}
$$

$$
= f(x_i) - y_i = -r_i
$$

The least-squares boosting hence takes steps in the negative gradient direction where $r_i = -\frac{\partial \mathcal{L}}{\partial f(x_i)}$ *∂f*(*xi*)

 \blacklozenge This approach can be generalized for any differentiable loss function!

Gradient Boosting Machine

2. For $k = 1$ to K :

(a) Compute:

$$
\boldsymbol{g}_k = \left[\frac{\partial \ell(y_i, f_{k-1}(x_i))}{\partial f_{k-1}(x_i)}\right]_{i=1}^m
$$

(b) Fit a regression model *b*(·; *θ*) to −*g^k* using squared loss:

$$
\theta_k = \operatorname*{argmin}_{\theta} \sum_{i=1}^{m} [(-\boldsymbol{g}_k)_i - b(x_i; \theta)]^2
$$

(c) Choose a fixed step size $\beta_k = \beta > 0$ or use line search:

$$
\beta_k = \operatorname*{argmin}_{\beta > 0} \sum_{i=1}^m \ell\Big(y_i, f_{k-1}(x_i) + \beta b(x_i; \theta_k)\Big)
$$

(d) Set $f_k(x) = f_{k-1}(x) + \beta_k b(x; \theta_k)$

3. Return $h_m(x) = f_K(x)$

Multinominal Classification: Gradient Boosting Machine

p **39/45**

- Train one GBM per target class
- ♦ Use softmax to get probability distribution
- ♦ Use multinominal cross-entropy as the loss

Gradient Boosted Trees

- ♦ Gradient Boosting Tree is GBM where all weak learners are decision or regression trees
- ♦ Use limit on depth/number of leaves/node size for the weak learners \Rightarrow high bias
- ♦ Often single-level tree: decision stump
- ♦ Meta-parameters such as *K* (number of trees) and *β* (learning rate) have to be found using cross validation
- \blacklozenge Model is built sequentially (unlike random forests)
- \blacklozenge Highly optimized algorithms based on Gradient Boosting Trees:
	- XGBoost, LightGBM
	- parallelization, scalability, regularization

AdaBoost M1

Binary classifier: $\mathcal{Y} = \{-1, 1\}$

- 1. Initialize the weights $w_i = 1/m$ for $i = 1, 2, \ldots m$
- 2. For $k = 1$ to K :

(a) Fit a classifier $f_k(x; \theta_k)$ to the training data using loss weighted by w_i :

$$
\theta_k = \operatorname*{argmin}_{\theta} \sum_{i=1}^{m} w_i [y_i \neq f_k(x_i; \theta)]
$$

(b) Compute the weighted error rate

$$
\epsilon_k = \frac{\sum_{i=1}^m w_i [y_i \neq f_k(x_i; \theta_k)]}{\sum_{i=1}^m w_i}
$$

(c) Compute the scaling coefficient $\alpha_k = \log((1 - \epsilon_k)/\epsilon_k)$ (d) Set $w_i \leftarrow w_i \cdot \exp(\alpha_k \cdot [y_i \neq f_k(x_i; \theta_k)])$ for $i = 1, 2, \ldots m$

3. Return
$$
h_m(x) = \text{sign}\left[\sum_{k=1}^K \alpha_k f_k(x; \theta_k)\right]
$$

AdaBoost is FSAM: the Loss

♦ Claim: AdaBoost is FSAM using the exponential loss

> -1.0 -0.5 0.0 0.5 1.0 $yf(x)$ Ω $(\beta_k, \theta_k) = \text{argmin}$ *β,θ* \sum *m i*=1 ℓ $\sqrt{ }$ $y_i, f_{k-1}(x_i) + \beta b(x_i; \theta)$ \setminus $=$ argmin *β,θ* \sum *m i*=1 $\exp\Big(-y_i$ $\sqrt{ }$ $f_{k-1}(x_i) + \beta b(x_i; \theta)$ \bigwedge $=$ argmin *β,θ* \sum *m i*=1 $w_i^{(k)}$ $\sum_{i}^{(k)} \exp\left(-y_i \beta b(x_i; \theta)\right)$ \setminus *,*

 $\ell(y, f(x)) = \exp(-yf(x))$

 $w_i^{(k)} \triangleq \exp(-y_if_{k-1}(x_i))$

42/45

0/1 loss hinge

[exponential](#page-51-0)

1

2

3

AdaBoost is FSAM II: Fitting the Classifier

$$
(\beta_k, \theta_k) = \underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^m w_i^{(k)} \exp\left(-y_i \beta b(x_i; \theta)\right)
$$

=
$$
\underset{\beta, \theta}{\operatorname{argmin}} \left[e^{-\beta} \sum_{y_i = b(x_i; \theta)} w_i^{(k)} + e^{\beta} \sum_{y_i \neq b(x_i; \theta)} w_i^{(k)}\right]
$$

=
$$
\underset{\beta, \theta}{\operatorname{argmin}} \left[e^{-\beta} \sum_{i=1}^m w_i^{(k)} + \underbrace{(e^{\beta} - e^{-\beta})}_{>0 \text{ for } \beta > 0} \sum_{i=1}^m w_i^{(k)} [y_i \neq b(x_i; \theta)]\right]
$$

For any *β >* 0 we can minimize *θ* separately:

$$
\theta_k = \operatorname*{argmin}_{\theta} \sum_{i=1}^{m} w_i^{(k)} [y_i \neq b(x_i; \theta)] \quad \text{(same as AdaBoost 2(a))}
$$

◆ Let's minimize

$$
(e^{\beta} - e^{-\beta}) \sum_{i=1}^{m} w_i^{(k)} [y_i \neq b(x_i; \theta_k)] + e^{-\beta} \sum_{i=1}^{m} w_i^{(k)}
$$

with respect to *β*

 \blacklozenge

$$
(e^{\beta_k} + e^{-\beta_k}) \sum_{i=1}^{m} w_i^{(k)} [y_i \neq b(x_i; \theta_k)] - e^{-\beta_k} \sum_{i=1}^{m} w_i^{(k)} = 0
$$

$$
(e^{\beta_k} + e^{-\beta_k}) \epsilon_k - e^{-\beta_k} = 0
$$

where
$$
\epsilon_k = \frac{\sum_{i=1}^m w_i [y_i \neq b(x_i; \theta_k)]}{\sum_{i=1}^m w_i}
$$
 as in *Adaboot* 2(b)
Solving for β_k :

$$
\beta_k = \frac{1}{2} \log \frac{1 - \epsilon_k}{\epsilon_k}
$$

 \blacklozenge Define $\alpha_k \triangleq 2\beta_k$ and compare to AdaBoost 2(c)

AdaBoost is FSAM IV: the Weight Update

\n- We have
$$
w_i^{(k)} = e^{-y_i f_{k-1}(x_i)}
$$
 and $f_k(x) = f_{k-1}(x) + \beta_k b(x; \theta_k)$ so:
\n- $w_i^{(k+1)} = e^{-y_i \left(f_{k-1}(x_i) + \beta_k b(x_i; \theta_k)\right)} = w_i^{(k)} \cdot e^{-y_i \beta_k b(x_i; \theta_k)}$
\n- Finally $-y_i b(x_i; \theta_k) = 2 \cdot [y_i \neq b(x_i; \theta_k)] - 1$ gives the weight update:
\n- $w_i^{(k+1)} = w_i^{(k)} \cdot e^{\alpha_k \left[y_i \neq b(x_i; \theta_k)\right]} \cdot e^{-\beta_k}$
\n

 ϵ corresponding to *AdaBoost 2(d)* up to the factor $e^{-\beta_k}$ which is same for all weights and hence has no effect

