Outline

Introduction

- Introduction to Analog to Digital Converters
- Analog to Digital Converter types
- Analog to Digital Converter characteristics

2 STM32 Analog do Digital Converter

- Introduction
- Features
- ADC and DMA

3 ADC registers• Overview

ADC registers

Introduction to Analog to Digital Converters (1/2)

Definition

An analog-to-digital converter is a device that converts a continuous quantity to a discrete time digital representation

STM32 Analog do Digital Converter

ADC registers

Introduction to Analog to Digital Converters (2/2)

TM32 Analog do Digital Converter

ADC registers

Continuous quantity to discrete quantity (1/2)

 $N = 2^{n}$

 $LSB = V_{REF}/2^n$

TM32 Analog do Digital Converter

ADC registers

Continuous quantity to discrete quantity (2/2)

TM32 Analog do Digital Converter

ADC registers

Continuous time to discrete time (1/2)

Continuous time to discrete time (2/2)

Nyquist rate

The Nyquist rate is the minimum sampling rate required to avoid aliasing, equal to twice the highest frequency contained within the signal.

$$f_N \stackrel{\text{def}}{=} 2B$$

Minimum sampling rate

To avoid aliasing, the sampling rate must exceed the Nyquist rate.

$$f_S > f_N$$

TM32 Analog do Digital Converter

ADC registers

Analog to Digital Converter diagram

STM32 Analog do Digital Converter

ADC registers

FLASH Analog to Digital Converter

ADC registers

SAR Analog to Digital Converter

STM32 Analog do Digital Converter

ADC registers

Sigma-delta Analog to Digital Converter

ADC registers

Analog to Digital Converter characteristics

- Resolution
- Max sampling rate
- Signal to Noise Ratio (SNR)
- Input voltage offset
- Gain stability
- Linearity

ANALOG INPUT Standard Differential Input Range Single-Ended Input Voltage Common-Mode Voltage Optional Input Ranges Analog Input Bias Current Track-Mode Input Bandwidth Input Imgedance	
CONVERSION CHARACTERISTICS Sample Rate Data Latency	
$\label{eq:product} \begin{array}{l} \hline \textbf{DYNAMIC CHARACTERISTICS} \\ \hline \textbf{Differential Linearity Error (largest code error)} \\ f = 10HHz \\ \hline \textbf{f} = 10HHz \\ \hline \textbf{No Missing Codes} \\ \hline \textbf{Integral Nonlinearity Error, f} = 1MHz \\ \hline \textbf{Spurious-Free Dynamic Range^{(1)}} \\ f = 10HHz \\ \hline \textbf{f} = 10HHz \\ \hline \textbf{f} = 10HHz \\ \hline \textbf{z} - Tone Intermodulation Distortion \\ \hline \textbf{f}_N = 19.4MHz and 20.4MHz (-7dB each tone) \\ \hline \textbf{Signal-to-Noise Ratio (SNR)} \\ f = 10HHz \\ \hline \textbf{f} = 31MHz \\ \hline \textbf{Signal-to-Koise + Distortion) (SINAD) \\ \hline \textbf{f} = 11MHz \\ \hline \textbf{f} = 31MHz \\ \hline \textbf{Signal-to-Miz} \\ f = 31MHz \\ \hline \end{array}$	

STM32 Analog do Digital Converter

ADC registers

Gain error

TM32 Analog do Digital Converter

ADC registers

Voltage offset error

TM32 Analog do Digital Converter

ADC registers

Non-linearity errors

Outline

Introduction

- Introduction to Analog to Digital Converters
- Analog to Digital Converter types
- Analog to Digital Converter characteristics

2 STM32 Analog do Digital Converter

- Introduction
- Features
- ADC and DMA

3 ADC registers• Overview

- Successive approximation analog-to-digital converter
- 12-bit resolution
- Interrupt generation at End of Conversion, End of Injected conversion and Analog watchdog event
- Single and continuous conversion modes
- Scan mode for automatic conversion of channel 0 to channel n
- Self-calibration
- External trigger option for both regular and injected conversion
- Total conversion time: 14 to 252 T_{CK} (t_S for sampling + 12.5 for successive approximation)

ADC registers

STM32 Analog do Digital Converter accuracy

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error	6 50 MUL	±2	±5	
EO	Offset error	$f_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega,$	±1.5	±2.5	
EG	Gain error	$V_{DDA} = 2.4 V \text{ to } 3.6 V$	±1.5	±3	LSB
ED	Differential linearity error	Measurements made after	±1	±2	1
EL	Integral linearity error		±1.5	±3	

STM32 Analog do Digital Converter

ADC registers

Analog power supply

ai14125d

ADC registers 000000

STM32 clock tree

ADC registers

STM32 Analog do Digital Converter diagram

Channel selection

- 16 multiplexed channels
- It is possible to organize the conversions in groups
- A group consists of a sequence of conversions which can be done on any channel and in any order
- Regular group:
 - up to 16 conversions
 - $\bullet\,$ the conversion sequence must be selected in the ADC_SQRx registers
- Injected group:
 - up to 4 conversions
 - This mode is intended for use when conversion is triggered by an external event or by software
 - The injected group has priority over the regular channel group
 - It interrupts the conversion of the current channel in the regular channel group

ADC registers

Single and continuous conversion mode

- In Single conversion mode the ADC does one conversion
- In Continuous mode (CONT = 1) another conversion starts as soon as it finishes one
- The conversion is started either by setting the ADON bit or by external trigger
- If the EOCIE is set, an interrupt is generated at the end of each conversion

Scan conversion mode

- Scans a group of analog channels
- A single conversion is performed for each channel of the group
- After each end of conversion the next channel of the group is converted automatically
- If CONT = 1, on last channel conversion, the ADC starts again from the first group channel
- If the DMA bit is set, the direct memory access controller is used to transfer the converted data to SRAM after each EOC

Introduction 00000000000000	STM32 Analog do Digital Converter	ADC registers 000000

- The AWD analog watchdog status bit is set if the analog voltage converted by the ADC is below a low threshold or above a high threshold
- These thresholds are programmed in the 12 least significant bits of the ADC_HTR and ADC_LTR 16-bit registers
- An interrupt can be enabled by using the AWDIE bit in the ADC_CR1 register

ADC registers 000000

Direct Memory Access

ai1!

ADC and DMA

- Converted regular channels value are stored in a unique data register
- It is necessary to use DMA for conversion of more than one regular channel
- The end of conversion of a regular channel generates a DMA request
- Converted data is transferred from the ADC_DR register to the destination location selected by the user

Outline

Introduction

- Introduction to Analog to Digital Converters
- Analog to Digital Converter types
- Analog to Digital Converter characteristics

2 STM32 Analog do Digital Converter

- Introduction
- Features
- ADC and DMA

ADC status register (ADC_SR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserve	d					STRT	JSTRT	JEOC	EOC	AWD
					Res.						rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

AWD: Analog watchdog flag
 This bit is set by hardware when the converted voltage crosses the values programmed in the ADC_LTR and ADC_HTR registers. It is cleared by software.
 0: No Analog watchdog event occurred

- 1: Analog watchdog event occurred
- 1 EOC: End of conversion

This bit is set by hardware at the end of a group channel conversion (regular or injected). It is cleared by software or by reading the ADC_DR.

- 0: Conversion is not complete
- 1: Conversion complete
- 4 STRT: Regular channel start flag

This bit is set by hardware when regular channel conversion starts. It is cleared by software.

- 0: No regular channel conversion started
- 1: Regular channel conversion has started

ADC control register 1 (ADC_CR1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved								JAWDEN	Rese	erved		DUALM	IOD[3:0]	
	Res.								rw	Re	is. rw rw rw				rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DISCNUM[2:0] JDISCE DISC N EN JAUTO AWD SGL SCAN JE							JEOC IE	AWDIE	EOCIE		A	WDCH[4:	0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

4:0 AWDCH[4:0]: Analog watchdog channel select bits

These bits are set and cleared by software. They select the input channel to be guarded by the Analog watchdog.

00000: ADC analog input Channel0

10001: ADC analog input Channel17

5 EOCIE: Interrupt enable for EOC

This bit is set and cleared by software to enable/disable the End of Conversion interrupt.

- 0: EOC interrupt disabled
- 1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.
- 8 SCAN: Scan mode

This bit is set and cleared by software to enable/disable Scan mode. In Scan mode, the inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted.

- 0: Scan mode disabled
- 1: Scan mode enabled

ADC control register 2 (ADC_CR2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Res	erved				TSVRE FE	SWST ART	JSWST ART	EXTT RIG	E	XTSEL[2:	0]	Res.
			R	es.				rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
JEXTT RIG JEXTSEL[2:0] ALIGN Reserved D						DMA		Rese	erved		RST CAL	CAL	CONT	ADON	
rw rw rw rw Res.					rw		R	es.		rw	rw	rw	rw		

0 ADON: A/D converter ON/OFF

If this bit holds a value of zero and a 1 is written to it then it wakes up the ADC from Power Down state.

Conversion starts when this bit holds a value of 1 and a 1 is written to it.

0: Disable ADC conversion and go to power down mode.

1: Enable ADC and to start conversion

1 CONT: Continuous conversion

- 0: Single conversion mode
- 1: Continuous conversion mode
- 8 DMA: Direct memory access mode
 - 0: DMA mode disabled
 - 1: DMA mode enabled
- 11 ALIGN: Data alignment
 - 0: Right Alignment
 - 1: Left Alignment

ADC sample time register 1 (ADC_SMPR1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Res	erved				S	MP17[2:0)]	5	MP16[2:0)]	SMP1	5[2:1]
	Res.							rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMP 15_0	SMP 15_0 SMP14[2:0] SMP13[2:0]					s	MP12[2:0	0]	s	SMP11[2:0	0]	5	MP10[2:0	0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

4:0 **SMPx[2:0]**: Channel × Sample time selection

These bits are written by software to select the sample time individually for each channel.

- 000: 1.5 cycles
- 001: 7.5 cycles
- 010: 13.5 cycles
- 011: 28.5 cycles
- 100: 41.5 cycles
- 101: 55.5 cycles
- 110: 71.5 cycles
- 111: 239.5 cycles

ADC regular sequence register 1 (ADC_SQR1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved					L[3	8:0]			SQ1	6[4:1]	
	Res.						rw rw rw rw rw							rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ16_0	16_0 SQ15[4:0]						-	SQ14[4:0					SQ13[4:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

19:15 **SQ16[4:0]**: 16th conversion in regular sequence These bits are written by software with the channel number (0..17) assigned as the 16th in the conversion sequence.

23:20 L[3:0]: Regular channel sequence length

These bits are written by software to define the total number of conversions in the regular channel conversion sequence.

- 0000: 1 conversion
- 0001: 2 conversions

...

1111: 16 conversions

ADC registers

ADC value registers

• ADC regular data register (ADC_DR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ADC20	ATA[15:0	1						
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DAT	A[15:0]							
r	r	r	r	r	r -	r -	r	r	r	r	r	r	r	r	r

• ADC watchdog low threshold register (ADC_LTR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved		LT[11:0]											
	Res				rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

ADC watchdog low threshold register (ADC_HTR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Deer								HT[11:0]					
	Heserved				rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

References

http://en.wikipedia.org/wiki/Analog_to_digital_converter http://en.wikipedia.org/wiki/Sample_and_hold http://en.wikipedia.org/wiki/Quantization_error http://en.wikipedia.org/wiki/Nyquist_rate http://en.wikipedia.org/wiki/Nyquist_frequency http://en.wikipedia.org/wiki/Flash_ADC http://en.wikipedia.org/wiki/Successive_Approximation_ADC http://en.wikipedia.org/wiki/Sigma-delta_modulation STM32F10xxx Reference Manual (RM0008 - Doc ID 14611) Application note: STM32 ADC modes and their applications (AN3116 - Doc ID 16840)