FSM Testing and Checking Sequences

Radek Mařík

Czech Technical University Faculty of Electrical Engineering Department of Telecommunication Engineering Prague CZ

January 23, 2019

Outline

1 Finite State Machine

Definitions

2 Finite state machine testing

- Terminology
- Formal FSM Testing
- Example
- Characterization Set Construction

Outline

2 Finite state machine testing

- Terminology
- Formal FSM Testing
- Example
- Characterization Set Construction

Finite Machine in Applications [Bei95, HI98]

- a model for testing of applicaiton driven using menu
- a model of communication protocols
- a model used in object-oriented design

Finite State Machine

- an abstract machine which the number of states and input symbols is finite and constant.
- consists of
 - states (nodes) ... future behavior is fully determined by a given state,
 - transitions (edges) ... behavioral rules,
 - input symbols (labels of edges) ... environmental stimuli, and
 - output symbols (labels of edges or nodes) ... external reactions.

Finite Machine in Applications [Bei95, HI98]

- a model for testing of applicaiton driven using menu
- a model of communication protocols
- a model used in object-oriented design

Finite State Machine

- an abstract machine which the number of states and input symbols is finite and constant.
- consists of
 - states (nodes) ... future behavior is fully determined by a given state,
 - transitions (edges) ... behavioral rules,
 - input symbols (labels of edges) ... environmental stimuli, and
 - output symbols (labels of edges or nodes) ... external reactions.

Finite State Machine [HI98]

- Let *Input* be a finite alphabet.
- *Finite state machine* over *Input* consists of the following items:
 - **1** A finite set Q of elements called *states*.
 - **2** A subset I of the set Q containing *initial states*.
 - **③** A subset T of the set Q containing *end states*.
 - A finite set of *transitions*, that returns a set of all possible next states for each state and each symbol of the input alphabet.

Transition function

$\mathbf{F}: Q \times Input \to \mathcal{P}Q$

- **F**(q, input) contains all possible states of the automaton, to which it is possible to make a transition if the input symbol input is accepted in state q.
- *PQ* denotes a set of all subsets of the set *Q* (a power set of the set *Q*, CZ potenční množina množiny)

Finite State Machine [HI98]

- Let *Input* be a finite alphabet.
- Finite state machine over Input consists of the following items:

 - **2** A subset I of the set Q containing *initial states*.
 - **③** A subset T of the set Q containing *end states*.
 - A finite set of *transitions*, that returns a set of all possible next states for each state and each symbol of the input alphabet.

Transition function

 $\mathbf{F}:Q\times Input\to \mathcal{P}Q$

- **F**(q, input) contains all possible states of the automaton, to which it is possible to make a transition if the input symbol input is accepted in state q.
- *PQ* denotes a set of all subsets of the set *Q* (a power set of the set *Q*, CZ potenční množina množiny).

Finite State Machine with Output (Mealy) [HI98]

- Let *Input* be a finite alphabet.
- *Finite state machine* over *Input* consists of the following items:
 - **1** A finite set Q of elements called *states*.
 - **2** A subset I of the set Q containing *initial states*.
 - **③** A subset T of the set Q containing *end states*.
 - A set Output of all possible output symbols.
 - A finite set of *transitions*, that returns a set of all possible next states for each state and each symbol of the input alphabet.

Output function

 $\mathbf{G}: Q \times Input \rightarrow Output$

- **G**(*q*, *input*) determines an output symbol for each state and for each input symbol.
- F and G might be partial functions.

Finite State Machine with Output (Mealy) [HI98]

- Let *Input* be a finite alphabet.
- *Finite state machine* over *Input* consists of the following items:
 - **1** A finite set Q of elements called *states*.
 - **2** A subset I of the set Q containing *initial states*.
 - **③** A subset T of the set Q containing *end states*.
 - A set Output of all possible output symbols.
 - A finite set of *transitions*, that returns a set of all possible next states for each state and each symbol of the input alphabet.

Output function

$\mathbf{G}: Q \times Input \rightarrow Output$

- **G**(q, input) determines an output symbol for each state and for each input symbol.
- $\bullet~{\bf F}$ and ${\bf G}$ might be partial functions.

Definitions

Finite State Machines Examples [HI98]

A set *Input* of input symbols

- Actions or commands of the user entered through a keyboard,
- Mouse clicks or moves.
- Signals accepted by a sensor.

- Values of certain important variables of the system.
- A formular type visible on the monitor,
- Whether devices are active or not.

Definitions

Finite State Machines Examples [HI98]

A set *Input* of input symbols

- Actions or commands of the user entered through a keyboard,
- Mouse clicks or moves.
- Signals accepted by a sensor.

A set Q of states

- Values of certain important variables of the system,
- A behavioral model of the system,
- A formular type visible on the monitor,
- Whether devices are active or not.

State Diagram [Bei95]

- Nodes: represent states (a state of the software application).
- Edges: represent transitions (a menu item selection).
- Edge attributes (input symbols): e.g. mouse actions, Alt+Key, function keys, keyboard keys of cursor movement.
- Edge attributes (output symbols): e.g. a menu presentation or a next window open.

Space ship model *Enterprise*

- three modes of the impulse engine: move forward(d), neutral(n), and move backward(r).
- three possible state of movement: forward(F), stop(S), and backward(B).
- their combinations creates nine states: DF, DS, DB, NF, NS, NB, RF, RS, and RB.

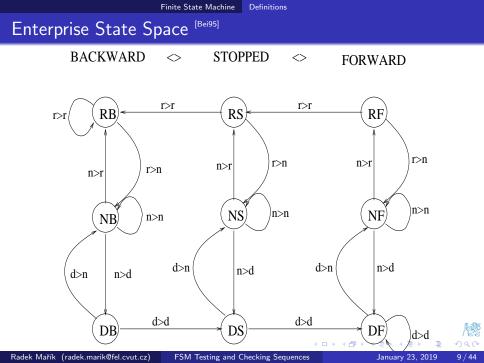
• possible inputs: d > d, r > r, n > n, d > n, n > d, n > r, r > n.

State Diagram [Bei95]

- Nodes: represent states (a state of the software application).
- Edges: represent transitions (a menu item selection).
- Edge attributes (input symbols): e.g. mouse actions, Alt+Key, function keys, keyboard keys of cursor movement.
- Edge attributes (output symbols): e.g. a menu presentation or a next window open.

Space ship model Enterprise

- three modes of the impulse engine: move forward(d), neutral(n), and move backward(r).
- three possible state of movement: forward(F), stop(S), and backward(B).
- their combinations creates nine states: DF, DS, DB, NF, NS, NB, RF, RS, and RB.
- possible inputs: d > d, r > r, n > n, d > n, n > d, n > r, r > n.



Definitions

State Diagram Properties [Bei95]

Properties

- A strong connected graph,
- State graphs grow very quickly,
- All possible and impossible inputs are considered in every state
 - the implementation of the system might be incorrect.
- Nice symmetry is a very rare case in real life.

Transition Table [Bei95]

A transition table

- has a row for each state
- has a column for each input.
- In fact, there are two tables with the same shape:
 - a transition table,
 - an output table.
- A value in the transition table represents the next state.
- A value in the output table is the output code for a given transition.
- **Hierachical (nested) automata** are the only way how huge tables can be avoided (e.g. statechart, starchart, etc.)

Enterprise Transition Table [Bei95]

Enterprise

STATE	r > r	r > n	n > n	n > r	n > d	d > d	d > n	r > d	d > r
RB	RB	NB							
RS	RB	NS							
RF	RS	NF							
NB			NB	RB	DB				
NS			NS	RS	DS				
NF			NF	RF	DF				
DB						DS	NB		
DS						DF	NS		
DF						DF	NF		

э

Outline

Finite State Machine

Definitions

2 Finite state machine testing

• Terminology

- Formal FSM Testing
- Example
- Characterization Set Construction

State Reachability [Bei95]

- **Reachable state:** a state *B* is reachable from a state *A*, if there is a input sequence such that the system is transferred from the state *A* to the state *B*.
- Unreachable state: a state is unreachable if it is not reachable, especially from the initial state. Unreachable states implies typically a mistake.
- **Strong connectivity:** all state of the finite automaton are reachable from the initial state. Most practical models are strongly connected if they do not contain mistakes.
- **Isolated states:** a set of states that are not reachable from the initial state. If they exist, then they are very suspicious, mistaken states.
- **Reset:** a special input symbol/action causing the transition from any state to the initial state.

State Categories [Bei95]

- The set of the initial state: If a transition leading from this set is performed, then there is no way back to this set (e.g. a boot of the system).
- Working states: When the set of the initial state is left, then the system works in a strongly connected set of states in which a majority of testing is performed.
- The initial state of the working set: a state of the working set which can be considered as the "initial state".
- The set of ending state: If the system reaches this set, then there is not way back to the working set, e.g. a finalizing sequence, a shutdown.
- The system is **fully specified** if transitions and output symbols are defined for all combinations of input symbols and states.
- A round trip of the state A: a sequence of transitions going from the state A to a state B and back to the state A.

Test Design [Bei95]

- Each state begins in the initial state.
- The system is transferred
 - from the initial state using the shortest path to the selected state,
 - the given transition is performed,
 - and the system is transferred using the shortest path back into the initial state,
 - i.e. we create a round trip.
- Each test is build upon the preceding simpler tests.
- The input symbol is determined for each transition of the round trip.
- The output symbol is determined for all associated transitions of the round trip.
- We verify
 - input codes,
 - output codes,
 - states,
 - each transition.

• Are all end states reachable?

Hidden States

Is the system in the initial state?

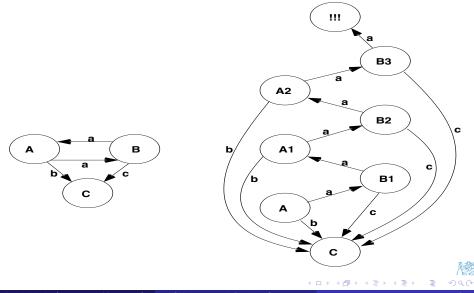
- A test cannot be started if there is no confirmation that the system is in the initial state.
- Applications store their settings in a persistent way.
- If a previous test fails, in what state is the application?
- **Hidden state:** an unknown state that is different from a given state but it has all transitions with the same input and output codes, i.e. it cannot be distinguish from the given state.

• Has the implementation hidden states?

- During the software testing we might assume conditions that are not valid generally.
 - e.g. we know in which state the state is.
- Often, we do not dealt with one or two hidden states, but the state space doubles and is multiplied in other way.

Terminology

Hidden States - Example



Outline

Finite State Machine

Definitions

2 Finite state machine testing

- Terminology
- Formal FSM Testing
- Example
- Characterization Set Construction

Finite State Machine Testing [HI98]

- Based on the isomorphism of finite state machines,
- $\mathcal{A} = (Input, Q, \mathbf{F}, q_0)$ • $\mathcal{A}' = (Input, Q', \mathbf{F}', q_0')$ • $q: \mathcal{A} \to \mathcal{A}'$ • $q: Q \to Q'$ **1** $q(q_0) = {q_0}'$ 2 $\forall q \in Q, input \in Input,$ $q(\mathbf{F}(q, input)) = \mathbf{F}'(q(q), input)$ в

А

Test Set Construction [HI98, Cho78]

Chow's W method

- Let ${\pmb L}$ be a set of input sequences and $q,\,q'$ be two states.
- L distinguishes (CZ rozliší) the state q from q' if there is a sequence k ∈ L such that the output sequence obtained by the application of k to the machine in the state q is different from the output sequence obtained by the application of k to the state q'.
- The machine is *minimal* if it does not contain redundant states.
- A set of input sequences *W* is called *a characterization set* if it can distinguish any two state of the machine.
- A state cover is a set L of input sequences such that it is possible to find an element of L using which we can reach the given state from the initial state q_0 .
- A transition cover of the minimal machine is a set *T* of input sequences such that it is a state cover closed under the right composition with the input set *Input*.

• sequence
$$\in T = L \bullet (Input^1 \cup \{<>\})$$

Test Set Generation [HI98, Cho78]

- How many times are there more states than in the specification? (k)
- $Z = Input^k \bullet W \cup Input^{k-1} \bullet W \cup \dots \cup Input^1 \bullet W \cup W$
 - If A and B are two sets of sequences over the same alphabet, then A • B denotes a set of sequences composed from the sequences of the set A followed by a sequence from B.
 - k steps into an "unknown" space are performed followed by the verification of the state.
- Finite test set:

$T \bullet Z$

- Transition cover ensures
 - that all state and transition of the specification are implemented.
 - The set Z ensures that the implementation is in the same state as specified.
 - The parameter k ensures that all hidden states into the level k are tested.

Outline

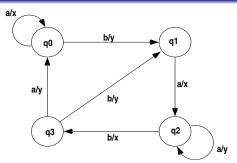
Finite State Machine

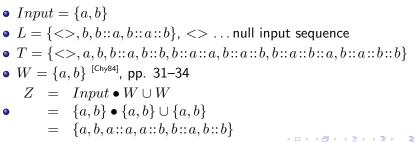
Definitions

2 Finite state machine testing

- Terminology
- Formal FSM Testing
- Example
- Characterization Set Construction

A Simple Example [HI98]





[HI98] Test Set of the Example

 $T \bullet Z =$

- $= \{ <>, a, b, b:: a, b:: b, b:: a:: a, b:: a:: b, b:: a:: b:: a, b:: a:: b:: b \}$ •{a, b, a:: a, a:: b, b:: a, b:: b}
- $= \{a, b, a :: a, a :: b, b :: a, b :: b,$

 - ... simplifications

[HI98] Test Set of the Example

 $T \bullet Z =$

- $= \{\langle \rangle, a, b, b:: a, b:: b, b:: a:: a, b:: a:: b, b:: a:: b:: a, b:: a:: b:: b\}$ •{a, b, a:: a, a:: b, b:: a, b:: b}
- $= \{a, b, a :: a, a :: b, b :: a, b :: b,$

... simplifications

Test Set of the Example [HI98]

 $T \bullet Z =$

- $= \{<>, a, b, b:: a, b:: b, b:: a:: a, b:: a:: b, b:: a:: b:: a, b:: a:: b:: b\}$ •{a, b, a:: a, a:: b, b:: a, b:: b}
- $= \{a, b, a :: a, a :: b, b :: a, b :: b,$

$a \mathop{::} a, a \mathop{::} b, a \mathop{::} a \mathop{::} a, a \mathop{::} a \mathop{::} b, a \mathop{::} b \mathop{::} a, a \mathop{::} b \mathop{::} b,$

b::a,b::b,b::a::a,b::a::b,b::b::a,b::b::b,

b::a::a,b::a::b,b::a::a::a,b::a::b,b::a::b::a,b::a::b;b;

b::b::a,b::b::b,b::b::a:a,b::b::a:b,b::b::b::a,b::b::b,

b::a::b::a::a, b::a::b::a::b, b::a::b::a::a,

b:: *a*:: *b*:: *a*:: *b*, *b*:: *a*:: *b*:: *b*:: *a*, *b*:: *a*:: *b*:: *b*:: *b*:: *b*}

... simplifications

Example

[HI98] Test Set of the Example

$T \bullet Z =$

- •{a, b, a:: a, a:: b, b:: a, b:: b}
- $= \{a, b, a :: a, a :: b, b :: a, b :: b,$
 - a::a, a::b, a::a::a, a::a::b, a::b::a, a::b::b,
 - b::a, b::b, b::a::a, b::a::b, b::b::a, b::b::b,
- ... simplifications

Test Set of the Example [HID8]

= ... simplifications

Image: A matrix

æ

Applications [Bei95]

- Menu driven software,
- Object-oriented software,
- Protocols,
- Device drivers,
- Legacy hardware,
- Microcomputers of industrial and home devices,
- Software instalation,
- Archive and backup software,
- Safety software models,
- WEB applications.

Outline

Finite State Machine

Definitions

2 Finite state machine testing

- Terminology
- Formal FSM Testing
- Example
- Characterization Set Construction

Mealy Machine [Mea55, Mat13]

Definition 1 (Mealy machine with a finite number of states is)

- 6-tuple $M(X, Y, Q, q_0, \delta, \lambda)$:
- X is a finite set of input symbols (the input alphabet),
- Y is a finite set of output symbols (the output alphabet)
- Q is a finite set of state,
- $q_0 \in Q$ is the initial state,
- $D \subseteq Q \times X$ is a specification domain,
- $\delta:D\to Q$ is a state transition function,
- $\lambda: D \to Y$ is an output function.
- If $D = Q \times X$, then M is a **complete** Mealy machine ^[SP10].
- A sequence $\alpha = x_1 \dots x_k, \alpha \in I^*$ is a defined input sequence for a state $q \in Q$ if there are $q_1, \dots, q_{k+1} \in Q$, where $q_1 = q$ such that $(q_i, x_i) \in D$ and $\delta(q_i, x_i) = q_{i+1}$ for all $1 \leq i \leq k$.

machine Minimality [SP10, Mat13]

Let $M(X,Y,Q,q_0,\delta,\lambda)$ be a Mealy machine with a finite number of states.

• Extended transition and state functions applied to an input symbol x of a defined input sequence α including the empty sequence ϵ :

• for
$$q\in Q$$
, $\delta(q,\epsilon)=q$ and $\lambda(q,\epsilon)=\epsilon$

•
$$\delta(q, \alpha x) = \delta(\delta(q, \alpha), x)$$

•
$$\lambda(q, \alpha x) = \lambda(\delta(q, \alpha), x)$$

• $\Omega(q)$ is the set of all defined input sequences for state $q \in Q$.

- Two states $q, q' \in Q$ are distinguishable, if there is $\gamma \in \Omega(q) \cap \Omega(q')$ such that $\lambda(q, \gamma) \neq \lambda(q', \gamma)$. Then, we say that γ distinghishes the states q and q'.
- Two states $q_1, q_2 \in Q; q_1 \neq q_2$ are state equivalent, if they lead to the same of equivalent states after an application of any input sequence.
- $\bullet~M$ is minimal if no its two states are equivalent $^{\rm [Ner58,~Gil60]}$

C-equivalence of States ^[SP10, Mat13]

Let $M(X, Y, Q, q_0, \delta, \lambda)$ be a Mealy machine with a finite number of states.

- Let $C \subseteq \Omega(q) \cap \Omega(q')$ be a set.
- The states $q_1, q_2 \in Q$ are C-equivalent,

 $\text{if }\lambda(q,\gamma)\neq\lambda(q',\gamma)\text{ for all }\gamma\in C.$

Two machines $M_1(X,Y,Q_1,q_0^1,\delta_1,\lambda_1)$ and $M_2(X,Y,Q_2,q_0^2,\delta_2,\lambda_2)$ are equivalent, if

() for each state $q \in M_1$ there is $q' \in M_2$ such that q and q' are equivalent and

2 for each state $q \in M_2$ there is $q' \in M_1$ such that q and q' are equivalent.

k-equivalence

• Let $M_1(X,Y,Q_1,q_0^1,\delta_1,\lambda_1)$ and $M_2(X,Y,Q_2,q_0^2,\delta_2,\lambda_2)$ be two machines.

 The states q_i ∈ Q₁ and q_j ∈ Q₂ are considered to be k-equivalent, if they produce identical output sequences after excited with any input sequence of the length k.

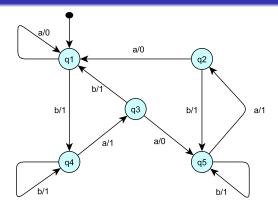
Characterization set W [SP10, Mat13]

Let $M(X, Y, Q, q_0, \delta, O)$ be a minimal and complete Mealy machine with a finite number of states.

- W is a finite set of input sequences that distinguishes any pair of different states q_i, q_j ∈ Q.
- Each input sequence $\gamma \in W$ has a finite length.
- For each pair of different states $q_i,q_j\in Q$ the set W contains at least one input sequence γ such that

$$\lambda(q_i,\gamma) \neq \lambda(q_j,\gamma)$$

Characterization Set Example [HI98]



- $Input = \{a, b\}$
- $\bullet \ W = \{baaa, aa, aaa\}$
- $\lambda(q_1, baaa) = 1...(1101)$
- $\lambda(q_2, baaa) = 0...(1100)$
- $\lambda(q_1, baaa) \neq \lambda(q_2, baaa) \implies baaa \text{ distinguishes the states } q_1 = q_2$

k-equivalence Partition of States $Q^{[Mat13]}$

• k-equivalence partition of states Q, denoted as P_k , is a collection of n finite sets $\Sigma_{k,1}, \Sigma_{k,2}, \ldots, \Sigma_{k,n}$ such that

$$\cup_{i=1}^{n} \Sigma_{k,i} = Q$$

- The states in $\Sigma_{k,i}$ are k-equivalent.
- If states $q_{\ell_1} \in \Sigma_{k,j}$ and $q_{\ell_2} \in \Sigma_{k,j}$ for $i \neq j$, then q_{ℓ_1} and q_{ℓ_2} are k-distinguishable.

W Set Construction ${}^{\scriptscriptstyle{\rm [Mat13]}}$

The Algorithm

- Create a sequence of k-equivalence partitions of states Q denoted as $P_1,P_2,\ldots,P_m,m>0$
- Backward search k-equivalence partitions while constructing distinguishing sequences for each pair of the states.
 - Algorithm convergence is guaranteed.
 - When the algorithm stops each class $\Sigma_{K,j}$ of the finite partition P_K defines a class of equivalent states (1 for minimal machines).

Informally:

- First, find what can be distinguished in one step,
- then in two steps,
- etc.

34 / 44

W Set Construction ${}^{\scriptscriptstyle{\rm [Mat]3]}}$

Tabular representation M.

0-equivalence partition $P_0 = \{ \Sigma_1 = \{q_1, q_2, q_3, q_4, q_5\} \}$

Current state	Output		Next state	
	а	b	а	b
q_1	0	1	q_1	q_4
q_2	0	1	q_1	q_5
q_3	0	1	q_5	q_1
q_4	1	1	q_3	q_4
q_5	1	1	q_2	q_5

1-equivalence Partition P_1 Construction ^[Mat13]

1-equivalence partition $P_1 = \{ \Sigma_1 = \{q_1, q_2, q_3\}, \Sigma_2 = \{q_4, q_5\} \}$.

Σ	Current state	Output		Next state	
		а	b	а	b
	q_1	0	1	q_1	q_4
1	q_2	0	1	q_1	q_5
	q_3	0	1	q_5	q_1
2	q_4	1	1	q_3	q_4
	q_5	1	1	q_2	q_5

2-equivalence Partition Construction: P_1 Rewrite ^[Mat13]

Rewrite P_1 , state q_i is replaced by $q_{i,j}$ if $q_i \in \Sigma_j$.

Σ	Current state	Next state		
		а	b	
	q_1	$q_{1,1}$	$q_{4,2}$	
∥ 1	q_2	$q_{1,1}$	$q_{5,2}$	
	q_3	$q_{5,2}$	$q_{1,1}$	
2	q_4	$q_{3,1}$	$q_{4,2}$	
	q_5	$q_{2,1}$	$q_{5,2}$	

2-equivalence Partition Construction: P_2 Construction [Mat13]

Construct P_2 . Divide $\Sigma_{1,j}$ with regard to the groups of next states.

Σ	Current state	Next state		
		а	b	
1	q_1	$q_{1,1}$	$q_{4,3}$	
	q_2	$q_{1,1}$	$q_{5,3}$	
2	q_3	$q_{5,3}$	$q_{1,1}$	
3	q_4	$q_{3,2}$	$q_{4,3}$	
	q_5	$q_{2,1}$	$q_{5,3}$	

3-equivalence Partition Construction: P_3 Construction [Mat13]

Construct P_3 . Divide $\Sigma_{2,j}$ with regard to the groups of next states.

Σ	Current state	Next state		
		а	b	
1	q_1	$q_{1,1}$	$q_{4,3}$	
	q_2	$q_{1,1}$	$q_{5,4}$	
2	q_3	$q_{5,4}$	$q_{1,1}$	
3	q_4	$q_{3,2}$	$q_{4,3}$	
4	q_5	$q_{2,1}$	$q_{5,4}$	

4-equivalence Partition Construction: P_4 Construction [Mat13]

Construct P_4 . Divide $\Sigma_{3,j}$ with regard to the groups of next states.

Σ	Current state	Next state		
		а	b	
1	q_1	$q_{1,1}$	$q_{4,4}$	
2	q_2	$q_{1,1}$	$q_{5,5}$	
3	q_3	$q_{5,5}$	$q_{1,1}$	
4	q_4	$q_{3,3}$	$q_{4,4}$	
5	q_5	$q_{2,2}$	$q_{5,5}$	

Distinguishing Sequence Construction: Example [Mat13]

- Find a distinguishing sequence of the states q_1 a q_2 .
- 2 Init the distinguishing sequence: $z = \epsilon$.
- So Find tables P_i and P_{i+1} such that (q_1, q_2) are in the same group in P_i and in different groups in P_{i+1} :
 - P_3 and P_4 are obtained.
- Find the input symbol distinguishing q_1 and q_2 in table P_3
 - $\bullet \ b$ is the distinguishing symbol.
 - Update the distinguishing sequence: $z := z.b = \epsilon.b = b$.
- **③** Find the next states if the symbol b is applied to q_1 and q_2 ,
 - q_4 and q_5 are obtained.
- Find tables P_i and P_{i+1} such that (q_4, q_5) are in the same group in P_i and in different groups in P_{i+1} :
 - P_2 and P_3 are obtained.

$$(q_4, q_5) \to P_2, P_3 \to a \to z = ba$$

$$(q_3, q_2) \to P_1, P_2 \to a \to z = baa$$

$$(q_1, q_5) \to P_0, P_1 \to a \to z = baaa$$

() Repeat for each pair (q_i, q_j) : $W = \{a, aa, aaa, baaa\}$

- Finite state machines
- How to test finite state machines
- Test set construction using Chow's W method
- Characterization set construction

Competencies

- Define finite state machine.
- Describe the concept of hidden states.
- Describe Chow's W method of test set construction.
- Define characterization set and describe its construction algorithm.

References I

- [Bei95] Boris Beizer. Black-Box Testing, Techniques for Functional Testing of Software and Systems. John Wiley & Sons, Inc., New York, 1995.
- [Cho78] T.S. Chow. Testing software design modeled by finite-state machines. IEEE Transactions on Software Engineering, SE-4(3):178–187, May 1978.
- [Chy84] Michal Chytil. Automaty a gramatiky. SNTL Praha, 1984.
- [Gil60] A. Gill. Characterizing experiments for finite-memory binary automata. IRE Transactions on Electronic Computers, EC-9(4):469–471, Dec 1960.
- [HI98] Mike Holcombe and Florentin Ipate. Correct Systems: Building a Business Process Solution. Springer, 1998.
- [Mat13] Aditya P. Mathur. Foundations of software testing 2e, slides, 2013.
- [Mea55] George H. Mealy. A method for synthesizing sequential circuits. Bell System Technical Journal, The, 34(5):1045–1079, Sept 1955.
- [Ner58] A. Nerode. Linear automaton transformations. Proc. Amer. Math. Soc., 9:541-544, 1958.
- [SP10] A. Simao and A. Petrenko. Checking completeness of tests for finite state machines. IEEE Transactions on Computers, 59(8):1023–1032, Aug 2010.

(日)