Lecture 2: Vectors \& Matrices

BE0B17MTB - Matlab

Miloslav Čapek, Viktor Adler, Michal Mašek, and Vít Losenický
Department of Electromagnetic Field
Czech Technical University in Prague
Czech Republic
matlab@elmag.org
September 30, 2020
Winter semester 2020/21

Outline

1. Matlab Editor
2. Matrix Creation
3. Operations with Matrices
4. Excercises

Matlab Editor

- It is often required to evaluate certain sequence of commands repeatedly \Rightarrow utilization of Matlab scripts (plain ASCII coding).
- The best option is to use Matlab Editor,
- which can be opened using the following command:

>> edit

- A script is a sequence of statements what we have been up to now typing in the command line.
- All the statements are executed one by one upon the launch of the script.
- The script operates over Matlab base workspace data.
- Scripts are suitable for quick analysis and solving problems involving multiple statements.
- There are specific naming conventions for scripts (and also for functions as we will see later).

MatLab Editor, R2019

Script Execution, m-files

- To execute script:
- F5 function key in Matlab Editor,
- Current folder \rightarrow select script \rightarrow context menu \rightarrow Run,
- Current folder \rightarrow select script \rightarrow F9,
- from the command line:
>> script_name
- Scripts are stored as so called m-files, .m
- Caution: If you have Mathematica installed, the .m files may be launched by Mathematica.

Data in Scripts

- Scripts can use data located in Workspace.
- Variables remain in the Workspace even after the calculation is finished.
- Operations on data in scripts are performed in the base Workspace.
- Matlab carries out commands sequentially.

Useful Functions for Script Generation I.

- Function disp displays value of a variable in Command Window.
- Without displaying variable's name and the equation sign " $=$ ".
- Can be combined with a text (more on that later).
- Often it is advantageous to use more complicated but robust function sprintf.

```
a = 2^13 - 1;
b}=[\begin{array}{ll}{8*a}&{16*a}\end{array}
b
```

```
a}=\mp@subsup{2}{}{\wedge}13-1
b}=[8*a 16*a]
disp(b);
```


Useful Functions for Script Generation II.

- Function input is used to enter variables.
- If the function it terminated unexpectedly, the input request is repeated A = input ('Enter parameter A: ');
- It is possible to enter strings as well:

```
str = input('Enter String str', 's');
```


Script Commenting

- MAKE COMMENTS!!
- Important/complicated parts of code.
- Description of functionality, ideas, change of implementation.
- Typical single-line comment:

```
% create matrix, sum all members
matX = [1, 2, 3, 4, 5];
sumX = sum(matX); % sum of matrix
```

- Multiple-line comment:

```
% {
This is a multiple-line comment.
Mostly, it is more appropriate to use
more single-line comments.
%}
```

- Cell mode enables to separate script into more blocks.

```
matX = [1, 2, 3, 4, 5];
%% CELL mode (must be enabled in Editor)
sumX = sum(matX);
```


Cell Mode in Matlab Editor

- Cells enable to separate the code into smaller, logically compacted parts.
- Separator $\% \%$.
- The separation is visual only, but it is possible to execute a single cell - shortcut CTRL+ENTER.

Entering Matrices Using ":" I.

- Large vectors and matrices with regularly increasing elements can be typed in using colon operator.
- a is the smallest element ("from"), x is increment, b is the largest element ("to")

```
>> A = 1:4:13
A =
    1 5 9 13
```

$A=a: x: b$

- b doesn't have to be element of the series.
- Last element $N \cdot x$ then follows the inequality:

```
>> A = 1:4:10
A =
    1 5
```

$$
|a+N \cdot x| \leq|b|
$$

- If x is ommited, the increment is set equal to 1 .

$$
A=a: x: b
$$

Entering Matrices Using ": " II.

- Using the colon operator ":" create:
- Following vectors

$$
\begin{array}{r}
\mathbf{u}=\left[\begin{array}{llll}
1 & 3 & \ldots & 99
\end{array}\right] \\
\mathbf{v}
\end{array}=\left[\begin{array}{lllll}
25 & 20 & \ldots & -5
\end{array}\right]^{\mathrm{T}}
$$

- Matrix
- Caution, the third column can't be created using colon operator ":" only,

$$
\mathbf{T}=\left[\begin{array}{ccc}
-4 & 1 & \frac{\pi}{2} \\
-5 & 2 & \frac{\pi}{4} \\
-6 & 3 & \frac{\pi}{6}
\end{array}\right]
$$

but can be created using "." and dot operator "." (we will see later).

Entering Matrices Using linspace, logspace I.

- Colon operator defines vector with evenly spaced points.
- In the case when fixed number of elements of a vector is required, use linspace:

```
A = linspace(a, b, N);
```

```
>>A = linspace(0, 2, 5)
A =
    0 0.5000 1.0000 1.5000 2.000
```

- When the N parameter is left out, the vector with 100 elements is generated:

A = linspace (a, b);

- The function logspace works analogically, except that logaritmic scale is used $\mathrm{A}=\operatorname{logspace}(\mathrm{a}, \mathrm{b}, \mathrm{N})$;

Entering Matrices Using linspace, logspace II.

- Create a vector of 100 evenly spaced points in the interval $[-1.15,75.4]$
- Create a vector of 201 evenly spaced points in the interval [$-100,100]$ sorted in descending order.
- Create a vector with spacing of -10 in the interval $[-100,100]$ sorted in descending order.
- try both options using linspace and colon ":"

Entering Matrices Using Functions I.

- Special types of matrices of given sizes are needed quite often.
- Matlab offers a number of functions to serve the purpose.
- Example: matrix filled with zeros
- Will be used frequently.

```
zeros(m)
    % matrix of size [m x m]
zeros(m, n) % matrix of size [m x n]
zeros(m, n, p, ..) % matrix of size [m x n x p x ..]
zeros([m,n]) % matrix of size [mxn]
B = zeros(m, 'single') % matrix of size [mxn], of type 'single'
% see documentation for other options
```


Entering Matrices Using Functions II.

- Following useful functions analogical to the zeros function are available

ones	matrix filled with ones
eye	identity matrix
NaN, Inf	matrix filled with NaN, matrix filled with Inf
magic	matrix suitable for MATLAB experiments, notice its properties
rand, randn, randi	matrix filled with random numbers coming from uniform and normal
	distribution, matrix filled with uniformly distributed random integers
randperm	returns vector containing random permutation of numbers
diag	creates diagonal matrix or returns diagonal of a matrix
blkdiag	construct block diagonal matrix from input arguments
cat	groups several matrices into one
true, false	creates a matrix of logical ones and zeros

- For further functions see Matlab \rightarrow Mathematics \rightarrow Elementary Mathematics \rightarrow Constants and Test Matrices.

Entering Matrices Using Functions III.

- Create following matrices
- use Matlab functions
- begin with matrices you find easy to cope with.

$$
\begin{aligned}
& \mathbf{M}_{1}=\left[\begin{array}{ll}
\mathrm{NaN} & \mathrm{NaN} \\
\mathrm{NaN} & \mathrm{NaN}
\end{array}\right] \\
& \mathbf{M}_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] \\
& \mathbf{M}_{3}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -5
\end{array}\right] \\
& \mathbf{M}_{4}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Entering Matrices Using Functions IV.

- Try to create an empty three-dimensional array of type double.
- Can you find another option?
- empty is hidden (but public) method of all non-abstract classes in Matlab.

Dealing with Sparse Matrices

- Matlab provides support for working with sparse matrices.
- Most of the elements of sparse matrices are zeros and it pays off to store them in a more efficient manner.
- To create a sparse matrix S out of matrix A:

```
S = sparse (A)
```

- Conversion of a sparse matrix to a full matrix:

B = full (S)

- In the case of need see Help for other functions.

Entering Matrices

- Quite often, there are several options how to create a given matrix.
- It is possible to use an output of one function as an input of another function in Matlab:
- Consider:
- clarity,

```
plot(diag(randn(10, 1), 1))
```

- simplicity,
- speed,
- convention.
E.g. band matrix with " 1 " on main diagonal and with " 2 " and " 3 " on secondary diagonals. N = 10; diag(ones (N, 1)) + diag(2 * ones (N - 1, 1), 1) + diag(3 * ones (N - 1, 1), -1)
- Can be done using for cycle as well (see later in semester), might be faster ...
- Some other idea?

Transpose and Matrix Conjugate

- Pay attention to situations where the matrix is complex, $\mathbf{A} \in \mathbb{C}^{M \times N}$.
- Theere are two operations:

| transpose | $\mathbf{A}^{\mathrm{T}}=\left[A_{i j}\right]^{\mathrm{T}}=\left[A_{j i}\right]$ | transpose (A) $<-$ don't use | A. ' |
| :---: | :---: | :--- | :---: | :---: |
| transpose + conjugate | $\mathbf{A}^{\mathrm{H}}=\left[A_{i j}\right]^{\mathrm{H}}=\left[\mathbf{A}^{*}\right]^{\mathrm{T}}$ | ctranspose(A) $<-$ don't use | A^{\prime} |

```
>> A = magic(2) + 1j * magic(2)'
```

```
|>>A.'' }\begin{array}{ll}{\hline\multicolumn{y}{l}}\\{\mathrm{ ans =}}\\{1.0000+1.0000i}&{4.0000+3.0000i}\\{3.0000+4.0000i}&{2.0000+2.0000i}\\{\hline}
```

```
>> A'
ans =
    1.0000-1.0000i 4.0000-3.0000i
    3.0000-4.0000i 2.0000-2.0000i
```


Matrix Operations I.

- There are other useful functions apart from transpose (transpose) and matrix diagonal (diag):

```
P = magic(4)
```

- upper triangular matrix,

$$
\mathrm{U}=\operatorname{triu}(\mathrm{P})
$$

- lower triangular matrix,

$$
\mathrm{L}=\operatorname{tril}(\mathrm{P})
$$

- a matrix can be modified taking into account secondary diagonals as well

```
V = triu(P, -1)
```

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{cccc}
16 & 2 & 3 & 13 \\
5 & 11 & 10 & 8 \\
9 & 7 & 6 & 12 \\
4 & 14 & 15 & 1
\end{array}\right] \mathbf{U}=\left[\begin{array}{cccc}
\hline 16 & 2 & 3 & 13 \\
0 & 11 & 10 & 8 \\
0 & 0 & 6 & 12 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{L}=\left[\begin{array}{cccc}
16 & 0 & 0 & 0 \\
5 & 11 & 0 & 0 \\
9 & 7 & 6 & 0 \\
4 & 14 & 15 & 1
\end{array}\right] \quad \mathbf{V}=\left[\begin{array}{cccc}
\begin{array}{ccc}
16 & 2 & 3 \\
5 & 11 & 10
\end{array} \\
\begin{array}{ccc}
8 \\
0 & 7 & 6 \\
0 & 0 & 12
\end{array} & 1
\end{array}\right]
\end{aligned}
$$

Matrix Operations II.

- Function repmat is used to copy (part of) a matrix.

```
\(B=\operatorname{repmat}(A, m, n)\)
\[
\mathbf{A}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13}
\end{array}\right]
\]
```

```
B = repmat (A, 1, 2)
```

B = repmat (A, 1, 2)
C = repmat (A, [2 1])
C = repmat (A, [2 1])

$$
\begin{gathered}
\mathbf{B}=\left[\begin{array}{lll}
\begin{array}{lll}
A_{11} & A_{12} & A_{13}
\end{array} \begin{array}{ll}
A_{11} & A_{12}
\end{array} A_{13}
\end{array}\right] \\
\mathbf{C}=\left[\begin{array}{lll}
\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
\left.\begin{array}{lll}
A_{11} & A_{12} & A_{13}
\end{array}\right]
\end{array}
\end{array} .\right.
\end{gathered}
$$

```
- repmat is a very fast function.
- Comparison of execution time of creation a \(10^{4} \times 10^{4}\) matrix filled with pi (HW, SW and Matlab version dependent):
```

X = ones(1e4) % computed in 0.71s
Y = repmat (1, 1e4, 1e4) % computed in 0.4s, BUT... don't use it

```
- It is for you to consider the way of matrix creation...

\section*{Matrix Operations III.}
- Function reshape is used to rearrange a matrix
\(\mathrm{B}=\operatorname{reshape}(\mathrm{A}, \mathrm{m}, \mathrm{n})\)
- e.g.
\[
\mathbf{A}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
\]
\[
\begin{aligned}
& \mathrm{C}=\text { reshape }(\mathrm{A},[4,1]) \\
& \mathrm{D}=\text { reshape }(\mathrm{A}, ~ 1,4) \\
& \mathrm{D}=\text { reshape }(\mathrm{A},[], 4)
\end{aligned}
\]
\[
\begin{gathered}
\mathbf{C}=\left[\begin{array}{l}
A_{11} \\
A_{21} \\
A_{12} \\
A_{22}
\end{array}\right] \\
\mathbf{D}=\left[\begin{array}{llll}
A_{11} & A_{21} & A_{12} & A_{22}
\end{array}\right]
\end{gathered}
\]

\section*{Matrix Operations IV.}
- Following functions are used to swap the order of
- columns: fliplr, B = fliplr (A)
- rows: flipud, C = flipud (A)
- row-wise or column-wise: flip.
\[
\begin{aligned}
& \mathrm{B}=\operatorname{flip}(\mathrm{A}, 1) \\
& \mathrm{C}=\operatorname{flip}(\mathrm{A}, 2) \\
& \hline
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right] \\
& \mathbf{B}=\left[\begin{array}{lll}
A_{13} & A_{12} & A_{11} \\
A_{23} & A_{22} & A_{21}
\end{array}\right] \\
& \mathbf{C}=\left[\begin{array}{lll}
A_{21} & A_{22} & A_{23} \\
A_{11} & A_{12} & A_{13}
\end{array}\right]
\end{aligned}
\]
- The same result is obtained using indexing (later in the course).

\section*{Matrix Operations V.}
- Circular shift is also available.
- Can be carried out along an arbitrary dimension (row-wise/column-wise).
- Can be carried out in both directions (back/forth).
- Consider the difference between flip and circshift.
```

B = circshift (A, -2)
C = circshift(A, [-2 1])

```
\[
\mathbf{B}=\left[\begin{array}{lll}
A_{31} & A_{32} & A_{33} \\
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right]
\]
\[
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] \\
& \mathbf{C}=\left[\begin{array}{lll}
A_{33} & A_{31} & A_{32} \\
A_{13} & A_{11} & A_{12} \\
A_{23} & A_{21} & A_{22}
\end{array}\right]
\end{aligned}
\]

\section*{Matrix Operations VI.}
- Convert matrix \(\mathbf{A}\) into the form of matrices \(\mathbf{A}_{1}\) to \(\mathbf{A}_{4}\).
\[
A=[1 \mathrm{pi} ; \exp (1)-1 i]
\]
\[
\mathbf{A}=\left[\begin{array}{cc}
1 & \pi \\
\mathrm{e} & -\mathrm{i}
\end{array}\right]
\]
- Use repmat, reshape, triu, tril and conj.
\[
\left.\left.\begin{array}{c}
\mathbf{A}_{1}=\left[\begin{array}{cccccc}
1 & \pi & 1 & \pi & 1 & \pi \\
\mathrm{e} & -\mathrm{i} & \mathrm{e} & -\mathrm{i} & \mathrm{e} & -\mathrm{i}
\end{array}\right] \quad \mathbf{A}_{3}=\left[\begin{array}{cc}
1 & \pi \\
\mathrm{e} & +\mathrm{i} \\
1 & \pi \\
\mathrm{e} & +\mathrm{i} \\
1 & \pi \\
\mathrm{e} & +\mathrm{i}
\end{array}\right] \quad \mathbf{A}_{4}=\left[\begin{array}{cccc}
1 & \pi & 0 & 0 \\
0 & 0 & 0 \\
\mathrm{e} & -\mathrm{i} & \mathrm{e} & 0 \\
0 & 0 & 0 \\
0 & \pi & 1 & \pi \\
0 & 0 & \mathrm{e} & -\mathrm{i} \\
\mathrm{e} & 0 \\
0 & \pi & \mathrm{e} & -\mathrm{i}
\end{array}\right] \quad 0 \\
\mathbf{A}_{2}
\end{array}\right] \quad \begin{array}{lllll}
0 & \pi & 1 & \pi \\
0 & 0 & 0 & 0 & \mathrm{e} \\
\hline
\end{array}\right]
\]

\section*{Matrix Operations VII.}
- Create the following matrix (use advanced techniques)
\[
\mathbf{A}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 2 & 3 \\
0 & 2 & 4 & 0 & 2 & 4 \\
0 & 0 & 5 & 0 & 0 & 5
\end{array}\right]
\]
- Create matrix \(\mathbf{B}\) by swapping columns in matrix \(\mathbf{A}\).

- Create matrix \(\mathbf{C}\) by swapping rows in matrix \(\mathbf{B}\).


\section*{Matrix Operations VIII.}
- Compare and interpret following commands.
```

x = (1:5).' % entering vector
x = repmat (x, [1 10]); % 1. option
X = x(:, ones(10, 1)); % 2. option

```
- repmat is powerful, but not always the most time-efficient function.

\section*{Vector and Matrix Operations}
- Remember that matrix multiplication is not commutative, i.e. \(\mathbf{A B} \neq \mathbf{B A}\).
- Remember that vector \(\times\) vector product results in
\begin{tabular}{|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \(u_{11}\)
\end{tabular}\(u_{12}\).
\[
\underset{\substack{\text { v. }}}{\mathbf{v}_{1, M}} \mathbf{u}_{M, 1}=\mathbf{w}_{1,1}
\]
\begin{tabular}{|cc|}
\hline\(v_{11}\) & \(v_{12}\) \\
\(u_{11}\) \\
\(u_{21}\) \\
\(u_{31}\) \\
\hline
\end{tabular}\(w_{11}\)\begin{tabular}{l}
\(w_{13}\) \\
\hline
\end{tabular}
... pay attention to the dimensions of matrices!

\section*{Element-by-element Vector Product}
- It is possible to multiply arrays of the same size in the element-by-element manner in Matlab.
- Result of the operation is an array.
- Size of all arrays are the same, e.g. in the case of \(1 \times 3\) vectors:
\[
\mathbf{a}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]
\]
```

|alll}$$
\begin{array}{lll}{\mp@subsup{a}{1}{}}&{\mp@subsup{a}{2}{}}&{\mp@subsup{a}{3}{}}\\{*}&{\begin{array}{lll}{\mp@subsup{b}{1}{}}&{\mp@subsup{b}{2}{}}&{\mp@subsup{b}{3}{}}\end{array}
$$->\quad\mathrm{ (Inner matrix dimensions must agree.)}}

```
>> a.*b
\[
\begin{array}{|lll}
\hline a_{1} & a_{2} & a_{3} \\
\hline
\end{array} * \begin{array}{|lll}
b_{1} & b_{2} & b_{3} \\
\hline
\end{array} \rightarrow \begin{array}{|lll}
a_{1} b_{1} & a_{2} b_{2} & a_{3} b_{3} \\
\hline
\end{array}=\left[a_{i} b_{i}\right]
\]

\section*{Element-by-element Matrix Product}
- If element-by-element multiplication of two matrices of the same size is needed, use the .* operator.
- It is so called Hadamard product/element-wise product/Schur product: A \(\circ \mathbf{B}\).
- These two cases of multiplication are distinguished:

\[
\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array} \quad \star \begin{array}{|ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array} \rightarrow \begin{array}{|ll|}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22} \\
\hline
\end{array}
\]
```

>> A.*B

```
\begin{tabular}{ll}
\(A_{11}\) & \(A_{12}\) \\
\(A_{21}\) & \(A_{22}\)
\end{tabular}\(\cdot *\)\begin{tabular}{|cc|}
\(B_{11}\) & \(B_{12}\) \\
\(B_{21}\) & \(B_{22}\)
\end{tabular}\(\rightarrow\)\begin{tabular}{l}
\(A_{11} B_{11}\) \\
\(A_{12} B_{12}\) \\
\(A_{21} B_{21}\)
\end{tabular}\(A_{22} B_{22}\)

\section*{Compatible Array Size}
- Since Matlab version R2016b most two-input (binary) operators support arrays that have compatible sizes.
- Variables have compatible sizes if their sizes are either the same or one of them is 1 (for all dimensions).
- Examples:
- \(\circ\) represents arbitrary two-input element-wise operator (+, \(-, \ldots, . /, \&,<,==, \ldots\) ).

\[
[3 \times 1] \quad[1 \times 2] \quad[3 \times 2]
\]

\([2 \times 2] \quad[2 \times 1] \quad[2 \times 2]\)
\([2 \times 2] \quad[1 \times 1] \quad[2 \times 2]\)

\[
[4 \times 3 \times 1]
\]
\[
[1 \times 3 \times 3]
\]
\[
[4 \times 3 \times 3]
\]


\section*{Element-wise Operations I.}
- Elements-wise operations can be applied to vectors as well in Matlab. Element-wise operations can be usefully combined with vector functions.
- It is possible, quite often, to eliminate 1 or even 2 for-loops!!!
- These operations are exceptionally efficient \(\rightarrow\) allow use of so called vectorization (see later).

\[
f(x)=\frac{10}{(x+1)} \tan (x), \quad x \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]
\]
```

x = -pi/4:pi/100:pi/4;
fx = 10 ./ (1 + x) .* tan(x);
plot(x, fx)
grid on

```

\section*{Element-wise Operations II.}
- Evaluate functions of the variable
\[
x \in[0,2 \pi]:
\]
\[
\begin{aligned}
& f_{1}(x)=\sin (x) \\
& f_{2}(x)=\cos ^{2}(x) \\
& f_{3}(x)=f_{1}(x)+f_{2}(x)
\end{aligned}
\]
- Evaluate the functions in evenly spaced points of the interval, the spacing is \(\Delta x=\pi / 20\).
- For verification use:
\[
\operatorname{plot}(x, f 1, x, f 2, x, f 3)
\]


\section*{Element-wise Operations III.}
- Depict graphically following functional dependency in the interval \(x \in[0,5 \pi]\).
- Plot the result using the following function:
\[
f_{4}(x)=\frac{-\cos (3 x)}{\cos (x) \sin \left(x-\frac{\pi}{5}\right)-\pi}
\]
```

plot(x, f4)

```
- Explain the difference in the way of multiplication of matrices of the same size.
\(\square\)
\(\square\) >> \(A^{\prime} . * B\)


\section*{Element-wise Operation IV.}
- Evaluate the function \(f(x, y)=x y, \quad x, y \in[0,2]\), use 101 evenly spaced points in both \(x\) and \(y\).
- The evaluation can be carried out either using vectors, matrix element-wise vectorization or using two for loops.
- Plot the result using \(\operatorname{surf}(\mathrm{x}, \mathrm{y}, \mathrm{f})\).
- When ready, try also \(f(x, y)=x^{0.5} y^{2}\) on the same interval.


\section*{Matrix Operations}
- Contruct block diagonal matrix: blkdiag.
```

A = 1;
B = [2 3; -4 -5];
C = blkdiag(B, A);

```
\[
\mathbf{A}=\begin{aligned}
& A_{11} \\
& \left.\mathbf{B}=\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
\end{aligned}
\]
\[
\left.\mathbf{C}=\begin{array}{|cc|}
\hline B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) 0
\]
- Arranging two matrices of the same size: cat.
\[
\begin{aligned}
& \mathrm{C}=\operatorname{cat}(2, \mathrm{~A}, \mathrm{~B}) \\
& \mathrm{C}=\operatorname{cat}(1, \mathrm{~A}, \mathrm{~B}) \\
& \mathrm{C}=\operatorname{cat}(3, \mathrm{~A}, \mathrm{~B})
\end{aligned}
\]



\section*{Size of Matrices and Other Structures I.}
- It is often needed to know sizes of matrices and arrays.
- Function size returns vector giving the size of a matrix/array.
\[
\begin{aligned}
& A=\operatorname{randn}(3,5) ; \\
& d=\operatorname{size}(A) \% d=[35]
\end{aligned}
\]
- Function length returns largest dimension of an array.
\[
\text { length(A) }=\max (\operatorname{size}(A))
\]
\[
\begin{aligned}
& A=\operatorname{randn}(3,5,8) ; \\
& e=\operatorname{length}(A) \% e=8
\end{aligned}
\]
- Function ndims returns number of dimensions of a matrix/array.
\[
\operatorname{ndims}(A)=\operatorname{length}(\operatorname{size}(A)) \quad m=\operatorname{ndims}(A) \div m=3
\]
- Function numel returns number of elements of a matrix/array.
\[
\text { numel }\{\mathrm{A}\}=\operatorname{prod}(\operatorname{size}(\mathrm{A}))
\]
\[
\mathrm{n}=\text { numel }(\mathrm{A}) \quad \% \mathrm{n}=120
\]

\section*{Size of Matrices and Other Structures II.}
- Create an arbitrary 3D array.
- You can make use of the following commands:
```

A = rand(2 + randi(10), 3 + randi(5));
A = cat(3, A, flipud(fliplr(A)))

```
- And now:
- Find out the size of A.
- Find out the number of elements of A.
- Find out the number of elements of \(A\) in the "longest" dimension.
- Find out the number of dimensions of A.

\section*{Squeeze}
- Function squeeze removes dimension of an array with length 1.
- If the input is scalar, vector or array without any dimension of the length 1 , the output is identical to the input.



\section*{Function gallery}
- Function enabling to create a vast set of matrices that can be used for Matlab code testing.
- Most of the matrices are special-purpose.
- Function gallery offers significant coding time reduction for advanced Matlab users.
- See: help gallery or doc gallery
- Try for instance:
```

gallery('pei', 5, 4)
gallery('leslie', 10)
gallery('clement', 8)

```

\section*{Exercises}

\section*{Exercise I.}
- Create matrix M of size size (M) = [lllllland containing random numbers coming from uniform distribution on the interval \([-0.5,7.5]\).
\[
I(x)=\left(I_{\max }-I_{\min }\right) \operatorname{rand}(\ldots)+I_{\min }
\]


\section*{Exercise II.}
- Consider the operation a1^a2. Is this operation applicable to the following cases?
\[
\begin{array}{ll}
\text { a1 - matrix } & \text { a2 - scalar } \\
\text { a1 - matrix } & \text { a2- matrix } \\
\text { a1 - matrix } & \text { a2- vector } \\
\text { a1- scalar } & \text { a2- scalar } \\
\text { a1 - scalar } & \text { a2- matrix } \\
\text { a1, a } 2 \text { matrix } & \text { a1.^a2 }
\end{array}
\]

You can always create the matrices a1, a2 and make a test ...

\section*{Exercise III.}
- Make corrections to the following piece of code to get values of the function \(f(x)\) for 200 points on the interval \([0,1]\) :
\[
f(x)=\frac{x^{2} \cos (\pi x)}{\left(x^{3}+1\right)(x+2)}
\]
- Find out the value of the function for \(x=1\) by direct accessing the vector.
- What is the value of the function for \(x=2\) ?
- To check, plot the graph of the function \(f(x)\).


\section*{Exercise IV.}
- Create a random matrix \(\mathbf{M}\) of size \(N \times N\) containing only 0 and 1 elements.
- Compute the percentage of 0 elements in matrix.
- Compute number of 1 elements on the matrix main diagonal.

\section*{Exercise V.a}
- A proton, carrying a charge of \(Q=1.602 \cdot 10^{-19} \mathrm{C}\) with a mass of \(m=1.673 \cdot 10^{-31} \mathrm{~kg}\) enters a homogeneous magnetic and electric field in the direction of the \(z\) axis in the way that the proton follows a helical path; the initial velocity of the proton is \(v_{0}=1 \cdot 10^{7} \mathrm{~ms}^{-1}\). The intensity of the magnetic field is \(B=0.1 \mathrm{~T}\), the intensity of the electric field is \(E=1 \cdot 10^{5} \mathrm{Vm}^{-1}\)
- Velocity of the proton among the \(z\) axis is \(v=\frac{Q E}{m} t+v_{0}\),
- where \(t\) is time, traveled distance along the \(z\) axis is \(z=\frac{1}{2} \frac{Q E}{m} t^{2}+v_{0} t\),
- radius of the helix is \(r=\frac{v m}{B Q}\),
- frequency of orbiting the helix is \(f=\frac{v}{2 \pi r}\),
- the \(x\) and \(y\) coordinates of the proton are \(x=r \cos (2 \pi f t), y=r \sin (2 \pi f t)\).

\section*{Exercise V.b}
- Plot the path of the proton in space in the time interval from 0 ns to 1 ns in 1001 points using function comet \(3(x, y, z)\).
```

clear; clc; close all;

```
```

comet3(x, y, z);

```


\title{
Questions?
}

\author{
BE0B17MTB - Matlab \\ matlab@elmag.org
}

September 30, 2020
Winter semester 2020/21

This document has been created as a part of BE0B17MTB course.
Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted only with the prior permission of the authors.
Acknowledgement: Filip Kozak, Pavel Valtr.```

