X39RSO/A4M39RSO

Sampling & Anti-aliasing

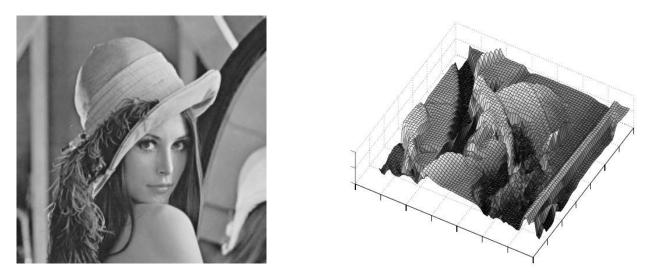
Vlastimil Havran ČVUT v Praze – CTU Prague Verze 2011

Prepared orginally by Daniel Sýkora 2006

Introduction

What Is an (Animated) Image?

Theory - Continuous function of two/three variables:
 I(*x*,*y*,*t*): R³ -> R



- Practice Time varying matrix of pixels
- One animation frame = equidistant <u>samples</u> of $I(x,y,t_i)$:

I[x,y,t]: N² -> R I[x,y,t] => luminance, color RGB, etc.

Imagers = Signal Sampling

- Physical imagers (imager = imaging device)
 - Integrate over sensor area and time
 - Integration: each photon hit => increase pixel value
 - Examples
 - Retina rods / cones
 - CCD array
 - Film
- Virtual imagers computer graphics cameras
 - <u>Sample</u> continuous image function at specific location and time instant
 - No integration takes place has to be simulated

Displays = Signal Reconstruction

- Take image samples
- Reconstruct continuous image (one pixel = small light)
- Examples
 - CRT
 - LCD

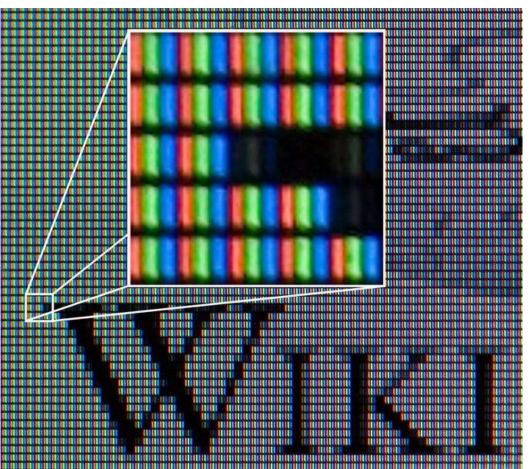


Image Sampling

Real devices

Sample = Integral over (small) area and (short) time

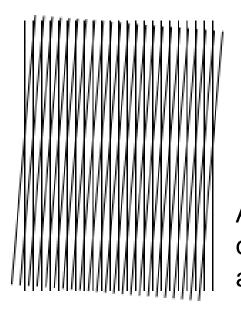
Rendering

- Sample = Point sample
- Consequences Aliasing
 - Jagged edges
 - Moire patterns
 - Flickering of small objects
 - Sparkling highlights
 - Temporal flickering
- Preventing aliasing anti-aliasing

Moire Patterns

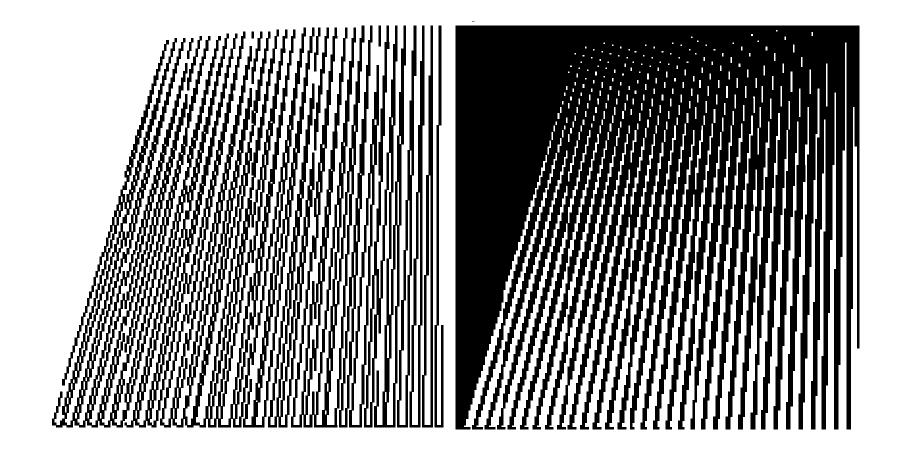
Definition from Wikipedia

A moiré pattern is an interference pattern created, for example, when two grids are overlaid at an angle, or when they have slightly different mesh sizes.



A moiré pattern, formed by two sets of parallel lines, one set inclined at an angle of 5° to the other.

Another Moire Pattern (by Chris Cooksey)



Moire Patterns

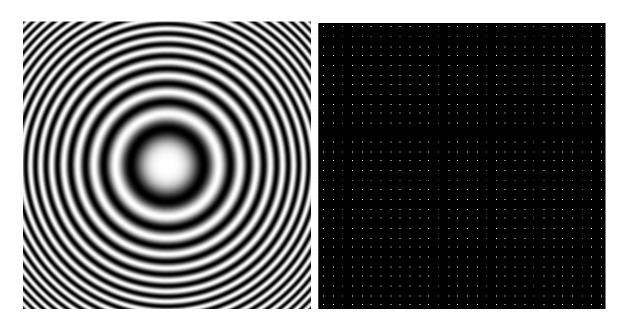
From Wikipedia

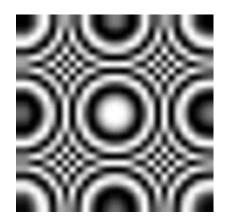
Moire Patterns

Original Image

Improperly subsampled image

Moire Patterns



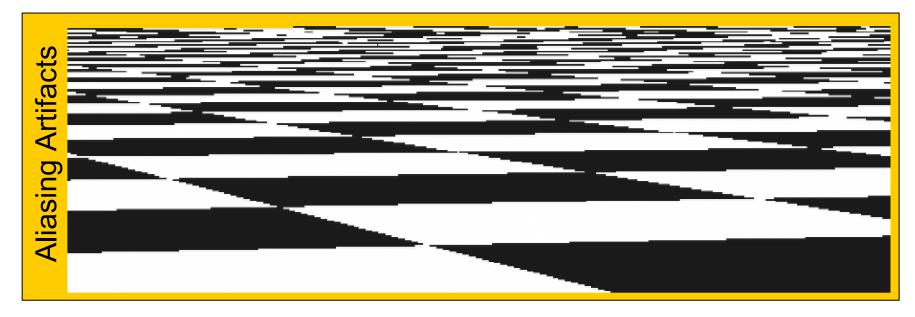


Continuous image ("Zone plate") $\sin x^2 + y^2$

Image samples

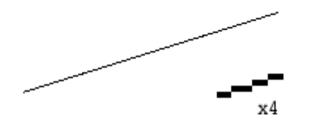
Reconstructed image

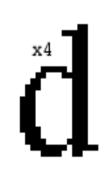
Texture Aliasing

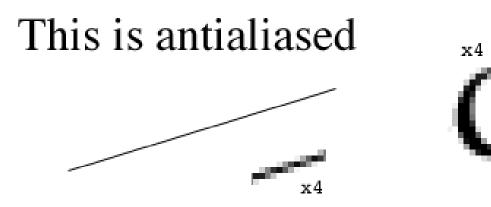


Character antialiasing

This is not antialiased

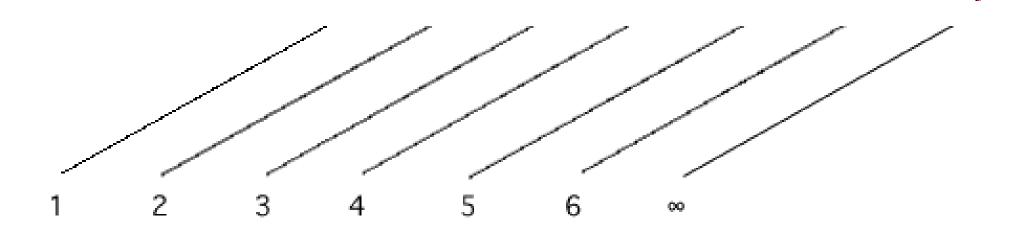






Line antialiasing

Subpixel sampling is not sufficient !



subpixel resolution

Fourier Transform & Convolution

Fourier Transform

- Any function = weighted sum of sines & cosines
- Fourier transform computes weights for sines / cosines of different frequencies (or sine + phase shift)
- Spectrum of f = Image of f after Fourier transform

Fourier Transform

time{x} \iff frequency{u}

forward:
$$F(u) = \int_{-\infty}^{\infty} f(x) \cdot e^{-2\pi j u x} dx$$

inverse: $f(x) = \int_{-\infty}^{\infty} F(u) \cdot e^{+2\pi j u x} du$

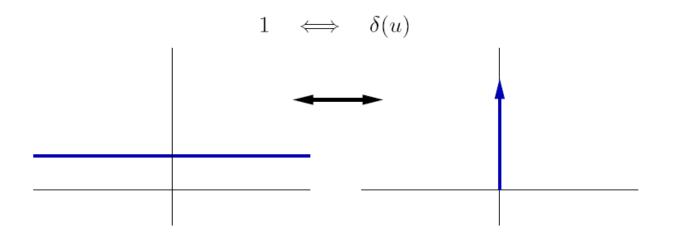
basis functions:
$$e^{j\alpha} = \cos(\alpha) + j\sin(\alpha)$$

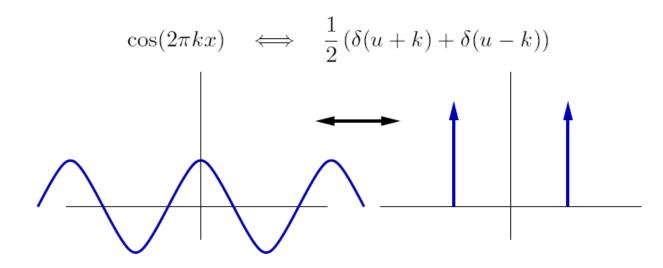
cosine transform: $\operatorname{Re}(F(u)) = \int_{-\infty}^{\infty} F(x) \cdot \cos(2\pi ux) dx$ sine transform: $\operatorname{Im}(F(u)) = -\int_{-\infty}^{\infty} F(x) \cdot \sin(2\pi ux) dx$

amplitude:
$$|F(u)| = \sqrt{\operatorname{Re}(F(u))^2 + \operatorname{Im}(F(u))^2}$$

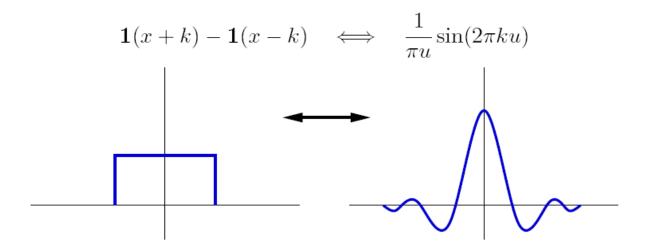
phase: $\Phi(F(u)) = \tan^{-1}\left(\frac{\operatorname{Im}(F(u))}{\operatorname{Re}(F(u))}\right)$

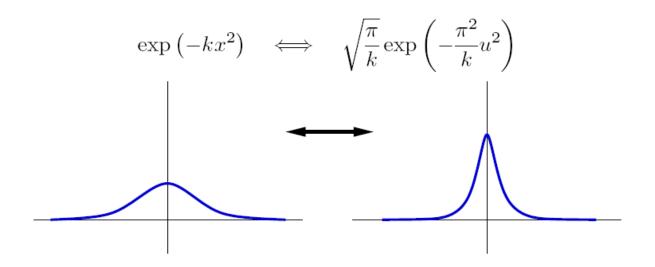
Fourier Transform Pairs (Examples)





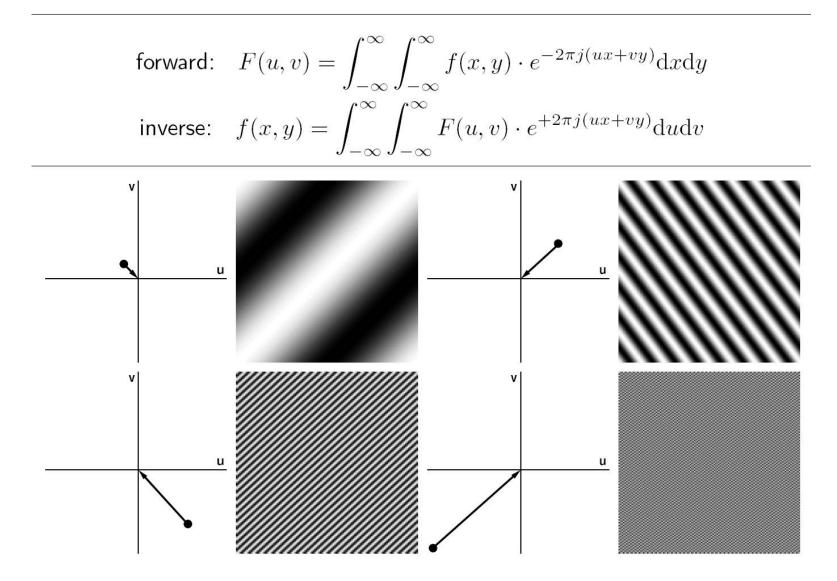
Fourier Transform Pairs (Examples)



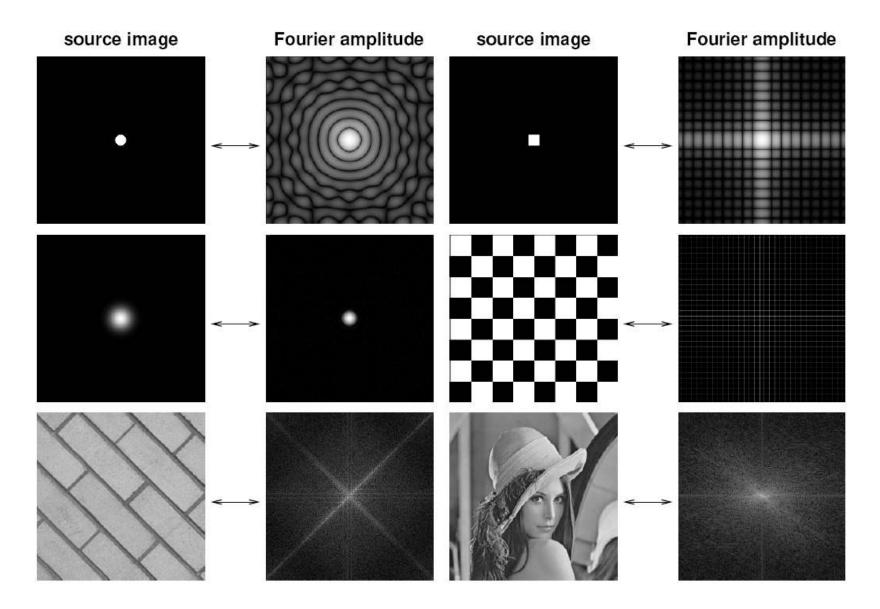


Fourier Transform in 2D

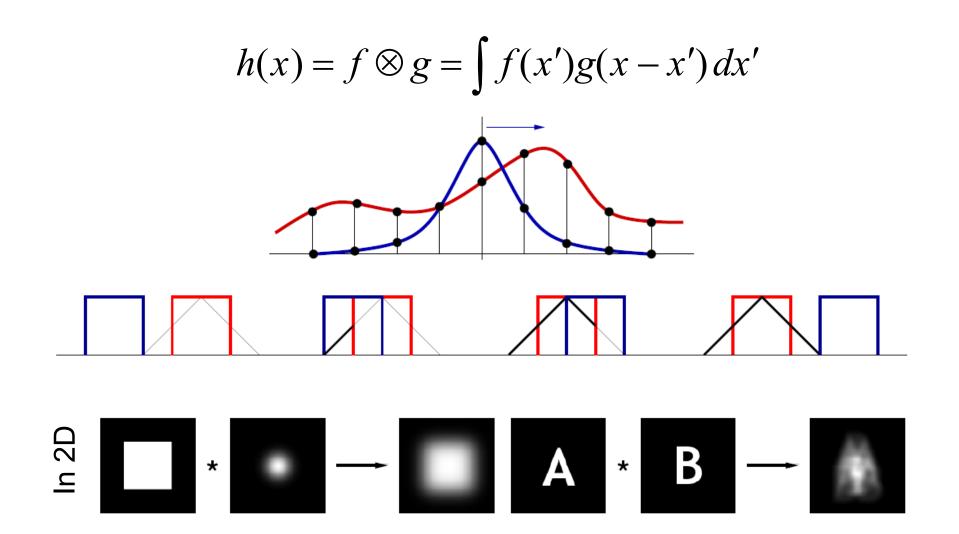
 $position\{x, y\} \iff frequency \& orientation\{u, v\}$



Fourier Transform in 2D – Examples



Convolution



Convolution Theorem

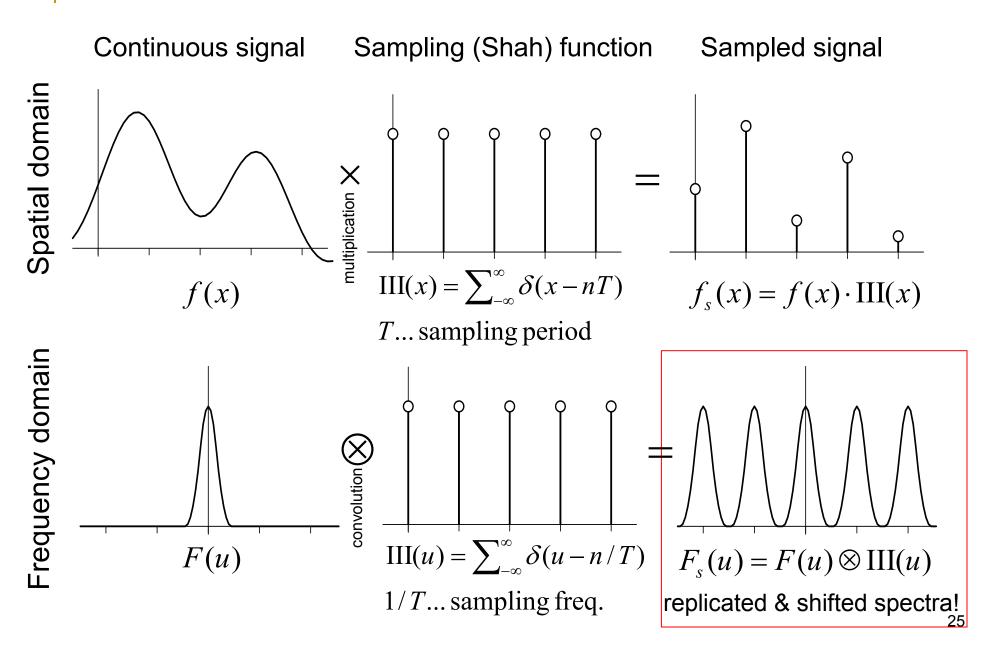
 Multiplication in the frequency domain is equivalent to convolution in the space domain and vice versa.

$f \otimes g \leftrightarrow F \times G$

 $f \times g \leftrightarrow F \otimes G$

Sampling & Reconstruction The Sampling Theorem

Sampling

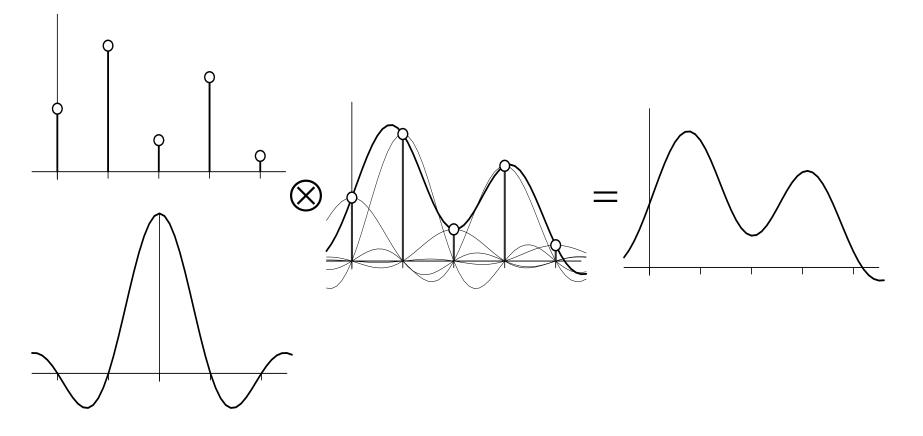


Pat Hanrahan Reconstruction Reconstructed Sampled signal (Ideal) Reconstruction filter Continuous signal Frequency domain Box : II(u) = $F_{s}(u)$ $F'(u) = F_s(u) \cdot II(u)$ $|x| < 1/2 T^{-1}$ otherwise replicas cut off () Spatial domain (X)convolution $\operatorname{sinc}_{T}(x) = \sin(xT) / xT$ $f_s(x)$ $f'(x) = f_s(x) \otimes III(x)$ *T*... sampling period 26

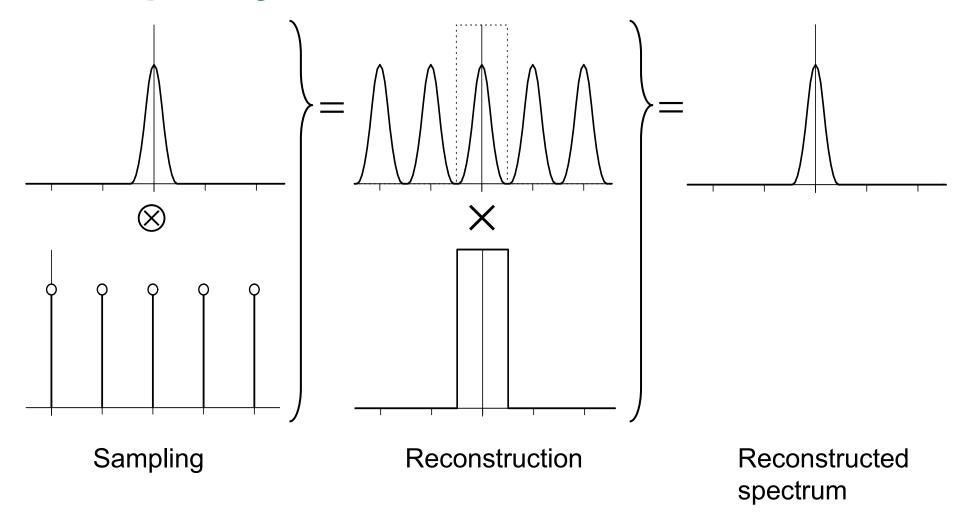
Reconstruction in Spatial Domain – Details

Convolution with the sinc function

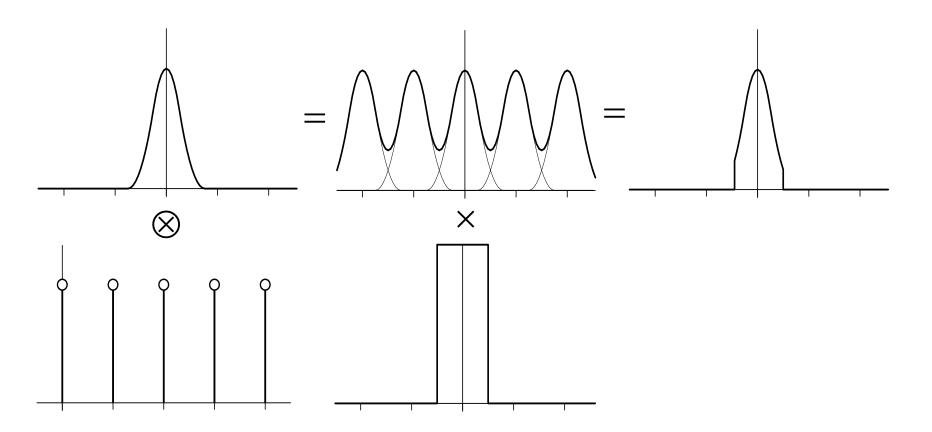
weighted sum of shifted sinc kernels



Sampling and Reconstruction Summary – Frequency Domain



Aliasing due to Undersampling



 If spectrum replicas overlap, impossible to reconstruct original signal

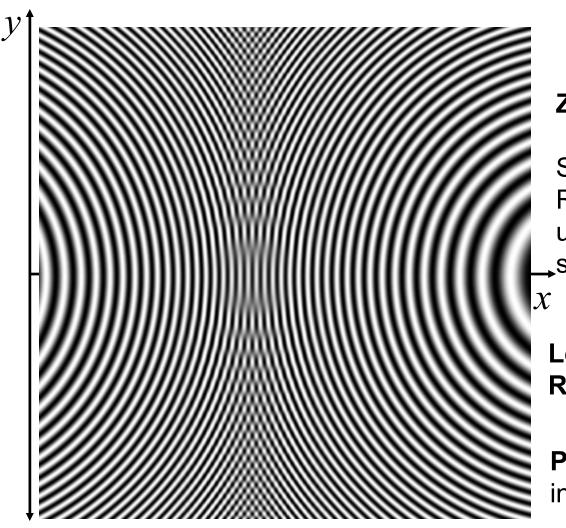
Sampling Theorem

Claude Shannon, 1949

A signal can be reconstructed from its samples without loss of information, if the original signal has no frequencies above 1/2 the Sampling frequency.

- <u>DEF: Bandlimited function.</u> There is some frequency u_{max} , above which the spectrum is identically zero.
- For a given bandlimited function, the rate at which it must be sampled $(2u_{max})$ is called the Nyquist Frequency.

Sampling a "Zone Plate"



Zone plate: $\sin x^2 + y^2$

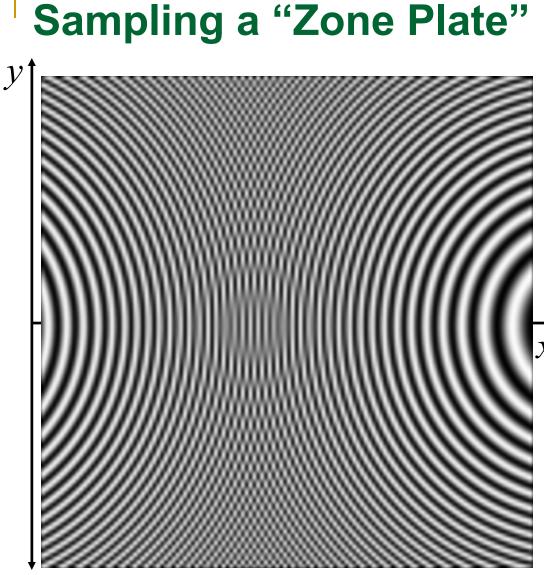
Sampled at 128x128 Reconstructed to 512x512 using a 30-wide windowed sinc

Left rings: part of signal Right rings: prealiasing

Prealiasing: due to inadequate sampling

Ideal Reconstruction

- Ideally, use a perfect low-pass filter the sinc function to bandlimit the sampled signal and thus remove all copies of the spectra introduced by sampling
- Unfortunately,
 - The sinc has infinite extent and we must use simpler filters with finite extents. Physical processes in particular do not reconstruct with sincs
 - The sinc may introduce ringing which are perceptually objectionable



Zone plate:

 $\sin x^2 + y^2$

Sampled at 128x128 Reconstructed to 512x512 Using optimal cubic filter

 \vec{x}

Left rings: part of signal Right rings: prealiasing Middle rings: postaliasing

Postaliasing: due to inappropriate reconstruction

Antialiasing

Antialiasing Techniques

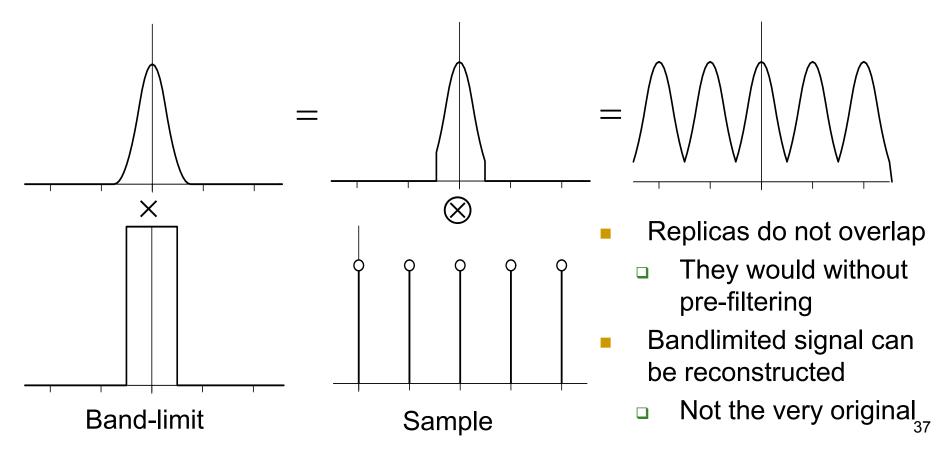
- Antialiasing = Preventing aliasing
- 1. Analytically prefilter the signal
 - Solvable for points, lines, polygons and image textures
 - Not solvable in general
 e.g. procedurally defined geometry or textures
- 2. Uniform supersampling and resampling
- 3. Non-uniform or stochastic sampling

Antialiasing Techniques

- Antialiasing = Preventing aliasing
- 1. Analytically prefilter the signal
 - Solvable for points, lines, polygons and image textures
 - Not solvable in general
 e.g. procedurally defined geometry or textures
- 2. Uniform supersampling and resampling
- 3. Nonuniform or stochastic sampling

Antialiasing by Prefiltering

- 1. First bandlimit the signal (cut off high frequencies = "blur")
- 2. Then sample
- Sampling process in frequency domain:

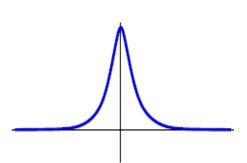


Antialiasing by Prefiltering

- Sampling process in **spatial domain**:
 - 1. Convolve with ideal prefilter, *h* (ideally h = sinc)
 - 2. Sample: multiply by III(x)

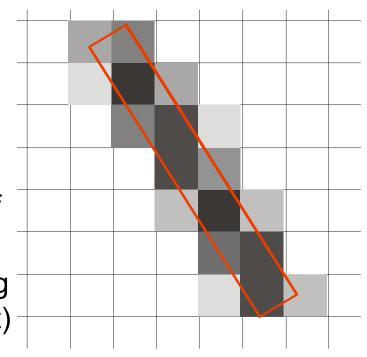
 $f_s(x) = [f(x) \otimes h(x)] \times III(x)$

- In practice:
 - sinc replaced by a locally supported filter, e.g. truncated Gaussian
 - taking filtered samples
 - filter centered at the sample location



Anti-aliased Lines With Pre-filtering

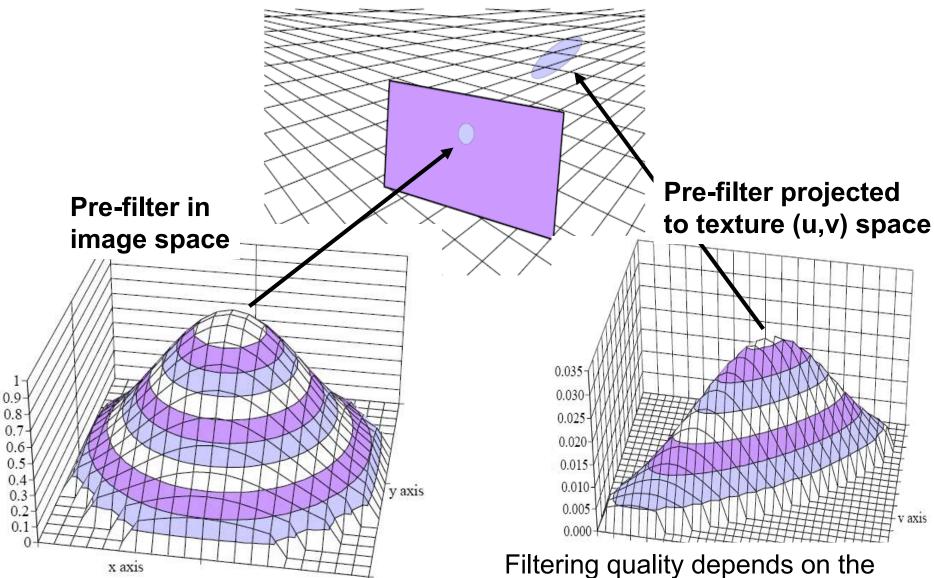
- Practice
 - Compute analytically the pixel area covered by the line
 - Assign a color based on this analytically computed coverage
- The same thing in terms of the signal theory
 - Convolve with a box-shaped prefilter (box=pixel)
 - 2. Sample at pixel centers
- Beware box pre-filter is bad!
 - Spectrum is sinc leaves a lot of high frequencies
 - So this method of line antialiasing is not optimal (but often sufficient)



Texture Antialiasing by Prefiltering

- Pre-filter placed at the pixel
- Projected to texture space
- Convolution computed as a weighted sum of texels

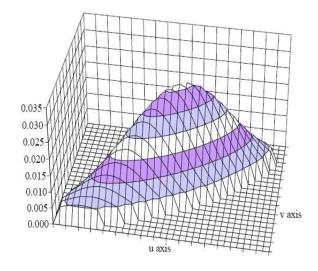
Texture Antialiasing by Prefiltering

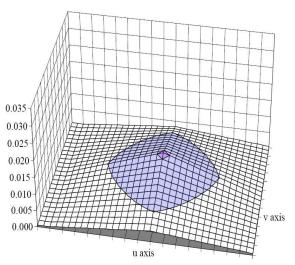


approximation of the projected filter.

Trilinear Filtering

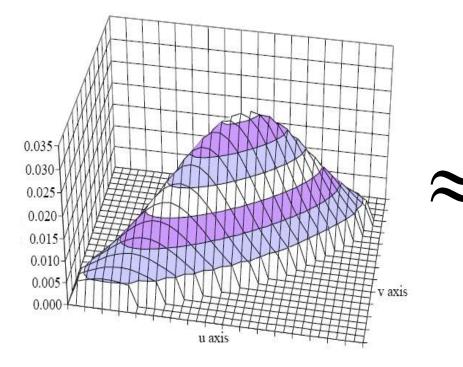
- Most commonly used in GPUs
- Choose a MIP-map level, so that the projected filter covers approximately 4 texels
- 2. Bilinear texture interpolation in two adjacent MIP-map levels
- 3. Linear interpolation between the two levels
- Only isotropic filtering
- Poor approximation of the projected prefilter

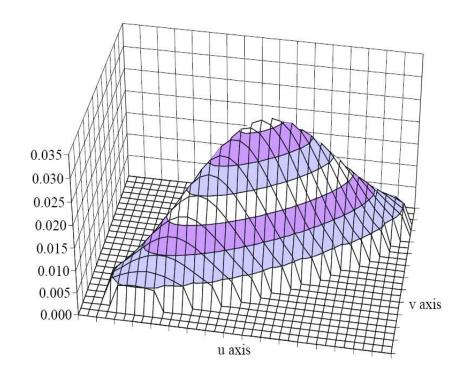




EWA Texture Filtering

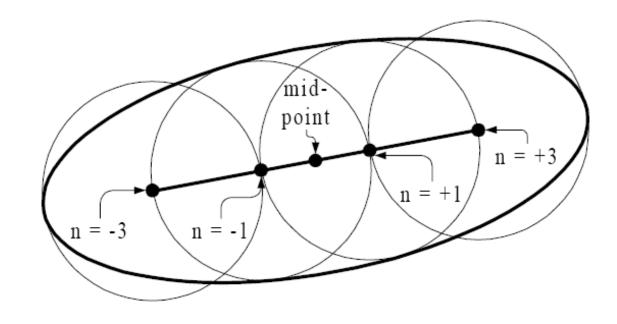
- EWA = Elliptical Weighted Average
- Approximated by an elliptical gaussian close match
- Allows anisotropic filtering





Anisotropic Filtering on the GPU

- Approximate projected pre-filter by a number of tri-linear look-ups
- E.g. 4 x aniso



Texture Filtering Quality

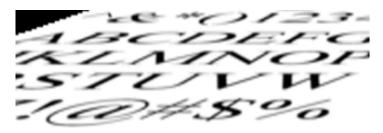
Trilinear

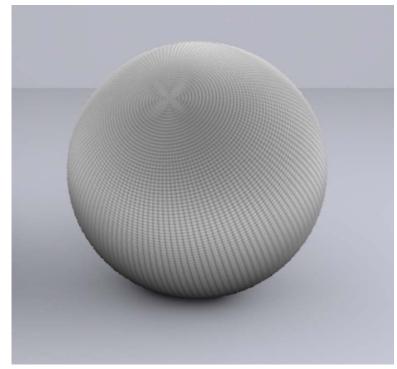
- Bad overall quality tent filter
- Blurs near silhouettes Isotropic



EWA

- Better overall quality Gauss filter
- Silhouettes preserved Anisotropic





Ray Differentials

Texture filtering for reflected and refracted rays

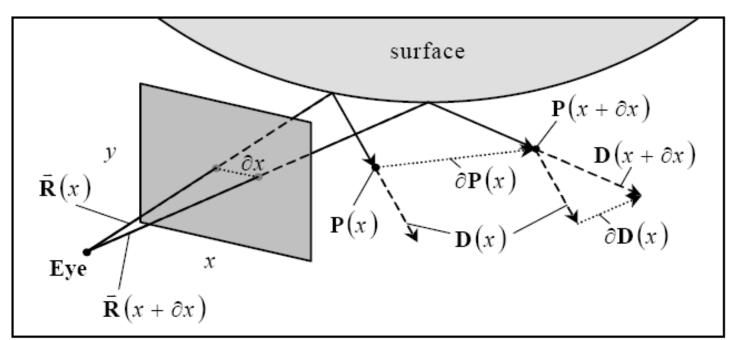


Figure 1: A Ray Differential. The diagram above illustrates the positions and directions of a ray and a differentially offset ray after a reflection. The difference between these positions and directions represents a ray differential.

Ray Differentials

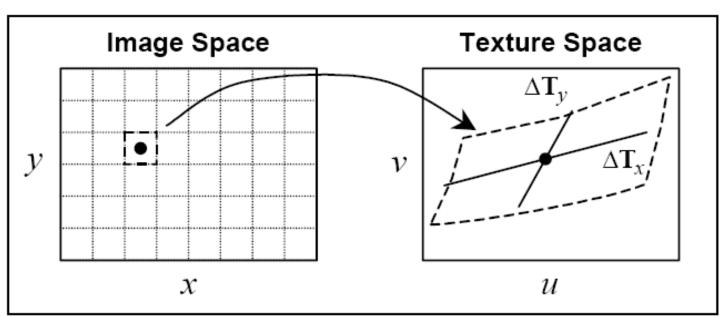


Figure 2: Texture Filtering Kernel. A pixel's footprint in image space can map to an arbitrary region in texture space. This region can be estimated by a parallelogram formed by a first-order differential approximation of the ratios between rate of change in texture space and image space coordinates.

Homan Igehy

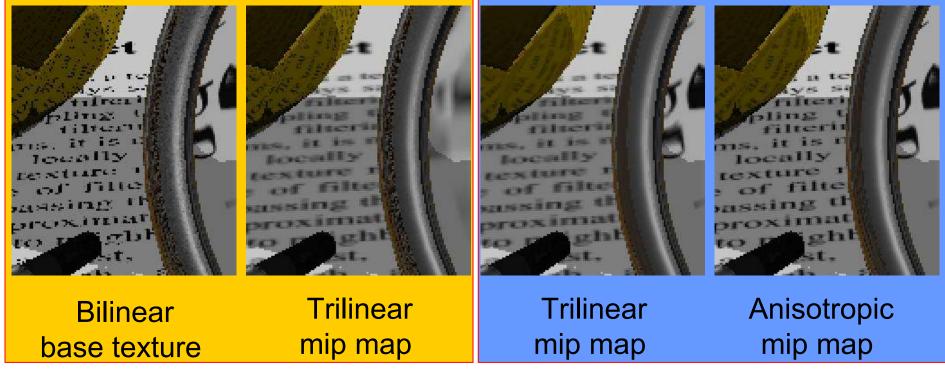
Ray Differentials

Homan Igehy, **Tracing Ray Differentials** In *Proc. of SIGGRAPH '99*. 1999 http://graphics.stanford.edu/papers/trd/

Sample Scene

Footprint based on distance

Footprint based ray differential

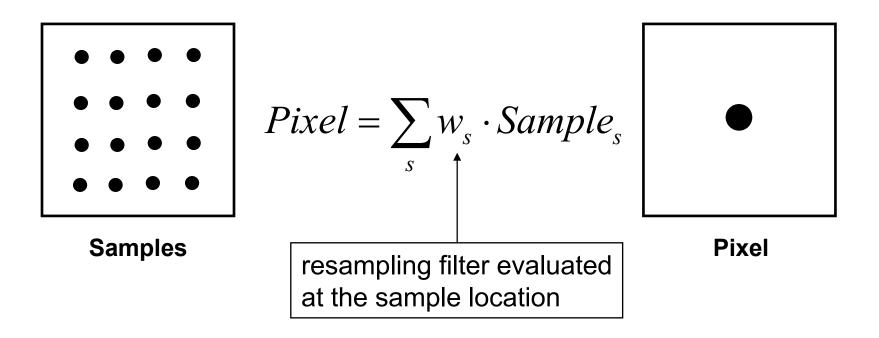


Antialiasing Techniques

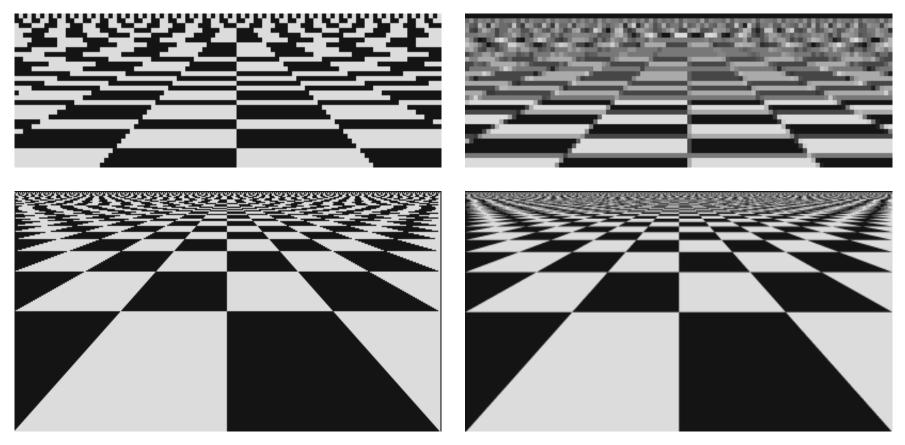
- Antialiasing = Preventing aliasing
- 1. Analytically prefilter the signal
 - Solvable for points, lines, polygons and image textures
 - Not solvable in general
 e.g. procedurally defined geometry or textures
- 2. Uniform supersampling and resampling
- 3. Nonuniform or stochastic sampling

Uniform Supersampling

- Increasing the sampling rate moves each copy of the spectra further apart, potentially reducing the overlap and thus aliasing
- Resulting samples must be resampled (filtered) to image sampling rate



Point vs. Supersampled

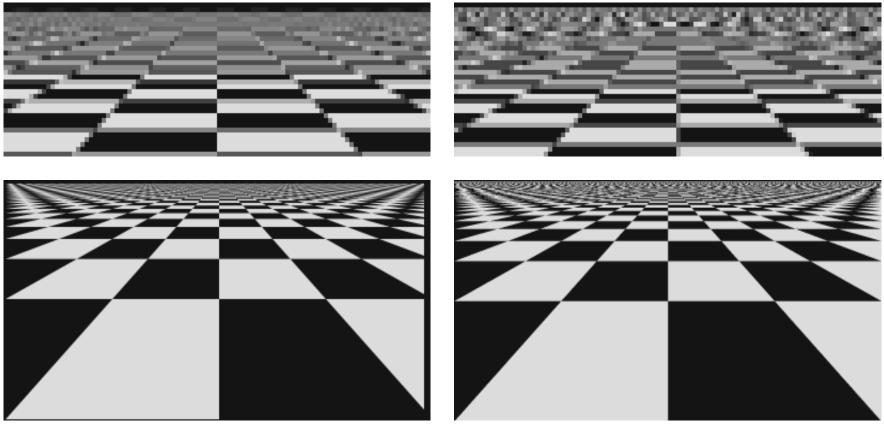


Point

4x4 Supersampled

Checkerboard sequence by Tom Duff

Analytic vs. Supersampled



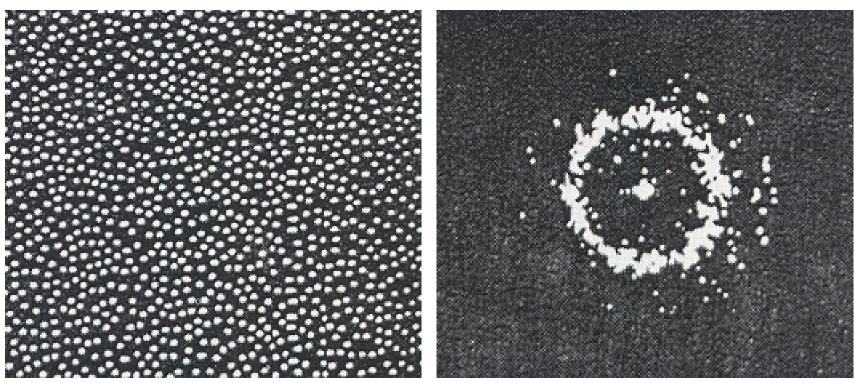
Exact Area

4x4 Supersampled

Antialiasing Techniques

- Antialiasing = Preventing aliasing
- 1. Analytically prefilter the signal
 - Solvable for points, lines, polygons and image textures
 - Not solvable in general
 e.g. procedurally defined geometry or textures
- 2. Uniform supersampling and resample
- 3. Nonuniform or stochastic sampling

Distribution of Extrafoveal Cones

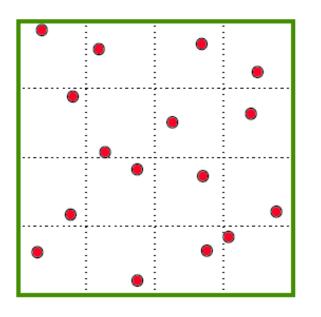


Monkey eye cone distribution

Fourier transform

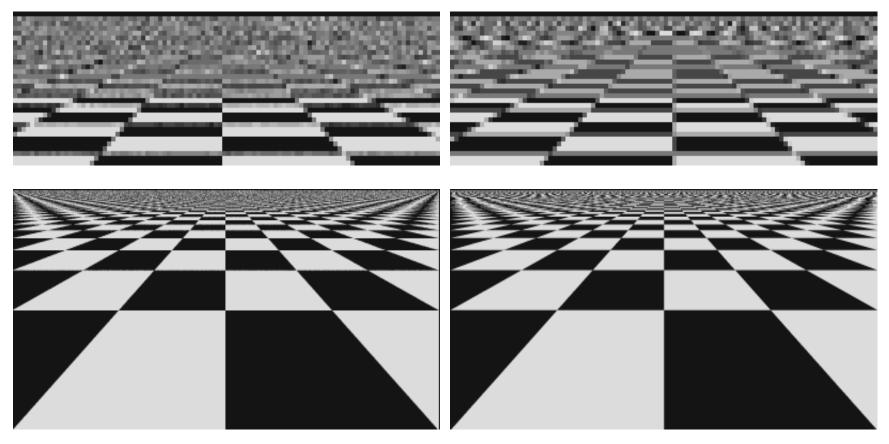
- **Yellot theory**
- Aliases replaced by noise
- Visual system less sensitive to high freq noise

Jittering



- Jittering = stratified sampling on a grid
- Prevents clustering of random points
- Better sample distribution than pure random sampling
- However, clusters of up to four points can appear in 2D!

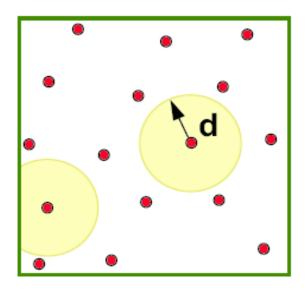
Jittered vs. Uniform Supersampling



4x4 Jittered Sampling

4x4 Uniform

Poisson Disk Sampling



- Gives by far the best quality for image sampling
- No sample closer to any other than a specified threshold d
- Prevents sample clumping better than jittering
- Efficient implementation did not exist for long time
- Common approach
 - Precompute pattern for a block
 of N x N pixels
 - Reuse a randomly rotated version of the pattern

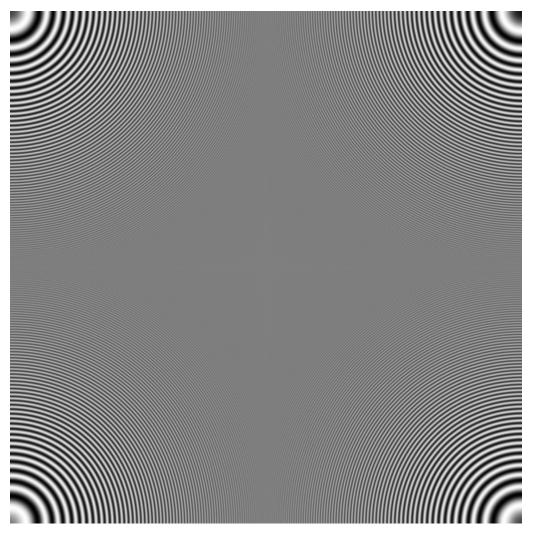
Implementation of Poisson Disk Sampling

- Dart Throwing
 - 1. Create Candidates Randomly
 - 2. Discard if too close to an existing point
 - Extremely slow
 - Problem. How to set *d* for a desired number of points?
- Best Candidate Sampling (Mitchell)
 - Generates the pattern progressively
 - 1. Choose first sample randomly
 - 2. To generate (k+1)-th sample
 - generate k.q independent candidates
 - choose one farthest from the k existing samples
 - Bigger $q \rightarrow$ better pattern quality

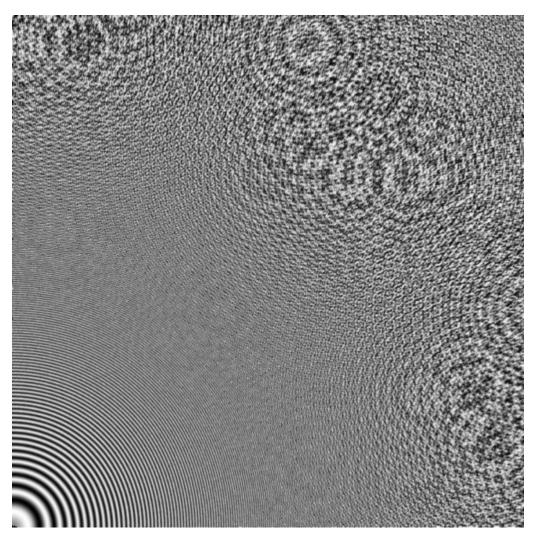
Implementation of Poisson Disk Sampling – Recent Advances

- Kopf et al. Recursive Wang Tiles for Real-Time Blue Noise, SIGGRAPH 2006.
- Dunbar and Humphreys. A spatial Data Structure for Fast Poisson-Disk Generation. SIGGRAPH 2006
- see videos at
 - http://johanneskopf.de/publications/blue_noise/
 - <u>http://www.cs.virginia.edu/~gfx/pubs/antimony/</u>

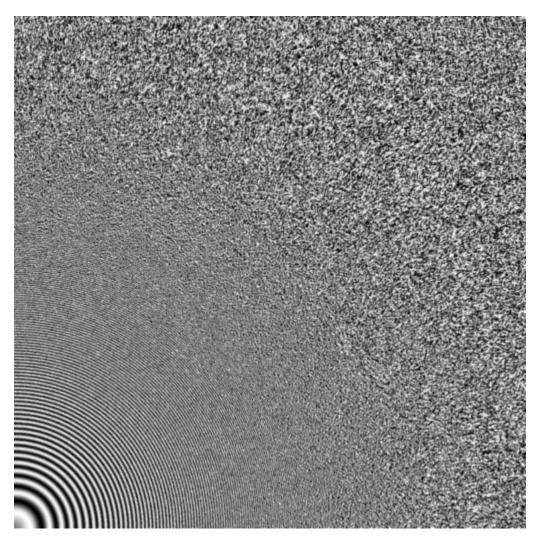
Reference Image "Zone Plate" 1,048,576 random samples/pixel



Rectilinear, 1 sample/pixel RMS: -8.154799 dB Pattern Generation: 17ms



Jittered Grid, 1 sample/pixel RMS: -8.121792 dB Pattern Generation: 25ms



Kopf - Poisson disk, 1 sample/pixel
RMS: -8.246348 dB
Pattern Generation: 17ms

Conclusion

- Alias makes images ugly
- Rendering software **must** take care of antialiasing in order to produce compelling images without visible artifacts
- Signal analysis in Frequency domain explains aliasing and suggests antialiasing solutions
- Most common antialising techniques in graphics are
 - Pre-filtering
 - Supersampling (regular / stochastic)