
Game theory - lab 2

David Milec

Czech Technical University in Prague

milecdav@fel.cvut.cz

December 14, 2020

David Milec (CTU) GT - lab 2 December 14, 2020 1 / 10



Overview

1 Getting Close to Optimal Strategy

2 Simultaneous move game example

3 Simultaneous moves in MCTS

4 Asymptotically Optimal Strategy

5 Computing Nash equilibrium

David Milec (CTU) GT - lab 2 December 14, 2020 2 / 10



Getting Close to Optimal Strategy

Monte Carlo tree search

Explores the possible action tree in a way that tries to balance
exploration and exploitation

When the node is visited for the first time, evaluate using
heuristic/rollout

Save the value received from rollout, update all nodes up to the tree
and go again from the root

Selects the nodes to visit based on the values from previous rollouts

David Milec (CTU) GT - lab 2 December 14, 2020 3 / 10



Monte Carlo in an Image

Graphical example of the steps performed in one Monte Carlo tree search
update

Image from
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

David Milec (CTU) GT - lab 2 December 14, 2020 4 / 10

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search


Simultaneous move game example

David Milec (CTU) GT - lab 2 December 14, 2020 5 / 10



Simultaneous moves in MCTS

Decoupled

In each state use UCT
computations and action picking
independently for each player

Combine the best actions for
both players in the selection
phase

Should be easier to implement
and simulate

Sequential

Split the decision nodes to
separate both players creating
the game where one player
knows where the other moved

If the player that knows the
move is the opponent the
strategy will be more defensive
as it will compute with the
worst case action

David Milec (CTU) GT - lab 2 December 14, 2020 6 / 10



Asymptotically Optimal Strategy

Value iteration

Adaptation of algorithm used to solve MDPs

Stores values for all possible states of the game

Iteratively updates those values based on possible actions in each
state, solving matrix game created from next state values

In the end uses the computed values to computed best strategy

David Milec (CTU) GT - lab 2 December 14, 2020 7 / 10



Value Iteration

S is the state space, v : S → R is value in each state, A is set of all
combinations of actions and A : S → A is a function returning all possible
action tuples available in a given state. Q is a matrix game created for
each state in each iteration, r : S ×A → R is immediate payoff and
T : S ×A → S is a transition function. γ is discounting constant.

∀s ∈ S initialize v(s) = 0 and until v converges

∀s ∈ S

∀(a1, a2) ∈ A(s)

Q(a1, a2) = r(s, a1, a2) + γv(T (s, a1, a2))

v(s) = max
x

min
y

xQy

David Milec (CTU) GT - lab 2 December 14, 2020 8 / 10



Computing Nash Equilibirum

maximize U

subject to
∑
a1∈A1

x(a1)u1(a1, a2) ≥ U ∀a2 ∈ A2∑
a1∈A1

x(a1) = 1

x(a1) ≥ 0 ∀a1 ∈ A1

David Milec (CTU) GT - lab 2 December 14, 2020 9 / 10



The End

David Milec (CTU) GT - lab 2 December 14, 2020 10 / 10


	Getting Close to Optimal Strategy
	Simultaneous move game example
	Simultaneous moves in MCTS
	Asymptotically Optimal Strategy
	Computing Nash equilibrium

