Game theory - lab 2

David Milec (CTU)

David Milec

Czech Technical University in Prague

milecdav@fel.cvut.cz

December 14, 2020

GT - lab 2

December 14, 2020



@ Getting Close to Optimal Strategy
© Simultaneous move game example
© Simultaneous moves in MCTS

@ Asymptotically Optimal Strategy

© Computing Nash equilibrium

David Milec (CTU) GT - lab 2 December 14, 2020



Getting Close to Optimal Strategy

Monte Carlo tree search

@ Explores the possible action tree in a way that tries to balance
exploration and exploitation

@ When the node is visited for the first time, evaluate using
heuristic/rollout

@ Save the value received from rollout, update all nodes up to the tree
and go again from the root

@ Selects the nodes to visit based on the values from previous rollouts

David Milec (CTU) GT - lab 2 December 14, 2020 3/10



Monte Carlo in an Image

Graphical example of the steps performed in one Monte Carlo tree search

update
Selection Expansion Simulation Backpropagation

T ®® W O @ ®e @ OO
WM E)E EWE@WEE @GEWOEE® e

DAD DAD 9 @) AD

9 9 @,
0/1

Image from

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

David Milec (CTU) GT - lab 2 December 14, 2020 4/10


https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

Simultaneous move game example

December 14, 2020 5/10



Simultaneous moves in MCTS

Decoupled Sequential

@ Split the decision nodes to
separate both players creating
the game where one player
knows where the other moved

@ In each state use UCT
computations and action picking
independently for each player

@ Combine the best actions for
both players in the selection
phase

o If the player that knows the
move is the opponent the
strategy will be more defensive
as it will compute with the
worst case action

@ Should be easier to implement
and simulate

David Milec (CTU) GT - lab 2 December 14, 2020 6/10



Asymptotically Optimal Strategy

Value iteration
@ Adaptation of algorithm used to solve MDPs
@ Stores values for all possible states of the game

o lteratively updates those values based on possible actions in each
state, solving matrix game created from next state values

@ In the end uses the computed values to computed best strategy

David Milec (CTU) GT - lab 2 December 14, 2020 7/10



Value lteration

S is the state space, v : S — R is value in each state, A is set of all
combinations of actions and A: S — A is a function returning all possible
action tuples available in a given state. @ is a matrix game created for
each state in each iteration, r : § x A — R is immediate payoff and
T:S5x A— S is a transition function. + is discounting constant.

Vs €S initialize v(s) =0 and until v converges
Vse S
V(a1, az) € A(s)
Q(a1,a2) = r(s,a1,a) + yv(T (s, a1,a2))

v(s) = maxmin xQy
x oy

David Milec (CTU) GT - lab 2 December 14, 2020 8/10



Computing Nash Equilibirum

maximize U

subject to Z x(a1)ui(a1,a2) > U Var € Ay
a1€A;

Z x(a1) =1

al€A;

x(al) >0 Va; € Ay

David Milec (CTU) GT -lab 2 December 14, 2020



The End

David Milec (CTU) GT -lab 2 December 14, 202




	Getting Close to Optimal Strategy
	Simultaneous move game example
	Simultaneous moves in MCTS
	Asymptotically Optimal Strategy
	Computing Nash equilibrium

