

Czech Technical University in Prague

PART I

The aim of this part of the project is to design

data memory. The processor has to implement

bne, sll, srl, jal and jr. MIPS instruction set architecture

instruction format is in the attachment. Suppose that the processor starts the execution from the beginning of

instruction memory (0x00000000).

PART II

Write a program in C language that takes two positive integer numbers and computes their

divisor (gcd). Translate this program into the assembly language by using instructions provided in Part I.

calling convention. Suppose that input variables (32 bit) are stored in data memory at addresses

and 0x00000008, respectively. Write the result of your program into the data memory at address of

0x0000000C.

PART III

Demonstrate the functionality of your design

that the program is already stored in instruction me

following module to represent instruction memory

module imem (input [5:0] Addr
 output [31:0] rd);
 // Addr is the address of
 // for our purpose can be taken from ProgramCounter[7:2]

 reg [31:0] RAM[127:0];
 initial
 $readmemh ("memfile.dat",RAM);

 assign rd <= RAM[Addr]; // word aligned
endmodule

Czech Technical University in Prague, Faculty of Electrical Engineering

Advanced Computer Architectures

Semester project – 01

Theme: Simple CPU in Verilog

project is to design a simple 32-bit processor connected to a

to implement only these instructions: add, sub, and,

MIPS instruction set architecture is supposed. The detailed information about

instruction format is in the attachment. Suppose that the processor starts the execution from the beginning of

Write a program in C language that takes two positive integer numbers and computes their

Translate this program into the assembly language by using instructions provided in Part I.

Suppose that input variables (32 bit) are stored in data memory at addresses

ly. Write the result of your program into the data memory at address of

Demonstrate the functionality of your design (run the program from Part II and report the results).

that the program is already stored in instruction memory from the address of 0x00

module to represent instruction memory (if it is large enough, otherwise you have to modify it)

(input [5:0] Addr,
output [31:0] rd);

is the address of the instruction to fetch, what
// for our purpose can be taken from ProgramCounter[7:2]

$readmemh ("memfile.dat",RAM); //stored in hexadecimal format

]; // word aligned

Faculty of Electrical Engineering

a separate instruction and

, or, slt, addi, lw, sw, beq,

The detailed information about the

instruction format is in the attachment. Suppose that the processor starts the execution from the beginning of

Write a program in C language that takes two positive integer numbers and computes their greatest common

Translate this program into the assembly language by using instructions provided in Part I. Use O32

Suppose that input variables (32 bit) are stored in data memory at addresses 0x00000004

ly. Write the result of your program into the data memory at address of

(run the program from Part II and report the results). Suppose

0x00000000. You can use

(if it is large enough, otherwise you have to modify it):

Attachments

O32 calling convention:

Name Number Use Callee must preserve?

$zero $0 constant 0 N/A

$at $1 assembler temporary No

$v0–$v1 $2–$3 values for function returns and expression evaluation No

$a0–$a3 $4–$7 function arguments No

$t0–$t7 $8–$15 temporaries No

$s0–$s7 $16–$23 saved temporaries Yes

$t8–$t9 $24–$25 temporaries No

$k0–$k1 $26–$27 reserved for OS kernel N/A

$gp $28 global pointer Yes

$sp $29 stack pointer Yes

$fp $30 frame pointer Yes

$ra $31 return address N/A

MIPS Instruction Reference:

MIPS has 32 integer registers ($0 - $31). Register $0 always holds 0. Instructions are divided into three types: R, I and J.

Every instruction starts with a 6-bit opcode. In addition to the opcode, R-type instructions specify three registers, a shift

amount field, and a function field; I-type instructions specify two registers and a 16-bit immediate value. All R-type

instructions have an opcode of 0. The specific R-type operation is determined by the funct field.

Type 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R opcode(6) rs(5) rt(5) rd(5) shamt(5) funct(6)

I opcode(6) rs(5) rt(5) immediate (16)

J opcode(6) address (26)

ADD – Add (with overflow)

Description: Adds two registers and stores the result in a register

Operation: $d = $s + $t;

Syntax: add $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 0000

ADDI -- Add immediate (with overflow)

Description: Adds a register and a sign-extended immediate value and stores the result in a register

Operation: $t = $s + imm;

Syntax: addi $t, $s, imm

Encoding: 0010 00ss ssst tttt iiii iiii iiii iiii

AND -- Bitwise and

Description: Bitwise ands two registers and stores the result in a register

Operation: $d = $s & $t;

Syntax: and $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 0100

BEQ -- Branch on equal

Description: Branches if the two registers are equal

Operation: if $s == $t go to PC+4+4*offset; else go to PC+4

Syntax: beq $s, $t, offset

Encoding: 0001 00ss ssst tttt iiii iiii iiii iiii

BNE -- Branch on NOT equal

Description: Branches if the two registers are not equal

Operation: if $s != $t go to PC+4+4*offset; else go to PC+4

Syntax: bne $s, $t, offset

Encoding: 0001 01ss ssst tttt iiii iiii iiii iiii

LW -- Load word

Description: A word is loaded into a register from the specified address.

Operation: $t = MEM[$s + offset];

Syntax: lw $t, offset($s)

Encoding: 1000 11ss ssst tttt iiii iiii iiii iiii

OR -- Bitwise or

Description: Bitwise logical ors two registers and stores the result in a register

Operation: $d = $s | $t;

Syntax: or $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 0101

SLT -- Set on less than (signed)

Description: If $s is less than $t, $d is set to one. It gets zero otherwise.

Operation: if $s < $t $d = 1; else $d = 0;

Syntax: slt $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 1010

SLL -- Shift left logical immediate

Description: shifts shamt number of bits to the left

Operation: $d = $t << shamt;

Syntax: sll $d, $t, shamt

Encoding: 0000 00-- ---t tttt dddd dhhh hh00 0000

SRL -- Shift right logical immediate

Description: shifts shamt number of bits to the right

Operation: $d = $t >> shamt;

Syntax: sll $d, $t, shamt

Encoding: 0000 00-- ---t tttt dddd dhhh hh00 0010

SUB -- Subtract

Description: Subtracts two registers and stores the result in a register

Operation: $d = $s - $t;

Syntax: sub $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 0010

SW -- Store word

Description: The contents of $t is stored at the specified address.

Operation: MEM[$s + offset] = $t;

Syntax: sw $t, offset($s)

Encoding: 1010 11ss ssst tttt iiii iiii iiii iiii

JAL -- Jump and link

Description: For procedure call.

Operation: $31 = PC + 8; PC = (PC & 0xf0000000) | (target << 2)

Syntax: jal target

Encoding: 0000 11ii iiii iiii iiii iiii iiii iiii

 JR – Jump register

Description: Jumps to the address contained in the specified register

Operation: goto address $s

Syntax: jr $s

Encoding: 0000 00ss sss0 0000 0000 0000 0000 1000

