
1B4M35PAP Advanced Computer Architectures

05

Superscalar techniques - Memory data flow, VLIW and EPIC 
processors

Advanced Computer Architectures

Czech Technical University in Prague, Faculty of Electrical Engineering
Slides authors: Michal Štepanovský, update Pavel Píša



2B4M35PAP Advanced Computer Architectures

Superscalar Techniques…

• The goal is to achieve a maximum throughput of 
instruction processing

• Instruction processing can be analyzed as instructions flow 
or data flow, more precisely: 
• register data flow – data flow between processor registers
• instruction flow through the pipeline
• memory data flow – to/from memory

• It roughly matches to:
• Arithmetic-logic (ALU) and other computational instructions (FP, bit-

field, vector) processing
• Branch instruction processing
• Load/store instruction processing

• maximizing the throughput of these three flows (or 
complete flow) correspond to the minimizing penalties and 
latencies of above three instructions types

Today’s lecture 
topic
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Superscalar pipeline – see previous lesson

Instruction / decode buffer

Dispatch buffer

Reservation stations

Reorder / Completion buffer

Store buffer

Decode

Fetch

Complete

Retire

Dispatch

Issue

Finish

Execute
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What you know already from other subjects ... 

• Load / Store instructions  are responsible for moving 
data between the memory and the processor's own 
registers

• The processor has a very limited number of registers
• The compiler generates a so-called spill code that 

temporarily saves data to memory/stack to make registers 
available - just by using the load/store instructions

Significant latency of load/store instructions caused by:
• Address generation – effective address computation
• Address translation (see virtual memory) – TLB hit vs. 

TLB miss (is the page in memory × page fault, is the 
address in TLB × page-table walking)

• Actual memory access – see next slide



5B4M35PAP Advanced Computer Architectures

Memory access

• Load instruction:
• Store data read from memory to rename register or 

reorder buffer. Instruction finishes execution just at this 
moment. Architectural registers update waits for instruction 
completion – completed, released from reorder buffer

• Store instruction:
• The instruction finishes execution as early as the address 

is successfully translated. Data (from the register to store) 
are held in reorder buffer. Actual write is processed after 
completion of the instruction, not earlier. Why is it that 
way?

• store buffer - FIFO ; instruction is retired when memory is 
actualized, Retiring – when a bus is available..



6B4M35PAP Advanced Computer Architectures

The ordering of the load and store instructions 

• Data dependencies – RAW, WAR, WAW – between load/store 
instructions operating with the same address

• Total ordering – obey program order of all load/store 
instructions. Is it necessary?
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Model of sequential consistency

• Sequential consistency condition demands some 
restrictions to out-of-order load/store instructions 
executions

• What to do when the exception occurs? 
• Memory state has to be equivalent to the sequential 

order of load/store instructions
• This requires that store instructions have to be executed 

in the program order, or more precisely that memory has 
to be updated in such sequence as if instruction were 
executed in the program order

• If store instructions are executed in program order, the 
WAW and WAR dependencies are guaranteed. Only 
RAW dependencies have to solved in a pipeline…

• Load instruction – out-of-order
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For initial analysis, consider load/store instructions issuing from RS in-order
• Load bypassing  allows execute a load before the store, if 

instructions are memory independent (does not alias store). Use 
Stall or Load forwarding for other cases..

Load forwarding and Load bypassing

1. Address generation
2. Address translation
3. Memory access

1. Address generation
2. Address translation

Memory update

Can be 
incomplete for 
some cases...
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For initial analysis, consider load/store instructions issuing from RS in order
• Load forwarding forwards store instruction data  to load instruction 

to resolve RAW dependencies

Load forwarding and Load bypassing

Store: dispatched, 
issued, finished, 
completed, retired

Load – if match: do 
not access or use 
data from cache 
but use data from 
Store buffer

1. Address generation
2. Address translation
3. Memory access

1. Address generation
2. Address translation

Memory update

Must be 
complete...
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Load forwarding and Load bypassing

• If the instructions from reservation station are issued 
out-of-order then load instruction following store 
instruction can be executed before preceding store 
instruction aliasing RAW hazard because the store is not 
in Store buffer yet (it can be executed, in the reservation 
station, or even in memory). Even information about its 
address can be still unknown (RAW dependency cannot 
be detected).

• Solution?
• It is possible to assume that there is no dependency and 

correct case it is found later...  => speculative execution
• Speculative execution is enabled by use of Finished load 

buffer (Finish load queue)
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Speculative execution of Load instructions

• Load instructions are remembered in Finished load buffer until their completion
• Whenever the store reaches completion, alias checking with FLB is processed. No 

conflict -> store is finished; Conflict -> discard load instr. speculation and reissue it.
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Speculative execution

• Load instruction speculations – Why?
• To execute load instructions as early as possible – other 

computations and instructions depends on it

• Also, earlier load issue detect cache miss earlier
• It can compensate the cache miss penalty in some cases

• Disadvantages: in the case of incorrect speculation – discard 
instructions from the load to all following dependencies – it 
cost time and HW resources which can be better utilized

• That is why to introduce Dependence prediction
Dependency  between store and load is quite predictable for typical 
programs

• Memory dependence predictor then decides if the 
speculative load and following instruction should be started
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More instruments to reduce memory latency

1. Memory hierarchy: L1 cache, L2, L3…
Already well known. Do not describe it again.

2. Non-blocking cache, look-up free cache use
Traditional approach: If the cache miss is detected the load and 
following loads execution is stalled until data are available.
Non-blocking cache approach: Load instruction causing miss is put 
aside (into missed load queue) and continue. Naturally, 
dependencies on „unserved“ load instruction have to be considered 
(stall or value prediction->speculation).

3. Prefetching cache
Future miss is anticipated and cache fill is processed in advance. 
This requires memory reference prediction table and  prefetch 
queue. 
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Non-blocking cache

Basic idea:
• Another access (hit) is allowed even that miss is detected 

and fill is in progress: hit-under-miss  (the second miss  
is resolved by stall)

• miss-under-miss (or hit-under-multiple-misses)
Example: Pentium Pro - 4 unserved memory misses

Cases when the use of non-blocking cache provides 
advantage:

• When CPU can process more than one load/store
in parallel (i.e., superscalar processors)

• If the cache is common for more than one processor (or 
cache)
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Non-blocking cache – Example of superscalar CPU

Non-blocking 
dual-ported
cache
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Prefetching cache / data (instruction) prefetching

• Terminology: …it depends only on the place where HW 
supporting prefetching is placed

• Idea is to fetch/fill cache lines before their content is 
addressed

• Memory access pattern differs for instructions and data 
(instruction cache vs. data cache)

Possible results of prefetching:
• useful prefetch (fetch done, hit follows)
• useless prefetch (data were in the cache, but replaced 

before hit or no hit follows)
• harmful prefetch (cache line has been replaced even that it 

is demanded again in the near future – cache pollution)
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Prefetching cache / data (instruction) prefetching
• Load address prediction
• Load value prediction 

(previous lecture)
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How to predict locations for prefetch? Example.
• Memory reference prediction
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VLIW processors etc.

• HW techniques contributing to the maximization of instructions 
throughput have been presented until now – dynamic instructions 
scheduling and speculative execution

• Overview of static techniques contribution ILP grow follows, i.e., 
compiler assisted ILP 
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VLIW processors

• Very Long Instruction Word (4-16 instructions typically)
• VLIW architecture enables parallel processing (multiple 

original instructions/operations) by single new instruction. 
• Instructions to be processed in parallel are scheduled in 

advance. 
• In the compilation phase. (+ i -)
• VLIW is MIMD example in Flynn's classification 
• Classic VLIW CPU does not include hazards detection – 

operations (sub-instructions) independence for single VLIW 
instruction is considered  => simpler HW
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VLIW and precise exception support

• Semantical unit for exception acceptance is 
single instruction (very long, or may it be 
better very wide) again.

• Fixed instructions format includes fields to 
encode multiple operations which are 
executed in parallel.
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VLIW - Principle

• HW processed all operations encoded in instruction 
independently – fine-grain parallelism – parallelism on 
instructions level (ILP)

• The compiler is responsible for operations placement into 
instructions and extraction of ILP possibilities from the 
program

add r1,r2,r3 load r4, r5+8 mul r6,r5,r3 mov r7,r2

FU

VLIW 
instruction

FU FU FU
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Example

Program for superscalar DLX vs. (V)LIW DLX

LF    F0,0(R1)

LF    F6,-4(R1) 

LF    F10,-8(R1)

ADDF F4,F0,F2

LF    F14,-12(R1)

ADDF F8,F6,F2

LF    F18, -16(R1)

ADDF F12,F10,F2

SF 0(R1),F4

ADDF F16,F14,F2

SF -4(R1),F8

ADDF F20,F18,F2

SF - 8(R1),F12

SF -12(R1),F16

SUBI   R1,R1,#20

BNEZ  R1,LOOP

SF 4(R1),F20

LF    F0,0(R1) NOP

LF    F6,-4(R1) NOP

LF    F10,-8(R1) ADDF F4,F0,F2

LF    F14,-12(R1) ADDF F8,F6,F2
ADDF F12,F10,F2

SF 0(R1),F4 ADDF F16,F14,F2

SF -4(R1),F8 ADDF F20,F18,F2

SF - 8(R1),F12 NOP

SF -12(R1),F16

SUBI   R1,R1,#20

BNEZ  R1,LOOP

SF 4(R1),F20 NOP

17 instructions
x  4B each
= 68B

12 (long) instructions
x  8B each
= 96B

Source: Ing. Miloš Bečvář – Superpipelinové a Superskalární Procesory Procesory VLIW

LF    F18, -16(R1)

NOP

NOP
NOP
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VLIW example
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Another VLIW CPU example - TM3270 Media-Processor

 Designed for video and sound processing, 2005 year
 Variable instructions size from 2B to 28B

„compression“
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Modern DSP

 Why VLIW?  Producer provides HW (processor) 
and corresponding SW support (compiler) …

 Superscalar processing
 Clock frequency more than 1 GHz
 Dual-level cache up to 8 MB
 SIMD
 VLIW – up to 8 instructions in the single cycle
 Special units designed for FFT and other signals 

processing
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What is EPIC

• Explicitly Parallel Instruction 
Computing

• Based and extends VLIW 
principles

• Representative is Itanium 
(original naming IA-64).

• It implements already 
described methods – 
speculation, branch prediction, 
and registers renaming.
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EPIC and VLIW differences and what is new 

• Bundle/packet – definition for the group of instructions 
which are packed to be executed in parallel

• The bundle can include „stop“ which indicates that there 
is a dependency between operations in the bundle

• SW prefetch (lfetch)
• Prediction – some mean of speculation
• Speculative load (ld.s, ld.sa,ld.c.nc, ld.c.clr,…), 
• Move load to be initiated for execution earlier and later 

checking in the place of original load instruction location
• Issue the load earlier before the store and checking for 

aliasing later (the same address)
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Intel Itanium – IA-64

• IA-64 distinguishes 
6 instruction types

• The bundle is 
composed from 3 
instructions 



30B4M35PAP Advanced Computer Architectures

• Original code:

• New code:

• Predicate pT is set if the condition is true. pF predicate is 
complement to pT predicate

• The control dependency is converted to data dependency
• The another advantage is the possibility to pack 

instructions for parallel execution 

Prediction
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Itanium – Explicitly Parallel Instruction Computing (EPIC )

Figure source http://en.wikipedia.org/wiki/File:Itanium_arch.png

http://en.wikipedia.org/wiki/File:Itanium_arch.png
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Itanium – IA-64 – EPIC

• It dramatically differs when compared to 
x86 (i x86-64)

• It is based on explicit ILP; parallelization is 
controlled by the compiler.

• It does not require additional HW for 
hazards detection and resolution – in 
theory, in practice it is required for deeper 
pipelines but is simpler and has more 
cycles to analyze inter-bundle 
dependencies. 
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Use of data parallelism 
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Profit and use of data parallelism, SIMD 

• Single Instruction, Multiple Data, one of category from 
classic Flynn's taxonomy.

• One of broadly used SIMD implementation was the 
introduction of MMX (MultiMedia eXtensions) in x86.

• Initially for games and media
• Defines 8   64-bit 

registers MM0 … MM7
• MMX:

• movd  - MOVe Doubleword
• paddb - adds an MMX register and another MMX register or 

memory as unsigned 8-bit bytes
• paddw add an MMX register and another register or memory as 

unsigned 16-bit words
• psubw subtracts unsigned 16-bit words
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Vector instructions for x86 ISA

• This group includes:
• 3DNow! Od AMD

• PAVGUSB – Packed 8-bit unsigned integer averaging
• PFADD – Packed floating-point addition
• PFMIN – Packed floating-point minimum
• PREFETCH/PREFETCHW – Prefetch at least a 32-byte line into 

L1 data cache

• SSE (Streaming SIMD Extensions) and 
additional versions SSE2, SSE3, SSSE3, SSE4 
from Intel – reaction to 3DNow introduction by 
AMD
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SSE instruction - examples

• SSE3 instruction ADDSUBPD (Add-Subtract-Packed-Double)

Input: { A0, A1 }, { B0, B1 }
Output: { A0 − B0, A1 + B1 }

• SSE3 instruction HADDPS (Horizontal-Add-Packed-Single)
 Input: { A0, A1, A2, A3 }, { B0, B1, B2, B3 }
 Output: { A0 + A1, A2 + A3, B0 + B1, B2 + B3 }

• SSE4 Instruction MPSADBW:
|x0−y0|+|x1−y1|+|x2−y2|+|x3−y3|, |x0−y1|+|x1−y2|+|x2−y3|

+|x3−y4|,…, |x0−y7|+|x1−y8|+|x2−y9|+|x3−y10|
8 times sum-absolute-difference (SAD), important for 
HighDefinition (HD) video codecs motion estimation

• SSE4 Instructions DPPS: Scalar products of Array of 
Structs

https://software.intel.com/content/www/us/en/develop/articles/motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4.html
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Vector instructions for non-x86 architectures

• PowerPC
• POWER6, Power ISA v.2.03 – AltiVec

• Power ISA v2.06 – VSX (Vector Scalar 
Extension)

• Power ISA v3.0 – POWER9

• MIPS
• MDMX (MaDMaX) and MIPS-3D

• Sparc
• Visual Instruction Set  VIS 1, VIS 2, VIS 2+, 

VIS 3 and VIS 4.
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What next?
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Loop 

for (i=0; i<1000; i++)
   x[i] = x[i] + s; 

Loop: LD F0,0(R1) ; F0 = vector element (x base skipped)

NOP

 ADDD F4,F0,F2 ; add scalar from F2

 SD 0(R1),F4 ; store result

 SUBI R1,R1,8 ; decrement pointer 8bytes (DW)

 BNEZ R1,Loop ; branch R1!=zero

 NOP ; delayed branch slot

Loop, 7 cycles

Optimized to compare loop control 
variable to zero as

i = 999;

do x[i] = x[i] + s; while(i--);
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Loop unrolling

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

 

• NOP instructions 
removed

• Suitable even for 
CPU which does not 
support registers 
renaming (Registers 
renamed by the 
compiler.)

• Stall cycles 
minimized even for 
scalar processor

Loop unrolled 4x, 14 cycles
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Execution on superscalar processor

• Imagine the Tomasulo algorithm in action

Iteration Instructions Issues Executes Writes result
no.                                    clock-cycle number
1 LD      F0,0(R1) 1 2 4
1 ADDD F4,F0,F2 1 5 8
1 SD      0(R1),F4 2 9
1 SUBI  R1,R1,#8 3 4 5
1 BNEZ R1,LOOP 4 5
2 LD      F0,0(R1) 5 6 8
2 ADDD F4,F0,F2 5 9 12
2 SD      0(R1),F4 6 13
2 SUBI  R1,R1,#8 7 8 9
2 BNEZ R1,LOOP 8 9

4 cycles for iteration, NOP?
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Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 7

SD -32(R1),F20 SD -40(R1),F24 SUBI  R1,R1,#48 8

SD -0(R1),F28 BNEZ R1,LOOP 9

Loop unrolling v ve VLIW-uLoop unrolling for VLIW

Loop unrolled 7x, 9 cycles

1 row – 1 instruction
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Software Pipeline
Prologue Epilog

Loop unrolled

Number of 
Overlapped 
instructions

Number of 
Overlapped 
instructions

Time

Time

Software Pipeline
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SW Pipelining - Example

Before: Unrolled 3 times
 1 LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4 
 4 LD F6,-8(R1)
 5 ADDD F8,F6,F2
 6 SD -8(R1),F8 
 7 LD F10,-16(R1)
 8 ADDD F12,F10,F2
 9 SD -16(R1),F12
 10 SUBI R1,R1,#24
 11 BNEZ R1,LOOP

After: Software Pipelined
LD F0,0(R1)
ADDD F4,F0,F2
LD F0,-8(R1)

 1 SD 0(R1),F4; Stores M[i]
 2 ADDD F4,F0,F2; Adds to M[i-1]
 3 LD F0,-16(R1); loads M[i-2]
 4 SUBI R1,R1,#8
 5 BNEZ R1,LOOP

SD 0(R1),F4
ADDD F4,F0,F2
SD -8(R1),F4

IF  ID  EX  Mem  WB
    IF  ID  EX   Mem  WB
        IF  ID   EX   Mem  WB

SD
ADDD
LD

Read F4
Write F4

Read F0

Write F0
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• If individual cycle iterations are independent (instructions within the 
cycle may be dependent), we can achieve an increase in ILP by 
grouping instructions from different iterations.

• SW pipelining reorganizes the loops ( the Tomasulo algorithm over 
the expanded loop)

• We will achieve the greatest middle degree of parallelization only with 
a small increase in code

Iteration 
0 Iteration 

1 Iteration 
2 Iteration 

3 Iteration 
4

Software- 
pipelined 
iteration

Software Pipeline – Úloha kompilátoruSW Pipelining – Symbolic Loop Unrolling 
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A[1] = A[1] + B[1];

for (i=1; i<=99; i=i+1) {
B[i+1] = C[i] + D[i];
A[i+1] =  + A[i+1] + B[i+1];

}

B[101] = C[100] + D[100];

for (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + B[i];    /* S1 */
B[i+1] = C[i] + D[i];} /* S2 */

OLD:

NEW:

Příklad odstranění závislosti mezi iteracemiExample how to eliminate dependency between iterations

•   Dependency between iterations is caused by B
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