
1B4M35PAP Advanced Computer Architectures

05

Superscalar techniques - Memory data flow, VLIW and EPIC
processors

Advanced Computer Architectures

Czech Technical University in Prague, Faculty of Electrical Engineering
Slides authors: Michal Štepanovský, update Pavel Píša

2B4M35PAP Advanced Computer Architectures

Superscalar Techniques…

• The goal is to achieve a maximum throughput of
instruction processing

• Instruction processing can be analyzed as instructions flow
or data flow, more precisely:
• register data flow – data flow between processor registers
• instruction flow through the pipeline
• memory data flow – to/from memory

• It roughly matches to:
• Arithmetic-logic (ALU) and other computational instructions (FP, bit-

field, vector) processing
• Branch instruction processing
• Load/store instruction processing

• maximizing the throughput of these three flows (or
complete flow) correspond to the minimizing penalties and
latencies of above three instructions types

Today’s lecture
topic

3B4M35PAP Advanced Computer Architectures

Superscalar pipeline – see previous lesson

Instruction / decode buffer

Dispatch buffer

Reservation stations

Reorder / Completion buffer

Store buffer

Decode

Fetch

Complete

Retire

Dispatch

Issue

Finish

Execute

4B4M35PAP Advanced Computer Architectures

What you know already from other subjects ...

• Load / Store instructions are responsible for moving
data between the memory and the processor's own
registers

• The processor has a very limited number of registers
• The compiler generates a so-called spill code that

temporarily saves data to memory/stack to make registers
available - just by using the load/store instructions

Significant latency of load/store instructions caused by:
• Address generation – effective address computation
• Address translation (see virtual memory) – TLB hit vs.

TLB miss (is the page in memory × page fault, is the
address in TLB × page-table walking)

• Actual memory access – see next slide

5B4M35PAP Advanced Computer Architectures

Memory access

• Load instruction:
• Store data read from memory to rename register or

reorder buffer. Instruction finishes execution just at this
moment. Architectural registers update waits for instruction
completion – completed, released from reorder buffer

• Store instruction:
• The instruction finishes execution as early as the address

is successfully translated. Data (from the register to store)
are held in reorder buffer. Actual write is processed after
completion of the instruction, not earlier. Why is it that
way?

• store buffer - FIFO ; instruction is retired when memory is
actualized, Retiring – when a bus is available..

6B4M35PAP Advanced Computer Architectures

The ordering of the load and store instructions

• Data dependencies – RAW, WAR, WAW – between load/store
instructions operating with the same address

• Total ordering – obey program order of all load/store
instructions. Is it necessary?

7B4M35PAP Advanced Computer Architectures

Model of sequential consistency

• Sequential consistency condition demands some
restrictions to out-of-order load/store instructions
executions

• What to do when the exception occurs?
• Memory state has to be equivalent to the sequential

order of load/store instructions
• This requires that store instructions have to be executed

in the program order, or more precisely that memory has
to be updated in such sequence as if instruction were
executed in the program order

• If store instructions are executed in program order, the
WAW and WAR dependencies are guaranteed. Only
RAW dependencies have to solved in a pipeline…

• Load instruction – out-of-order

8B4M35PAP Advanced Computer Architectures

For initial analysis, consider load/store instructions issuing from RS in-order
• Load bypassing allows execute a load before the store, if

instructions are memory independent (does not alias store). Use
Stall or Load forwarding for other cases..

Load forwarding and Load bypassing

1. Address generation
2. Address translation
3. Memory access

1. Address generation
2. Address translation

Memory update

Can be
incomplete for
some cases...

9B4M35PAP Advanced Computer Architectures

For initial analysis, consider load/store instructions issuing from RS in order
• Load forwarding forwards store instruction data to load instruction

to resolve RAW dependencies

Load forwarding and Load bypassing

Store: dispatched,
issued, finished,
completed, retired

Load – if match: do
not access or use
data from cache
but use data from
Store buffer

1. Address generation
2. Address translation
3. Memory access

1. Address generation
2. Address translation

Memory update

Must be
complete...

10B4M35PAP Advanced Computer Architectures

Load forwarding and Load bypassing

• If the instructions from reservation station are issued
out-of-order then load instruction following store
instruction can be executed before preceding store
instruction aliasing RAW hazard because the store is not
in Store buffer yet (it can be executed, in the reservation
station, or even in memory). Even information about its
address can be still unknown (RAW dependency cannot
be detected).

• Solution?
• It is possible to assume that there is no dependency and

correct case it is found later... => speculative execution
• Speculative execution is enabled by use of Finished load

buffer (Finish load queue)

11B4M35PAP Advanced Computer Architectures

Speculative execution of Load instructions

• Load instructions are remembered in Finished load buffer until their completion
• Whenever the store reaches completion, alias checking with FLB is processed. No

conflict -> store is finished; Conflict -> discard load instr. speculation and reissue it.

12B4M35PAP Advanced Computer Architectures

Speculative execution

• Load instruction speculations – Why?
• To execute load instructions as early as possible – other

computations and instructions depends on it

• Also, earlier load issue detect cache miss earlier
• It can compensate the cache miss penalty in some cases

• Disadvantages: in the case of incorrect speculation – discard
instructions from the load to all following dependencies – it
cost time and HW resources which can be better utilized

• That is why to introduce Dependence prediction
Dependency between store and load is quite predictable for typical
programs

• Memory dependence predictor then decides if the
speculative load and following instruction should be started

13B4M35PAP Advanced Computer Architectures

More instruments to reduce memory latency

1. Memory hierarchy: L1 cache, L2, L3…
Already well known. Do not describe it again.

2. Non-blocking cache, look-up free cache use
Traditional approach: If the cache miss is detected the load and
following loads execution is stalled until data are available.
Non-blocking cache approach: Load instruction causing miss is put
aside (into missed load queue) and continue. Naturally,
dependencies on „unserved“ load instruction have to be considered
(stall or value prediction->speculation).

3. Prefetching cache
Future miss is anticipated and cache fill is processed in advance.
This requires memory reference prediction table and prefetch
queue.

14B4M35PAP Advanced Computer Architectures

Non-blocking cache

Basic idea:
• Another access (hit) is allowed even that miss is detected

and fill is in progress: hit-under-miss (the second miss
is resolved by stall)

• miss-under-miss (or hit-under-multiple-misses)
Example: Pentium Pro - 4 unserved memory misses

Cases when the use of non-blocking cache provides
advantage:

• When CPU can process more than one load/store
in parallel (i.e., superscalar processors)

• If the cache is common for more than one processor (or
cache)

15B4M35PAP Advanced Computer Architectures

Non-blocking cache – Example of superscalar CPU

Non-blocking
dual-ported
cache

16B4M35PAP Advanced Computer Architectures

Prefetching cache / data (instruction) prefetching

• Terminology: …it depends only on the place where HW
supporting prefetching is placed

• Idea is to fetch/fill cache lines before their content is
addressed

• Memory access pattern differs for instructions and data
(instruction cache vs. data cache)

Possible results of prefetching:
• useful prefetch (fetch done, hit follows)
• useless prefetch (data were in the cache, but replaced

before hit or no hit follows)
• harmful prefetch (cache line has been replaced even that it

is demanded again in the near future – cache pollution)

17B4M35PAP Advanced Computer Architectures

Prefetching cache / data (instruction) prefetching
• Load address prediction
• Load value prediction

(previous lecture)

18B4M35PAP Advanced Computer Architectures

How to predict locations for prefetch? Example.
• Memory reference prediction

19B4M35PAP Advanced Computer Architectures

VLIW processors etc.

• HW techniques contributing to the maximization of instructions
throughput have been presented until now – dynamic instructions
scheduling and speculative execution

• Overview of static techniques contribution ILP grow follows, i.e.,
compiler assisted ILP

20B4M35PAP Advanced Computer Architectures

VLIW processors

• Very Long Instruction Word (4-16 instructions typically)
• VLIW architecture enables parallel processing (multiple

original instructions/operations) by single new instruction.
• Instructions to be processed in parallel are scheduled in

advance.
• In the compilation phase. (+ i -)
• VLIW is MIMD example in Flynn's classification
• Classic VLIW CPU does not include hazards detection –

operations (sub-instructions) independence for single VLIW
instruction is considered => simpler HW

21B4M35PAP Advanced Computer Architectures

VLIW and precise exception support

• Semantical unit for exception acceptance is
single instruction (very long, or may it be
better very wide) again.

• Fixed instructions format includes fields to
encode multiple operations which are
executed in parallel.

22B4M35PAP Advanced Computer Architectures

VLIW - Principle

• HW processed all operations encoded in instruction
independently – fine-grain parallelism – parallelism on
instructions level (ILP)

• The compiler is responsible for operations placement into
instructions and extraction of ILP possibilities from the
program

add r1,r2,r3 load r4, r5+8 mul r6,r5,r3 mov r7,r2

FU

VLIW
instruction

FU FU FU

23B4M35PAP Advanced Computer Architectures

Example

Program for superscalar DLX vs. (V)LIW DLX

LF F0,0(R1)

LF F6,-4(R1)

LF F10,-8(R1)

ADDF F4,F0,F2

LF F14,-12(R1)

ADDF F8,F6,F2

LF F18, -16(R1)

ADDF F12,F10,F2

SF 0(R1),F4

ADDF F16,F14,F2

SF -4(R1),F8

ADDF F20,F18,F2

SF - 8(R1),F12

SF -12(R1),F16

SUBI R1,R1,#20

BNEZ R1,LOOP

SF 4(R1),F20

LF F0,0(R1) NOP

LF F6,-4(R1) NOP

LF F10,-8(R1) ADDF F4,F0,F2

LF F14,-12(R1) ADDF F8,F6,F2
ADDF F12,F10,F2

SF 0(R1),F4 ADDF F16,F14,F2

SF -4(R1),F8 ADDF F20,F18,F2

SF - 8(R1),F12 NOP

SF -12(R1),F16

SUBI R1,R1,#20

BNEZ R1,LOOP

SF 4(R1),F20 NOP

17 instructions
x 4B each
= 68B

12 (long) instructions
x 8B each
= 96B

Source: Ing. Miloš Bečvář – Superpipelinové a Superskalární Procesory Procesory VLIW

LF F18, -16(R1)

NOP

NOP
NOP

24B4M35PAP Advanced Computer Architectures

VLIW example

25B4M35PAP Advanced Computer Architectures

Another VLIW CPU example - TM3270 Media-Processor

 Designed for video and sound processing, 2005 year
 Variable instructions size from 2B to 28B

„compression“

26B4M35PAP Advanced Computer Architectures

Modern DSP

 Why VLIW? Producer provides HW (processor)
and corresponding SW support (compiler) …

 Superscalar processing
 Clock frequency more than 1 GHz
 Dual-level cache up to 8 MB
 SIMD
 VLIW – up to 8 instructions in the single cycle
 Special units designed for FFT and other signals

processing

27B4M35PAP Advanced Computer Architectures

What is EPIC

• Explicitly Parallel Instruction
Computing

• Based and extends VLIW
principles

• Representative is Itanium
(original naming IA-64).

• It implements already
described methods –
speculation, branch prediction,
and registers renaming.

28B4M35PAP Advanced Computer Architectures

EPIC and VLIW differences and what is new

• Bundle/packet – definition for the group of instructions
which are packed to be executed in parallel

• The bundle can include „stop“ which indicates that there
is a dependency between operations in the bundle

• SW prefetch (lfetch)
• Prediction – some mean of speculation
• Speculative load (ld.s, ld.sa,ld.c.nc, ld.c.clr,…),
• Move load to be initiated for execution earlier and later

checking in the place of original load instruction location
• Issue the load earlier before the store and checking for

aliasing later (the same address)

29B4M35PAP Advanced Computer Architectures

Intel Itanium – IA-64

• IA-64 distinguishes
6 instruction types

• The bundle is
composed from 3
instructions

30B4M35PAP Advanced Computer Architectures

• Original code:

• New code:

• Predicate pT is set if the condition is true. pF predicate is
complement to pT predicate

• The control dependency is converted to data dependency
• The another advantage is the possibility to pack

instructions for parallel execution

Prediction

31B4M35PAP Advanced Computer Architectures

Itanium – Explicitly Parallel Instruction Computing (EPIC)

Figure source http://en.wikipedia.org/wiki/File:Itanium_arch.png

http://en.wikipedia.org/wiki/File:Itanium_arch.png

32B4M35PAP Advanced Computer Architectures

Itanium – IA-64 – EPIC

• It dramatically differs when compared to
x86 (i x86-64)

• It is based on explicit ILP; parallelization is
controlled by the compiler.

• It does not require additional HW for
hazards detection and resolution – in
theory, in practice it is required for deeper
pipelines but is simpler and has more
cycles to analyze inter-bundle
dependencies.

33B4M35PAP Advanced Computer Architectures

Use of data parallelism

34B4M35PAP Advanced Computer Architectures

Profit and use of data parallelism, SIMD

• Single Instruction, Multiple Data, one of category from
classic Flynn's taxonomy.

• One of broadly used SIMD implementation was the
introduction of MMX (MultiMedia eXtensions) in x86.

• Initially for games and media
• Defines 8 64-bit

registers MM0 … MM7
• MMX:

• movd - MOVe Doubleword
• paddb - adds an MMX register and another MMX register or

memory as unsigned 8-bit bytes
• paddw add an MMX register and another register or memory as

unsigned 16-bit words
• psubw subtracts unsigned 16-bit words

35B4M35PAP Advanced Computer Architectures

Vector instructions for x86 ISA

• This group includes:
• 3DNow! Od AMD

• PAVGUSB – Packed 8-bit unsigned integer averaging
• PFADD – Packed floating-point addition
• PFMIN – Packed floating-point minimum
• PREFETCH/PREFETCHW – Prefetch at least a 32-byte line into

L1 data cache

• SSE (Streaming SIMD Extensions) and
additional versions SSE2, SSE3, SSSE3, SSE4
from Intel – reaction to 3DNow introduction by
AMD

36B4M35PAP Advanced Computer Architectures

SSE instruction - examples

• SSE3 instruction ADDSUBPD (Add-Subtract-Packed-Double)

Input: { A0, A1 }, { B0, B1 }
Output: { A0 − B0, A1 + B1 }

• SSE3 instruction HADDPS (Horizontal-Add-Packed-Single)
 Input: { A0, A1, A2, A3 }, { B0, B1, B2, B3 }
 Output: { A0 + A1, A2 + A3, B0 + B1, B2 + B3 }

• SSE4 Instruction MPSADBW:
|x0−y0|+|x1−y1|+|x2−y2|+|x3−y3|, |x0−y1|+|x1−y2|+|x2−y3|

+|x3−y4|,…, |x0−y7|+|x1−y8|+|x2−y9|+|x3−y10|
8 times sum-absolute-difference (SAD), important for
HighDefinition (HD) video codecs motion estimation

• SSE4 Instructions DPPS: Scalar products of Array of
Structs

https://software.intel.com/content/www/us/en/develop/articles/motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4.html

37B4M35PAP Advanced Computer Architectures

Vector instructions for non-x86 architectures

• PowerPC
• POWER6, Power ISA v.2.03 – AltiVec

• Power ISA v2.06 – VSX (Vector Scalar
Extension)

• Power ISA v3.0 – POWER9

• MIPS
• MDMX (MaDMaX) and MIPS-3D

• Sparc
• Visual Instruction Set VIS 1, VIS 2, VIS 2+,

VIS 3 and VIS 4.

38B4M35PAP Advanced Computer Architectures

What next?

39B4M35PAP Advanced Computer Architectures

Loop

for (i=0; i<1000; i++)
 x[i] = x[i] + s;

Loop: LD F0,0(R1) ; F0 = vector element (x base skipped)

NOP

 ADDD F4,F0,F2 ; add scalar from F2

 SD 0(R1),F4 ; store result

 SUBI R1,R1,8 ; decrement pointer 8bytes (DW)

 BNEZ R1,Loop ; branch R1!=zero

 NOP ; delayed branch slot

Loop, 7 cycles

Optimized to compare loop control
variable to zero as

i = 999;

do x[i] = x[i] + s; while(i--);

40B4M35PAP Advanced Computer Architectures

Loop unrolling

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

• NOP instructions
removed

• Suitable even for
CPU which does not
support registers
renaming (Registers
renamed by the
compiler.)

• Stall cycles
minimized even for
scalar processor

Loop unrolled 4x, 14 cycles

41B4M35PAP Advanced Computer Architectures

Execution on superscalar processor

• Imagine the Tomasulo algorithm in action

Iteration Instructions Issues Executes Writes result
no. clock-cycle number
1 LD F0,0(R1) 1 2 4
1 ADDD F4,F0,F2 1 5 8
1 SD 0(R1),F4 2 9
1 SUBI R1,R1,#8 3 4 5
1 BNEZ R1,LOOP 4 5
2 LD F0,0(R1) 5 6 8
2 ADDD F4,F0,F2 5 9 12
2 SD 0(R1),F4 6 13
2 SUBI R1,R1,#8 7 8 9
2 BNEZ R1,LOOP 8 9

4 cycles for iteration, NOP?

42B4M35PAP Advanced Computer Architectures

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 7

SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#48 8

SD -0(R1),F28 BNEZ R1,LOOP 9

Loop unrolling v ve VLIW-uLoop unrolling for VLIW

Loop unrolled 7x, 9 cycles

1 row – 1 instruction

43B4M35PAP Advanced Computer Architectures

Software Pipeline
Prologue Epilog

Loop unrolled

Number of
Overlapped
instructions

Number of
Overlapped
instructions

Time

Time

Software Pipeline

44B4M35PAP Advanced Computer Architectures

SW Pipelining - Example

Before: Unrolled 3 times
 1 LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4
 4 LD F6,-8(R1)
 5 ADDD F8,F6,F2
 6 SD -8(R1),F8
 7 LD F10,-16(R1)
 8 ADDD F12,F10,F2
 9 SD -16(R1),F12
 10 SUBI R1,R1,#24
 11 BNEZ R1,LOOP

After: Software Pipelined
LD F0,0(R1)
ADDD F4,F0,F2
LD F0,-8(R1)

 1 SD 0(R1),F4; Stores M[i]
 2 ADDD F4,F0,F2; Adds to M[i-1]
 3 LD F0,-16(R1); loads M[i-2]
 4 SUBI R1,R1,#8
 5 BNEZ R1,LOOP

SD 0(R1),F4
ADDD F4,F0,F2
SD -8(R1),F4

IF ID EX Mem WB
 IF ID EX Mem WB
 IF ID EX Mem WB

SD
ADDD
LD

Read F4
Write F4

Read F0

Write F0

45B4M35PAP Advanced Computer Architectures

• If individual cycle iterations are independent (instructions within the
cycle may be dependent), we can achieve an increase in ILP by
grouping instructions from different iterations.

• SW pipelining reorganizes the loops ( the Tomasulo algorithm over
the expanded loop)

• We will achieve the greatest middle degree of parallelization only with
a small increase in code

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

Software Pipeline – Úloha kompilátoruSW Pipelining – Symbolic Loop Unrolling

46B4M35PAP Advanced Computer Architectures

A[1] = A[1] + B[1];

for (i=1; i<=99; i=i+1) {
B[i+1] = C[i] + D[i];
A[i+1] = + A[i+1] + B[i+1];

}

B[101] = C[100] + D[100];

for (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i];} /* S2 */

OLD:

NEW:

Příklad odstranění závislosti mezi iteracemiExample how to eliminate dependency between iterations

• Dependency between iterations is caused by B

47B4M35PAP Advanced Computer Architectures

 Used sources:

1. Shen, J.P., Lipasti, M.H.: Modern Processor Design:
Fundamentals of Superscalar Processors, First Edition, New
York, McGraw-Hill Inc., 2005

2. Sunil Kim, Alexander V. Veidenbaum: Second level cache
organization for data prefetching. 1996

3. David A. Patterson: Lecture 5: VLIW, Software Pipelining, and Limits
to ILP. Computer Science 252, Fall 1996.

4. Ioannis Papaefstathiou: Advanced Computer Architecture - Chapter
4. Advanced Pipelining. CS 590.25 Easter 2003.

5. van de Waerdt, J.-W.; Vassiliadis, S.; et al. "The TM3270 media-
processor,"Microarchitecture, 2005. MICRO-38. Proceedings. 38th
Annual IEEE/ACM International Symposium on , vol., no., pp.12
pp.,342, 16-16 Nov. 2005

6. http://www.csee.umbc.edu/portal/help/architecture/aig.pdf

7. http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/
discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf

http://www.csee.umbc.edu/portal/help/architecture/aig.pdf
http://www.csee.umbc.edu/portal/help/architecture/aig.pdf
http://www.csee.umbc.edu/portal/help/architecture/aig.pdf
http://www.csee.umbc.edu/portal/help/architecture/aig.pdf
http://www.csee.umbc.edu/portal/help/architecture/aig.pdf
http://www.csee.umbc.edu/portal/help/architecture/aig.pdf
http://www.csee.umbc.edu/portal/help/architecture/aig.pdf
http://www.csee.umbc.edu/portal/help/architecture/aig.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/discussions/uniprocessors/ia64/mpr_ia64_isa_may99.pdf

	Superscalar techniques - Memory data flow, VLIW and EPIC processors
	Superscalar Techniques…
	Superscalar pipeline – see previous lesson
	What you know already from other subjects ...
	Memory access
	The ordering of the load and store instructions
	Model of sequential consistency
	Load forwarding and Load bypassing
	Load forwarding and Load bypassing 1
	Load forwarding and Load bypassing 2
	Speculative execution of Load instructions
	Speculative execution
	More instruments to reduce memory latency
	Non-blocking cache
	Non-blocking cache – Example of superscalar CPU
	Prefetching cache/data (instruction) prefetching
	Prefetching cache / data (instruction) prefetching
	How to predict locations for prefetch? Example.
	VLIW processors etc.
	VLIW processors
	VLIW and precise exception support
	VLIW - Principle
	Example
	VLIW example
	Another VLIW CPU example - TM3270 Media-Processor
	Modern DSP
	What is EPIC
	EPIC and VLIW differences and what is new
	Intel Itanium – IA-64
	Prediction
	Itanium – Explicitly Parallel Instruction Computing (EPIC)
	Itanium – IA-64 – EPIC
	Use of data parallelism
	Profit and use of data parallelism, SIMD
	Vector instructions for x86 ISA
	SSE instruction - examples
	Vector instructions for non-x86 architectures
	What next?
	Loop
	Loop unrolling
	Execution on superscalar processor
	Loop unrolling for VLIW
	Software Pipeline
	SW Pipelining - Example
	SW Pipelining – Symbolic Loop Unrolling
	Example how to eliminate dependency between iterations
	Used sources:

