
1B4M35PAP Advanced Computer Architectures

Advanced Computer Architectures

04

Superscalar Techniques –
 Instruction prefetching (Branch prediction etc.)

Czech Technical University in Prague, Faculty of Electrical Engineering
Slides authors: Michal Štepanovský, update Pavel Píša

2B4M35PAP Advanced Computer Architectures

Superscalar Techniques…

• The goal is to achieve a maximum throughput of the
instruction processing

• Instruction processing can be analyzed as instructions flow
or data flow, more precisely:
• register data flow – data flow between processor registers
• instruction flow through the pipeline
• memory data flow – to/from memory

• It roughly matches to:
• Arithmetic-logic (ALU) and other computational instructions (FP, bit-

field, vector) processing
• Branch instruction processing
• Load/store instruction processing

• maximizing the throughput of these three flows (or
complete flow) correspond to the minimizing penalties and
latencies of above three instructions types

Today’s lecture
topic

3B4M35PAP Advanced Computer Architectures

Control Flow Graph

The program described as a
Control Flow Graph (CFG):

CFG has to be mapped into
sequential memory:

Address

Addr + offset

…

And what about object-oriented
programming???

Virtual methods ???

4B4M35PAP Advanced Computer Architectures

Control Flow Graph

The program described as a
Control Flow Graph (CFG):

CFG has to be mapped into
sequential memory:

Fetch group
current
address

Fetch group
next address

Next?

Problem No 1

Problem
No 2

Problem No 3

pipelining

And what about object-oriented
programming???

Virtual methods ???

5B4M35PAP Advanced Computer Architectures

Branch prediction – Motivation

Instruction / decode buffer

Dispatch buffer

Reservation
stations

Reorder /
Completion buffer

Store buffer

Branch

Decode

Fetch

Complete

Retire

Dispatch

Issue

Finish

Execute

• the penalty of three
cycles in fetching the
next instruction;

• number of empty
instruction slots
multiplied by the width of
the superscalar
machine;

• Amdahl’s law..

6B4M35PAP Advanced Computer Architectures

Branch prediction – Motivation

Instruction / decode buffer

Dispatch buffer

Reservation
stations

Reorder /
Completion buffer

Store buffer

Branch

Decode

Fetch

Complete

Retire

Dispatch

Issue

Finish

Execute

Register
indirect with
offset

Register
indirect

PC-
relative

AMD Athlon: 10 stages in integer pipeline
Intel NetBurst (Pentium 4): 20 stages

7B4M35PAP Advanced Computer Architectures

Branch prediction

• Two fundamental components:

• branch target speculation (where is next instruction),

• branch condition speculation (if the branch is taken).

• Branch target speculation:

• BTB (Branch Target Buffer) – cache (associative
memory) with two fields: BIA (Branch Instruction
Address) and BTA (Branch Target Adress) – accessed
during the instruction fetch using the instruction fetch
address (PC)

• When BIA matches with current PC, the corresponding
BTA is accessed and if the branch instruction is
predicted to be taken, BTA is used to modify PC

8B4M35PAP Advanced Computer Architectures

Branch Target Speculation

BIA BTA

Predicted
address

PC

Branch Target Buffer (BTB)

into instruction
cache

9B4M35PAP Advanced Computer Architectures

Branch prediction

• Branch condition speculation (taken/not-taken):

• Static prediction (70%-80%)
• BTFNT (Backwards Taken / Forwards Not-Taken) – for, while, do-

while,.. - relatively to PC, branch delay slot… the compiler places
unlikely branches after likely path through function.

• Heuristics used to analyze the program (NULL pointer, equality,
inline functions…) – branch hints coded in branch instructions (if
supported by ISA)

• Profilation – runs with different inputs - statistics

• Dynamic prediction (80%-97%)

• Hybrid (combination of static and dynamic prediction.
Static prediction in the initial phase, when the dynamic
prediction is not available, the first pass through code or
when prediction slot is reused for later PC address).

10B4M35PAP Advanced Computer Architectures

Branch prediction

Predictor

…
Actual

direction of
the branch

Predicted
direction

BIA BTA

Predicted address

PC

Branch Target Buffer (BTB)

Address into
instruction

cache

Branch hist.
+4

Branch history

FSM
Direction
prediction

Local history

Global
history

11B4M35PAP Advanced Computer Architectures

Branch condition prediction – local predictor

• Smith’s algorithm (Saturating counter)

Branch address

incrementation /
decrementation

of counter

Updated value

Actual branch outcomePrediction (MSB bit)

m

2 m k-bit counters

12B4M35PAP Advanced Computer Architectures

Branch condition prediction – local predictor

• Smith’s algorithm

Problem ???

If Program Counter is 32 bits wide, we will need (1/8)*k*2^32 B of
memory to store the state of all saturating counters (if k==2, we need
1GB of memory), much smaller n-way associative branch history table is
used.

• Conflict aliasing:
• Neutral interference
• Negative interference

• Compulsory aliasing in addition – we will see it later… (because of
indexing by address-history combination)

13B4M35PAP Advanced Computer Architectures

Branch condition prediction – global predictor

• Global-History Two-Level Branch Predictor with a 4-bit
Branch History Register

PC = 0101001110111101

BHR (Branch
History Register)

PHT (Pattern History Table)

Prediction (MSB bit)
0110

000000
000001
000010

111111
111110
111101

01 0110 010110

Branch Address

What is the optimal number of bits for BHR a for BA?

14B4M35PAP Advanced Computer Architectures

Branch condition prediction – global predictor

• Global-History Two-Level Branch Predictor with a 4-bit
Branch History Register

• Why use global history for PHT indexation?

a=0;

if(condition #1) a=3;

if(condition #2) b=10;

if(a <= 0) F();

• The behavior of a branch may be connected (or correlated) with a
different branches conditions evaluation in the past.

• In our example, execution of function F() depends on the
condition #1. The condition #2 is irrelevant. Predictor must be able to
learn this behavior (distinguish these branch conditions).

15B4M35PAP Advanced Computer Architectures

Branch condition prediction

• Local-History Two-Level Predictor with a 3-bit Branch
History Table

PC = 0101001110111010

BHT (Branch
History Table)

PHT (Pattern History Table)

Prediction (MSB bit)

110

000000
000001
000010

111111
111110
111101

010 110 010110

Branch Address

000
001
010
011
100
101
110
111

Intel P6 uses 4 bits for BHR

n bits

m bits

16B4M35PAP Advanced Computer Architectures

Branch condition prediction

• Local-History Two-Level Predictor with a 3-bit Branch
History Table

• Why local history for PHT indexation?

do{

...

}while(condition);

• Because the behavior of a branch may be closely related to its own
history…

17B4M35PAP Advanced Computer Architectures

Branch condition prediction

• Local-History Two-Level Predictor with a 3-bit Branch
History Table – An example:

• Let’s suppose that at the address 0xC0A5 is the „loop-closing branch“ with the pattern:
11101110111011101..., where 1 means taken branch. How many cycles needs the
predictor to learn this pattern? Initially, BHT and PHT contain zeros.

PC = 1100000010100101

BHT (Branch
History Table)

PHT (Pattern History Table)

Prediction (MSB bit)
000

000000
000001
000010

111111
111110
111101

101 000 101000

Branch Address

000
001
010
011
100
101
110
111

18B4M35PAP Advanced Computer Architectures

Branch condition prediction

• Index-sharing predictors… (hash of BHR and PC) – better
use of the index bits (it tends to contain more information due to the
nonuniform distribution of PC values and branch histories)

• For example, gshare predictor:

PC = 0101001110111101

BHR (Branch
History Register)

PHT (Pattern History Table)

Prediction (MSB bit)
101011

000000
000001
000010

111111
111110
111101

hash 010110

Branch Address

gshare: Hash: XOR

19B4M35PAP Advanced Computer Architectures

Branch condition prediction

• Index-sharing predictors…

• bi-Mode predictor – two separated PHT – the same index or hash:

PC = 0101001110111101

BHR (Branch
History Register)

PHT 0

101011

000000
000001
000010

111111
111110
111101

xor 010110

Branch Address

PHT 1
000000
000001
000010

111111
111110
111101

010110

Choice predictor

Prediction

MSB bitMSB bit MSB bit

• Choice predictor – Smith. The branches with a taken bias are placed in PHT1 and other
ones into PHT0. Negative interference => neutral interference. (the statistic of branches
has this property)

20B4M35PAP Advanced Computer Architectures

• alloyed predictor

• Combination of PC, local history and global history as an index into PHT

Branch condition prediction

PC = 1100000010100101

BHT (Local
Branch History

Table)

PHT (Pattern History Table)

Prediction (MSB bit)
000

101 000 110

Branch Address

000
001
010
011
100
101
110
111 110

Global BHR

21B4M35PAP Advanced Computer Architectures

• gskewed predictor

Branch condition prediction

Non-conflict access to at least two PHTs is guaranteed

• Hash functions f0, f1 and f2 have this property:
if f0(x1)=f0(x2) for x1x2, then f1(x1)  f1(x2) and f2(x1)  f2(x2)

• Total update (update of all banks by branch outcome) and
partial update (better) – does not update a bank if that particular bank mispredicted,
but the overall prediction was correct.

22B4M35PAP Advanced Computer Architectures

Branch condition prediction

• agree predictor Branches tend to be heavily biased in one
direction or the other (taken/not-taken).

Biasing bit initialized to the outcome of the
first instance of the branch, or a branch
hint inserted by the compiler. PHT
predicts whether the branch outcome will
agree with the biasing bit. (Negative
interference elimination)

23B4M35PAP Advanced Computer Architectures

Branch condition prediction

• YAGS predictor
Extension of Bi-mode
predictor… but with the
significant difference!
If PHT indicates “taken”,
then “Not-Taken” (NT) cache
is used for prediction. Both
caches store only the
branches which do not
agree with PHT…

24B4M35PAP Advanced Computer Architectures

Branch condition prediction

• Branch Filtering predictor
Branches tend to be heavily
biased in one direction or the
other. Expensive HW
structures are not required
for these saturating
branches and can be used
only for more complicated
ones.

If the counter in BCT has
been incremented to its max
value, then this branch will
no longer update the PHT.

If BCT makes miss-
prediction, then the counter
is reset.

25B4M35PAP Advanced Computer Architectures

Branch condition prediction

Pattern-Based Predictors

• They extend the idea of 1-bit or in general n-bit predictors to recognize
specific branch pattern

• Example. Consider these patterns (0-not taken branch, 1-taken):
0101010101, 110110110, 00111010011101, …
These patterns are hard to predict (by 1 or 2-bit predictors) - the bias of
the branch develops in time…

• 0101010101 – after 0 comes 1, after 1 comes 0

• 110110110 – after 11 comes 0, after 10 comes1, after 01 comes 1
• 00111010011101 – after 100 comes 1, after 001 comes 1, after 011 comes 1,

after 111 comes 0, after 110 comes 1, after 101 comes 0, after 010 comes 0

• Did previous predictors the prediction on these patterns well ???
• Note: All predictors which use the combination of local and global history are called correlating

predictors.

26B4M35PAP Advanced Computer Architectures

• Two-level adaptive branch predictor (Correlating/ed predictor)
• Authors: Yeh and Patt from University of Michigan

Branch condition prediction

• First level – history of last K branches (for example last K branch instructions
or last K resolutions of single instruction) – builds the pattern

• Second level – the behavior of last N appearances of the pattern indexes PHT

• BHR is associated with given branch instruction

27B4M35PAP Advanced Computer Architectures

• Two-level adaptive branch predictor (Correlating/ed predictor)
• Authors: Yeh and Patt from University of Michigan
• The “same” picture:

(Intel P6)

• Sometimes, PHT is drawn as a matrix, where rows (columns) are indexed by PC
and columns (rows) are indexed by BHR. Global BHR may also be used

Branch condition prediction

28B4M35PAP Advanced Computer Architectures

• Loop Counting predictor
• Many iterations
• Only in combination with other predictors (see hybrid predictors)
• Pentium M

Branch condition prediction

29B4M35PAP Advanced Computer Architectures

Branch condition prediction

• Advanced predictors take into account negative (and neutral)
interference (bi-Mode predictor and others …)

Some other dynamic predictors:

• Perceptron predictor (longer history, correlated branches detected)

• Data flow predictor – explicitly tracks inter-register dependences

Hybrid, multi-hybrid and fusion-based predictors:
• Tournament predictor – two predictors P0 and P1 and meta-predictor M (Smith)

(a) Hybrid: Tournament predictor in this
example uses Bimodal and Gshare predictor

(b) Fusion-Based Hybrid Predictor – replaces multiplexer
(which selected only single predictor) with Fusion

30B4M35PAP Advanced Computer Architectures

Branch condition prediction

• Selective branch inversion (SBI)

• Does not focus primarily on interference reduction but to
minimise interference impact/consequences

• It evaluates (estimates) confidence of prediction of predictor

• For example: SBI Bi-Mode predictor provides better results than
plain Bi-Mode (reasons: interference avoidance + interference
correction)

31B4M35PAP Advanced Computer Architectures

Branch prediction

• Two fundamental components:

• branch condition speculation (if),

• branch target speculation (where)

• Branch target speculation:
• BTB (Branch Target Buffer) – associative cache with two fields:

BIA (Branch Instruction Address) and BTA (Branch Target Adress)

(from slide 10 till
now)

The topic from now

BIA BTA

Predicted
address

PC

Branch Target Buffer (BTB)

into instruction
cache

32B4M35PAP Advanced Computer Architectures

Branch target speculation

• Branch Target: PC-relative branches or indirect branches (run-time
address determination) Store the

targets of
taken
branches,
cache location
or the first
target
instructions,
…
There are
more option

33B4M35PAP Advanced Computer Architectures

Branch target speculation – Indirect branches?

• MIPS: jal $ra - what it is the target address???

• Object-oriented programming and polymorphism… The result is a lot of
indirect branches (in comparison with imperative programming)
The key idea:

• Indexation of BTB (Branch Target Buffer)

• The hash function can be the “simple” concatenation
• Another point of view: It is the two-level predictor, but the cache stores branch target

addresses (not the branch history)

PC = 0101001110111101

History
101011

hash

Branch Address
Target Cache

Target Address

34B4M35PAP Advanced Computer Architectures

Branch target speculation – Collisions in cache…

Branch target buffer (BTB) is usually n-way set associative

35B4M35PAP Advanced Computer Architectures

Virtual Program Counter (VPC) Prediction

Instead of expensive HW reuse simple taken/not taken logic which is
iterated MAX_ITER times (proposed 4 to 12) for indirect branch

Notes:
• GHR – Global History Register, VGHR – virtual GHR
• VPCA – Virtual PC Address (distinct for different virtual branches)

• In first iteration: VPCA = PC; and VGHR = GHR; next VPCA ←
Hash(PC, iter); VGHR ← Left-Shift(VGHR); repeat to find taken
prediction or MAX_ITER

An example:

36B4M35PAP Advanced Computer Architectures

Phantom branch / bogus branch

What cause these bogus predictions?

Only the part of the instruction address is used as a tag and its compare to reduce HW resources, but then
BTB entry can be selected for incorrect address. If there is no branch instruction in the fetch block, then it is
found 2 cycles later after fetch and instead of predicted address next fetch block is loaded. But this
optimization is source of Spectre and Meltdow security vulnerabilities. Full PC address or some randomly
selected hash have to be used instead.

37B4M35PAP Advanced Computer Architectures

Branch target speculation

• RAS predictor - return address stack – specialized predictor

• For the prediction of return address (MIPS jr $ra, x86 ret, etc) – HW
stack. The stack depth of 8 gives >97% of prediction success
(MIPS R10000 stack depth: 1, Alpha 21164 stack depth: 12, Intel Pentium III stack depth: 16)

38B4M35PAP Advanced Computer Architectures

Speculation may be wrong!!!

Modern processors use:
• Control speculation (conditional branches)
• Data speculation (Load/Store speculation)

• The load is executed before the store address of previous store
instruction is computed (e.g. Itanium, Power 5, Core 2)

• Sequential semantics of executed program have to be
satisfied

• It means: execution of program satisfies
• Condition #1 – the processor produces exactly the same results as

the processor executing the program strictly instruction-by-
instruction in program order

• Condition #2 – the processor generates the same exceptions as…

• Next sufficient conditions exist to warrant this goal:

39B4M35PAP Advanced Computer Architectures

Sufficient conditions

• Cond. A – respect the data dependencies
• Instructions wait for resolving data dependencies

• Cond. B – respect the control dependencies
• Do not branch until the branch address is known and the branch

condition is computed (and satisfied)

• Cond. C – Precise exception for interrupts and exceptions
• During the speculation, the conditions A and B are not partially or

temporarily fulfilled, but the result after retire phase has to be correct
• The program execution has to be correct, and Condition C have to be

guaranteed in any case

Wrong Speculation?
• Misprediction recovery/restart has to happen. Both options are

expensive, even ten or more cycles. Two options with additional queues
• History Buffer HB - M88110,…
• Reorder Buffer RB – the most of today architectures. Our focus…

40B4M35PAP Advanced Computer Architectures

History Buffer

Register
file

Results
shift register

History
buffer

ID
(operands read)

Source

Registers

The old value of destination register

WB
(out of order)

Results

(from functional
units)

Correct (Roll-
back) values
in the register
file in case of
exception

to functional units

41B4M35PAP Advanced Computer Architectures

Reorder Buffer

• Results are stored in the Reorder buffer during Write-Back
• Commit: Complete the instruction in-order (Results are stored in the

Register file only when all preceding instructions are complete
• Note: Holding the renamed values in Reorder buffer (ROB) is not the

only possibility. Recall that it exists: Stand-alone rename register file
and Merged register file => in these cases, ROB is also used (in-
order complete)

Register fileReorder
buffer

WB
(out-of-order)

ID
(operand read)

Results
(from ALU,…) Source registers

(to ALU,…)

COMMIT
(in-order)

forwarding

42B4M35PAP Advanced Computer Architectures

History Buffer vs Reorder Buffer

• Advantages of HB
• Values from HB is not necessary to forward (no

associative search in HB) ⇒ simpler forwarding
• HB access not on the critical path

• Disadvantages of HB
• Need to unwind the history buffer upon an exception

(increased latency to handle the exception)
• Additional read port for register file to read previous value

of destination register (problem to scale into superscalar)

• Throughput (for execution) is similar for both
approaches. Some additional latency for the
exception for HB. Problem with STORE instruction.

43B4M35PAP Advanced Computer Architectures

Branch validation/recovery

• Branch speculation – frond-end stages of the pipeline – discussed till now
• Branch validation/recovery – when the direction is finally resolved?
• What to do then

- During Branch speculation, all instructions have to be identified by the
unique Tag related to certain speculative block. These tagged instructions
keep information if they are speculative and to which speculative block
belongs.
- During Branch speculation addresses of all branch instructions are stored
(in the buffer) – it is required for Branch recovery

44B4M35PAP Advanced Computer Architectures

• Branch validation/recovery – when the actual direction of a branch is
resolved

• Correct speculation (prediction):
speculation tag is deallocated, instructions become nonspeculative (allowed to
complete)

• Incorrect speculation (prediction) :
Two actions: the incorrect path must be terminated and the correct path must be
initiated.
The termination of the incorrect path: Discarding of all instructions (by using speculation
Tags) in decode and dispatch buffers, in reservation stations, etc.
The initiation of the correct path: Update of PC with a new address (computed branch
target address or buffered sequential address during Branch speculation)

Branch validation/recovery

45B4M35PAP Advanced Computer Architectures

Branch prediction - PowerPC 604

• 4-wide superscalar
processor (4 instructions
can be decoded or
completed in one cycle)

• Execute 6
instructions/cycle

• BTAC – Branch Target
address cache (fully
associative, 64 entries)

• BHT – Branch History
Table (direct mapped,
512 entries)

• BTAC – one cycle, BHT
– two cycles

• Organization FA-mux is
more complex than in
the picture

46B4M35PAP Advanced Computer Architectures

PowerPC 604 – different view

47B4M35PAP Advanced Computer Architectures

Instruction prefetching…

• For the superscalar processor, it is very important to predict
the direction and the target of the branch correctly!

• In one cycle, it may be required to process several branch
instructions (depending on the fetch group size). For
example, for fetch group size 4 instructions, all can be
branches. The optimal solution is to use all branch
instruction addresses. Only the first one is often used.

• Another mechanism is a predication (or eager execution) –
instructions from both paths can be executed. The instruction will only be completed if the
predicate is true.

• It ensures that CPU use cycles to process instructions from right
target, but ensures that time to process another is wasted

• Not useful for highly predictable branches

• Power consumption

48B4M35PAP Advanced Computer Architectures

High-Bandwidth Fetch Mechanism

• Assuming a limit of one i-cache access per cycle, the number of
instructions fetched from the i-cache is bounded by the line size.

• Typically, the fetch group contains branch instruction (for typical
applications, 20% are branches). Usual distance to the branch target is
5 to 6 instructions for typical applications.

• Only if the taken branch is the last instruction in the fetch group, the
whole fetch group contain useful instructions.. Otherwise, the fetch
group (or i-cache) do not provide N instructions (where N is the fetch
group width). What is the consequence?

• A similar problem is a situation where a block of instructions is split
across cache lines.

• The solution is:
• Collapsing buffer – alignment of instructions from non-sequential

addresses

• Trace cache – which stores the actual sequence of instructions following
given branch – these are (speculatively) executed instead of cache access

49B4M35PAP Advanced Computer Architectures

High-Bandwidth Fetch Mechanism

• Collapsing buffer – aligns not consecutive instruction into block

• It requires a banked instruction
cache – more than one cache line
accessible in parallel

• and interleaved BTB.
• Suppose that we want to execute the

sequence of instructions:
A, B, C, E, G – i.e. C and E are
branches, E and G are their targets

• Conventional cache:
• 1.cycle: A,B,C,D (three useful inst.)
• 2.cycle: E,F,G,H (two useful inst.)

• BTB has to provide the information (valid
instruction bits) that specify which
instructions in the cache line are the part
of the predicted path

• It is hard to scale the Collapsing
buffer over more than 2 cache lines /
cycle

50B4M35PAP Advanced Computer Architectures

High-Bandwidth Fetch Mechanism

• Trace cache – it traces sequence of the following executed instructions for
given branch/jump – in the case of trace cache hit we do not fetch from
the instruction cache…

• The idea is depicted in the picture:

• The task to solve – how to fill this trace cache ???

51B4M35PAP Advanced Computer Architectures

• Two possibilities from where to include fill of Trace cache: (a) and (b)
• When a Trace construction buffer is full (it may be determined not only by the

number of instructions in the buffer, but also by the number of branches – mainly
in the case (a)), the trace is stored in the trace cache

• Every trace in trace cache has to provide the starting addresses of individual
blocks included in the trace. The fetch unit has to provide starting addresses of
the predicted path. If all addresses match, then there is a trace cache hit. In the
case of the partial match, the only subset of the trace is provided.

High-Bandwidth Fetch Mechanism – Trace cache

52B4M35PAP Advanced Computer Architectures

Trace cache

i-cache

decoder

register
renaming

execution
units

branch
prediction

i-cache

decoder

register
renaming

execution
units

branch
prediction

trace
prediction

trace cache

fill
unit

A

B

• A: entries in the trace cache can be already decoded, content can be fed directly into
register renaming stage in such case ..

• B: there is one another possibility how to fill the Trace cache – from reorder buffer – after
Commit as shown on previous slide

Conventional Instruction Fetch
Unit without Trace Cache:

53B4M35PAP Advanced Computer Architectures

Trace cache - Pentium 4 processor, NetBurst microarchitecture

54B4M35PAP Advanced Computer Architectures

Instead of conclusion benchmark the code

• Try to measure the time:
for (int i = 0; i < max; i++)

if (cond) /* use -O0 else compiler optimizes the loop */

sum++;

cond pattern time

(i & 0×80000000) == 0 always T

(i & 0xffffffff) == 0 always F

(i & 1) == 0 TF

(i & 3) == 0 TFFF

(i & 2) == 0 TTFF

(i & 4) == 0 TTTTFFFF

(i & 8) == 0 8T 8F

(i & 32) == 0 32T 32F

55B4M35PAP Advanced Computer Architectures

Instead of conclusion …

• Try to measure the time :
for (int i = 0; i < max; i++){
a=0;

if(cond n.1) a=3;

if((i & 2) == 0) b=10;

if(a <= 0) sum++; //if(cond n.1) sum++;

}

Cond. n.1 pattern Time A Time B

(i & 0×80000000)
== 0

always T

(i & 0xffffffff) == 0 always F

(i & 1) == 0 TF

(i & 3) == 0 TFFF

(i & 4) == 0 4T 4F

56B4M35PAP Advanced Computer Architectures

Typical values for today CPUs

AMD FX-8150 Intel i7 2600

Instruction Decode Width 4-wide 4-wide

Single Core Peak Decode 4 instructions 4 instructions

Instruction Decode Queue 16 entry 18+ entry

Buffers 40-entry load queue
24-entry store queue 48 load and 32 store buffers

pipeline depth 18+ stages 14 stages

branch misprediction penalty

20 clock cycles for conditional
and indirect branches

15 clock cycles for
unconditional jumps and

returns

17 cycles

reservation station

40-entry unified integer,
memory scheduler;

60-entry unified floating point
scheduler

36-entry centralized
reservation station shared by

6 functional unit

reorder buffer 128-entry retirement queue 128-entry reorder buffer

57B4M35PAP Advanced Computer Architectures

References:

• PowerPC604 RISC Microprocessor Technical Summary:
http://www.freescale.com/files/32bit/doc/data_sheet/MPC604.pdf

• Karel Driesen: Accurate Indirect Branch Prediction
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.4874&rep=rep1
&type=pdf

• Hyesoon Kim et al.: VPC Prediction: Reducing the Cost of Indirect
Branches via Hardware-Based Dynamic Devirtualization
http://users.ece.cmu.edu/~omutlu/pub/kim_isca07.pdf

• TseYu Yeh and Yale N Patt: Alternative Implementations of Two-Level
Adaptive Branch Prediction
http://www.eecg.toronto.edu/~moshovos/ACA05/read/isca-92.2-level-adaptive.pdf

• Shen, J.P., Lipasti, M.H.: Modern Processor Design : Fundamentals of
Superscalar Processors, First Edition, New York, McGraw-Hill Inc., 2005

• Glenn Hinton et al.: The Microarchitecture of the Pentium 4 Processor.
http://www.ecs.umass.edu/ece/koren/ece568/papers/Pentium4.pdf

http://www.freescale.com/files/32bit/doc/data_sheet/MPC604.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.4874&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.4874&rep=rep1&type=pdf
http://users.ece.cmu.edu/~omutlu/pub/kim_isca07.pdf
http://www.eecg.toronto.edu/~moshovos/ACA05/read/isca-92.2-level-adaptive.pdf
http://www.ecs.umass.edu/ece/koren/ece568/papers/Pentium4.pdf

	Superscalar Techniques – Instruction prefetching (Branch prediction etc.)
	Superscalar Techniques…
	Control Flow Graph
	Control Flow Graph 1
	Branch prediction – Motivation
	Branch prediction – Motivation 1
	Branch prediction
	Branch Target Speculation
	Branch prediction 1
	Branch prediction 2
	Branch condition prediction – local predictor
	Branch condition prediction – local predictor 1
	Branch condition prediction – global predictor
	Branch condition prediction – global predictor 1
	Branch condition prediction
	Branch condition prediction 1
	Branch condition prediction 2
	Branch condition prediction 3
	Branch condition prediction 4
	Branch condition prediction 5
	Branch condition prediction 6
	Branch condition prediction 7
	Branch condition prediction 8
	Branch condition prediction 9
	Branch condition prediction 10
	Branch condition prediction 11
	Branch condition prediction 12
	Branch condition prediction 13
	Branch condition prediction 14
	Branch condition prediction 15
	Branch prediction 3
	Branch target speculation
	Branch target speculation – Indirect branches?
	Branch target speculation – Collisions in cache…
	Virtual Program Counter (VPC) Prediction
	Phantom branch / bogus branch
	Branch target speculation 1
	Speculation may be wrong!!!
	Sufficient conditions
	History Buffer
	Reorder Buffer
	History Buffer vs Reorder Buffer
	Branch validation/recovery
	Branch validation/recovery 1
	Branch prediction - PowerPC 604
	PowerPC 604 – different view
	Instruction prefetching…
	High-Bandwidth Fetch Mechanism
	High-Bandwidth Fetch Mechanism 1
	High-Bandwidth Fetch Mechanism 2
	High-Bandwidth Fetch Mechanism – Trace cache
	Trace cache
	Trace cache - Pentium 4 processor, NetBurst microarchitecture
	Instead of conclusion benchmark the code
	Instead of conclusion …
	Typical values for today CPUs
	References:

