
Search trees (AVL, B, B+), Skip list

• Data structures supporting Find, Insert and 

Delete operations

TODO list z minula:

• Prezentace na CW před přednáškou

• Kvízy

• Kotlin ?



Znáte pojmy AVL strom a B-strom?

A. Znám AVL strom i B-strom.

B. Znám pouze AVL strom.

C. Znám pouze B-strom.

D. Neznám AVL ani B-strom.
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short illustrative repetition
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Keys in the left subtree of Y 

are smaller than the key of Y.

Y

< Y

> Y
Keys in the right subtree of Y 

are bigger than the key of Y.

Binary search tree

For each node Y it holds:
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BST may not be regular

and usually it is not.

BST may not be balanced

and usually it is not.

Apply the INORDER 

traversal to obtain

sorted list of the

keys of BST. 

BST is flexible due to operations:

Find – return the pointer to the node with the given key (or null).

Insert – insert a node with the given key.

Delete – (find and) remove the node with the given key.

Binary search tree
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Operation Find in  BST 

Find 18 51

Each BST 

operation starts

in the root.
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Insert 42 51

Operation Insert in  BST

40

42

45

Key 42 belongs here

Insert

1. Find the place (like in Find) for the leaf where the key belongs.

2. Create this leaf and connect  it to the tree.
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Operation Delete in BST (I.)
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Delete I. Find the node (like in Find operation) with the given key and 

set the reference to it from its parent to null.
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Delete a node with 0 children (= leaf)
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22

13

34

51

Leaf with key 25 

disappears

Delete 25
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Operation Delete in BST (II.)
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Delete a node with 1 child.

22

13

34

Delete 68

68

76

Change the 76 --> 68 reference to 76 --> 73 reference.

51

Node with key 68

disappears

Delete II. Find the node (like in Find operation) with the given key and 

set the reference to it from its parent to its (single) child.
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Operation Delete in BST (IIIa.)
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Delete IIIa.

1. Find the node (like in Find operation) with the given key and then

find the leftmost (= smallest key) node y in the right subtree of x.

2. Point from y to children of x, 

from parent of y point to the child of y instead of y, 

from parent of x point to y.

36

4522

13

34
Delete 34

68

76

Key 34 disappears.

51

And it is substituted by key 36. 

x

y

40

38

Delete a node with 2 children.
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Operation Delete in BST (IIIb.) is equivalent to Delete IIIa.
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Delete IIIb.

1. Find the node (like in Find operation) with the given key and then

find the rightmost (= smallest key) node y in the left subtree of x.

2. Point from y to children of x, 

from parent of y point to the child of y instead of y, 

from parent of x point to y.

42

4522

13

34
Delete 34

68

76

51

Na jeho místo nastoupí 22. 

x

y

Key 34 disappears.

And it is substituted by key 22. 

Delete a node with 2 children.
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AVL tree   -- G.M. Adelson-Velskij & E.M. Landis, 1962

There are two integers associated

with each node:  

Depth of the left and depth of 

the right  subtree of the node.

Note: Depth of an empty tree is -1.
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AVL tree is a BST with additional properties

which keep it  acceptably balanced.
Operations 

Find, Insert, Delete

also apply to AVL tree.

-1-1

-1

The difference of the heights of 

the left and the right subtree

may be only  -1 or 0 or 1

in each node of the tree.

AVL rule:

22 45

76

68
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10

AVL tree   -- G.M. Adelson-Velskij & E.M. Landis, 1962

Find -- same as in a BST

Insert -- first, insert as in a BST,

next, travel from the inserted node upwards 

and update the node depths.

If disbalance occurs in any node along the path then

apply an appropriate rotation and stop.  

Delete -- first, delete as in a BST,

next, travel from the deleted position upwards 

and update the node depths.

If disbalance occurs in any node along the path then

apply an appropriate rotation. 

Continue travelling along the path up to the root. 
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Rotation L is a mirror image of 

rotation R, there is no other 
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Travel from the inserted node up to the root

and update the subtree depths in each node along the path.

If a node is disbalanced and you came to it along two consecutive edges

*   in the up and right direction

perform rotation R in this node,

*   in the up and left direction

perform rotation L in this node,

*   first in the in the up and left and then in the up and right direction

perform rotation LR in this node,

*   first in the in the up and right and then in the up and left direction

perform rotation RL in this node,

After one rotation in the Insert operation  the AVL tree is balanced.

After one rotation in the Delete operation the AVL tree might still

not be balanced, all nodes on the path to the root have to be checked.

Rules for aplying rotations L, R, LR, RL in Insert operation

15



1 2

3
4

Necessity of  multiple rotations in operation Delete.

Balanced.

Example. 

The AVL tree

is originally 

balanced. 

Delete the 

rightmost key.
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Asymptotic complexities of Find, Insert, Delete in BST and AVL 

Operation Balanced Maybe not

balanced

Balanced

Find (log(n)) (n) (log(n))

Insert (log(n)) (n) (log(n))

Delete (log(n)) (n) (log(n))

BST with n nodes AVL tree with n nodes

A4B33ALG  2011 / 06 
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p

x--y

2<1

x+yHi!

- Robert Sedgewick:  Algorithms in C++, Parts 1–4: Fundamentals, Data Structure, Sorting, Searching, 

Third Edition, Addison Wesley Professional, 1998

- William Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM, 

33(6):668–676, 1990.

- William Pugh: A Skip List Cookbook [http://cglab.ca/~morin/teaching/5408/refs/p90b.pdf]

- Bradley T. Vander Zanden: [http://web.eecs.utk.edu/~huangj/CS302S04/notes/skip-lists.html]

To read

Skip List
Marko Berezovský

PAL 2015Skip List

A B C D E G L Q R S V XH M P 



A B C D E G H L M P Q R S V X

A B C D E G H X

A regular linked list 

A linked list with faster search capability 

A B C D E G H X

A linked list with even faster search capability 

Skip list Motivation 1

Problem: Find(Q)   in your list.

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14
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A B C D E G H

Difficulty: 

Subsequent  Insert/Delete operations would destroy this favourable list shape. 

The cost of restauration is huge -- (N).

Note the shape similarity to a balanced binary search tree. 

Solution: 

Create a randomized shape, roughly similar to the optimal shape.

Random deviations from the nice shape in the long run nearly cancel each other.

The result is a list shape with properties relatively close to the optimal properties.  

Skip list Improved linked list 2

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14

A linked list with log(N)  search capability.  

X

8

L M P Q R S V



A skip list is an ordered linked list where each node contains a variable 

number of links, with the k-th link in the node implementing singly 

linked list that skips (forward) the nodes with less than k links.

[Sedgewick]

Each element points to its immediate successor (= next element).

Some elements also point to one or more elements further down the list.

A level k element has k forward pointers. 

the j-th pointer points to the next element in level j .  

A B C D E G H

Level 2

elements 

Level 1

elements 

Level 4

element 

Level 3

elements 

Skip list Definition 3

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14
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while(x.forward[i].key < searchKey) // x.forward[i] != null

There is a   sentinel with infinite key value at the tail of the list.

The level of the sentinel is the same as the whole list level.  

The list may be implemented as circular with the header serving as the sentinel.

CA E G N R S

Skip list - Structure Sentinel 4

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



CA E G H I N R S 

H I

Keeping the code simple

Note that the skiplist  

is displayed as linear

in this presentation

(with separate sentinel)

to keep pictures 

less cluttered. 



A skip list data structure contains also:

-- Header A node with the initial set of forward pointers. 

-- Sentinel       Optional last node with  value, it is the header in circular list. 

-- Level The current number of levels in the skip list.

-- MaxLevel The maximum number of levels to which a skip list can grow.

-- Update[ ] Auxiliary array with predecessors of an inserted/deleted element                

see Insert and Delete operations.

Skip list Representation 5

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14

A B C D E G H

A skip list element contains:

-- Key Search key. 

-- Value  (Optional, not discussed here, allowing associative structure.)

-- Forward[ ] Array of pointers to the following skip list elements. 

The header and the sentinel are of the same type.

X

8

L M P Q R S V



Basic randomness

The level of an element is chosen by flipping a coin. 

Flip a coin until it comes up tails. Count 

one plus the number of times

the coin came up heads 

before it comes up tails. 

This result represents the level of the element. 

Example of an experimental independent  levels calculation  (p = 0.5, see below) .

x x x x x x x x x x x x x x x xx x x x x x x x

Skip list Random level 6

Sixpence of Queen Elizabeth I, 

struck in 1593 at the Tower Mint.

[wikipedia.org]

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



Skip list Random level example 7

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14

Level               1     2      3     4     5     6    7    8     9    ...

Number of nodes   Expected      64    32   16     8     4     2    1   1/2  1/4  ...

Actual         60    36   17     5     7     1    1    1     0    ... 

Experiment with Lehmer generator  

Xn+1 = 16807 Xn mod 2311  

seed = 23021905  // birth date of Derrick Henry Lehmer

Coin flipping:

(Xn  >> 16) & 1 

Head = 1 

128 nodes 



More general randomness

Choose a fraction p between 0 and 1. 

Rule: Fraction p of elements with level k pointers 

will have level k+1  elements as well. 

On average:           (1p)      elements will be level 1 elements, 

(1p)^2 elements will be level 2 elements, 

(1p)^3 elements will be level 3 elements, etc. 

This scheme corresponds 

to flipping a coin that has 

p chance of coming up heads, 

(1p) chance of coming up tails.  

Example of an experimental independent  levels calculation with p = 0.33.

x x x x x x x x x x x x x x x xx x x x x x x x

Skip list Random level 8

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



int randomLevel( List list ) {

//random() returns a random value in [0..1)

int newLevel = 1;    

while( random() < list.p )    // no MaxLevel check!

newLevel++;

return min( newLevel, list.MaxLevel );// efficiency!

}

Choosing a Random Level 

A level is chosen for an element in effect by flipping a coin that has probablility p

of coming up heads. We keep flipping until we get "tails" or until the maximum 

number of levels is reached.

Skip list Random level 9

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



Search

Scan through the top list until the current node either contains the search key 

or it contains a smaller key and a link to a node with a larger key.

Then, move to the second-from-top list and iterate the procedure, 

continuing forward and downward until the search key is found 

or a search mismatch happens at the bottom level. 

A B C D E G H

Find S

Skip list - Search Example 10

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14
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Node search( List list, int searchKey ) {

Node x = list.header;

// loop invariant: x.key < searchKey, strict ineq!!

for( int i = list.level; i >= 1; i-- ) 

while( x.forward[i].key < searchKey )

x = x.forward[i];

// x.key < searchKey <= x.forward[1].key

x = x.forward[1];

if( x.key == searchKey ) return x;

else return null;  // not found

}

Search

Start with the coarsest grain list and find where in that list the key resides, then 

drop down to the next less coarse grain list and repeat the search.

Skip list - Search Pseudocode 11

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



Insert

Find the place for the new element. 

Compute its level k by flipping the coin.

Insert the element into first k lists, starting at the bottom list. 

A B C D E G LH M

A B C D E HG

Insert M,        level M = 3

Skip list - Insert Example 12

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14
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A B C D E G LH M

Insert M,  level M = 3 

Skip list - Insert Example 13

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14

X

8

P Q R S V

undefined

The array update [ ] is an auxiliary array supporting Insert / Delete operations.

update[k] points to that element in the list 

whose level k pointer points to the inserted (or deleted) element,

( = predecessor in the k-th level).

Note that in many cases, when the level of the inserted/deleted element is 1, 
only update[1] will be used.  

update[1]

update[4]

update[2]

update[3]

altered pointer



SA A SE

A SE R A SE RC

A EC H

A

A EC H I

Insert  A, S, E, R, C, H, I, N, G. 

continue...

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



  



SR  SR 

The nodes, in the order of insertion,    (A,S,E,R,C,H,I,N,G)

were assigned levels                             1,3,2,1,1,3,1,3,2. 

Skip list - Insert 14Example

[Sedgewick]



A SE RC H I

A SE RC H I N

A SE RC H I NG

Skip list - Insert 15

Insert  A, S, E, R, C, H, I, N, G.

.. continued

Example

The nodes, 

in the order of insertion, 

were assigned levels
1,3,2,1,1,3,1,3,2. 

(A,S,E,R,C,H,I,N,G)

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



CAA CA E

CA E G H

CA E G H I CA E G H I N

etc...

Skip list - Insert 16

Insert  A, C, E, G, H, I, N, R, S.   The nodes (A,C,E,G,H,I,N,R,S)

(Same values, different order) were assigned levels 1,3,2,1,1,3,1,3,2.

Example

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14

 

CA E G



 

 



CA E G H I N R S

A SE RC H I NG

The nodes were inserted in sorted order.

The nodes were inserted in random order.

The result of the previous example

The shapes of the lists are different, the probabilistic properties are the same.

Skip list - Insert 17Example

The nodes, 

in the order of insertion, 

were assigned levels
1,3,2,1,1,3,1,3,2. 

(A,C,E,G,H,I,N,R,S)

The nodes, 

in the order of insertion, 

were assigned levels
1,3,2,1,1,3,1,3,2. 

(A,S,E,R,C,H,I,N,G)

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14







// update[k] .. predecessor at level k

void insert(List list, int searchKey, Data newValue){

Node x = list.header;

for( int i = list.level; i >= 1; i-- ){

//invariant: x.key < searchKey <= x.forward[i].key 

while( x.forward[i].key < searchKey )

x = x.forward[i];

update[i] = x;

}

x = x.forward[1];      // expected position

if( x.key == searchKey )    

x.value = newValue;  // associative structure

else {         // key not found, do insertion:

continue...

Skip list - Insert Pseudocode 18

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



... else { // key not found, do insertion here:

int newLevel = randomLevel( list );

/* If newLevel is greater than the current level 

of the list, knock newLevel down so that it is only 

one level more than the current level of the list. 

In other words, increase the level of the list

by at most 1 in each insert operation. */

if( newLevel > list.level ) {

if( list.level < list.MaxLevel ) list.level++; 

newLevel = list.level; 

update[newLevel] = list.header; // sentinel

}

// finally, physical insertion:

Node x = makeNode( newLevel, searchKey, newValue );

for( int i = 1; i <= newLevel; i++ ) {

x.forward[i] = update[i].forward[i];

update[i].forward[i] = x; }

}

}} // of insert

.. continued

Skip list - Insert Pseudocode 19

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



CA E G H L N R S

CA E G H L N R S

CA E G H N R S

Skip list - Delete Example 20

Delete L 

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14







update[1]

update[4]

update[2]

update[3]
undefined



Deleting in a skip list is like deleting the same value independently from each list in 

which forward pointers of the deleted element are involved.

The algorithm registers the element's predecessor in the list, 

makes the predecessor point to the element that the deleted element points to, 

and finally deletes the element. It is a regular list delete operation. 

// update is an array of pointers to the

// predecessors of the element to be deleted

void delete(List list, int searchKey) {

Node x = list.header;

for (int i = list.level; i >= 1; i--) {

while (x.forward[i].key < searchKey)

x = x.forward[i];

update[i] = x;

}

x = x.forward[1];  

if (x.key == searchkey) {  // go delete ...

continue...

Skip list - Delete Pseudocode 21

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



for (int i = 1; i <= list.level; i++) {

if (update[i].forward[i] != x) break; //(**)

update[i].forward[i] = x.forward[i];

}

destroy_remove(x);

/* if deleting the element causes some of the 

highest level list to become empty, decrease the 

list level until a non-empty list is encountered.*/

while ((list.level > 1) &&

(list.header.forward[list.level] == list.header)) 

list.level--;

}} // deleted

(**) If the element to be deleted is a level k node, break out of the loop when level 

(k+1) is reached. Since the code does not store the level of an element, we 

determine that we have exhausted the levels of an element when a predecessor 

element points past it, rather than to it. 

.. continued

Skip list - Delete Pseudocode 22

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



Choosing p 

One might think that p should be chosen to be 0.5. 

If p is chosen to be 0.5, then roughly half our elements will be level 1 nodes, 

0.25 will be level 2 nodes, 0.125 will be level 3 nodes, and so on. 

This will give us 

-- on average log(N) search time and 

-- on average 2 pointers per node. 

However, empirical tests show that choosing p to be 0.25 

results in 

-- roughly the same search time 

-- but only an average of 1.33 pointers per node, 

-- somewhat more variability in the search times.

There is a greater chance of a search taking longer than expected, but the 

decrease in storage overhead seems to be worth it sometimes.

Skip list - Properties Parameter p 23

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



Notes on size and compexity  

The average number of links in a randomized skip list with parameter p is

N ∙ 1/(1  p )  

The average number of key comparisons in  search and insert

in a randomized skip list with parameter p is on average 

 logp (N) / 2p = log(N) * (1) * (2p * log (p))1 =  log(N) / (2p * log (1/p))    

Search Insert Delete

Skip list 0.051      (1.0) 0.065      (1.0) 0.059    (1.0)

AVL tree 0.046     (0.91) 0.100      (1.55) 0.085     (1.46)

2-3 tree 0.054     (1.05) 0.210      (3.2) 0. 21      (3.65) 

Splay tree 0.490     (9.6) 0.510      (7.8)      0.53       (9.0)

Times in ms on some antiquated HW [Pugh, 1990] 

Experimental time comparisons: 

Skip list - Properties Complexity/experiment 24

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



Notes on compexity

The probabilistic analysis of skip lists is rather advanced. 

However, it can be shown that  the expected times of

search, insert, delete are all 

O((1/p) log1/p n)=O(log n).

The choice of p determines the variability of these search times.

Intuitively, decreasing p will increase the variability since it will decrease the 

number of higher-level elements (i.e., the number of "skip" nodes in the list). 

The Pugh paper contains a number of graphs that show the probability of a search 

taking significantly longer than expected for given values of p. For example, if p is 

0.5 and there are more than 256 elements in the list, the chances of a search 

taking 3 times longer than expected are less than 1 in a million. If p is decreased 

to 0.25, the chances rise to about 1 in a thousand. 

Skip list - Properties Complexity/memory 25
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Skip list - Index access Both list and array 26
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6

3

3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 2 2 1 1

3 7 2

9

A B C D E L Q R S V XH MG

list[10]== 'Q' (10 = 6 + 1 + 2 + 1) 

Supplement each forward pointer with its 

"length" = 1 + number of the list elements it skips. 

A k-th list element can be acessed in expected O(log n) time.  

Search, Insert, Delete are analogous to the "plain" variant. The length of the 

affected pointers has to be updated after each Insert or Delete. Asymptotic 

complexity remains the same in all cases -- O(log n). 

Array-like property -- random element access 
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erikdemaine.org/

erikdemaine.org/
- Erik Demaine's presentation at MIT  

http://videolectures.net/mit6046jf05_demaine_lec12/

- Robert Sedgewick:  Algorithms in C++, Parts 1–4: Fundamentals, Data Structure, 

Sorting, Searching,   Third Edition, Addison Wesley Professional, 1998

- William Pugh: Skip lists: A probabilistic alternative to balanced trees. 

Communications of the ACM, 33(6):668–676, 1990.

- William Pugh: A Skip List Cookbook [http://cglab.ca/~morin/teaching/5408/refs/p90b.pdf]

- Bradley T. Vander Zanden: [http://web.eecs.utk.edu/~huangj/CS302S04/notes/skip-lists.html]
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Also:  java.util.concurrent.ConcurrentSkipListSet<E>



Kvízová pauza

22 13 9 7

9 ? 2

5 2

31111 = Č

2222 = O

3333 = D

4444 = Š

5555 = ?

1

11

21

1112

3112

211213

?



Najděte pandu



Najděte psa
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?/

p

x--y

2<1

x+yHi!

- Robert Sedgewick:  Algorithms in C++, Parts 1–4: Fundamentals, Data Structure, Sorting, Searching, 

Third Edition, Addison Wesley Professional, 1998

- http://www.cs.helsinki.fi/u/mluukkai/tirak2010/B-tree.pdf

- (CLRS) Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, 3rd ed., MIT Press, 2009

To read

See PAL webpage for references

B and B+ search tree
Marko Berezovský

Radek Mařík

PAL 2012



B-tree -- Rudolf Bayer, Edward M. McCreight, 1972 

• All lengths of paths from the root to the leaves are equal.

• B-tree is perfectly balanced. Keys in the nodes are kept sorted.

• Fixed parameter k > 1  dictates the same size of all nodes.

• Each node except for the root contains at least k and at most 2k keys and if it 

is not a leaf  it has at least k+1 and at most 2k+1 children. 

• The root may contain any number of keys from 1 to 2k. If it is not 

simultaneously a leaf it has at least 2 and at most 2k+1children.

X Y

Y < keyskeys < X X < keys < Y

B tree Description 1
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B tree Alternate specification 2

Cormen et al. 1990:     B-tree  degree:

Nodes have lower and upper bounds on the number of keys they can contain. 

We express these bounds in terms of a fixed integer t  2 called 

the minimum  degree of the B-tree:

a. Every node other than the root must have at least t1 keys. 

Every internal node other than the root thus has at least t children. 

If the tree is nonempty,  the root must have at least one key.

b. Every node may contain at most 2t1 keys. 

Therefore, an internal node may have at most 2t children. 

x

x

x xx

x

t = 2

x x

t = 5
x x x

x x x x x x x x x x x x x x x x x x x x x x ...

min keys = 1 max keys = 3 min keys = 4 max keys = 9

children  = 2 children  = 4 children  = 5 children   = 10



1 52 4 19 2220 25 27 36 42 604510 12 15 16 17

8 14

18

26 41

Find 17

Search in the node is sequential (or binary or other...).

If the node is not a leaf and the key is not in the node

then the search continues in the appropriate child node.

If the node is a leaf and the key is not in the node

then the key is not in the tree.

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14

B tree - Find Example 3



B tree - Update strategies multi and single phase 4

Update strategies:

1. Multi phase strategy:  “Solve the problem when it appears”.
First insert or delete the item and only then rearrange the tree if necessary. 
This may require additional traversing up to the root.

2. Single phase strategy:   “Avoid future problems”.
Travel from the root to the node/key which is to be inserted or deleted
and during the travel rearrange the tree to prevent the additional 
traversing up to the root.
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8 2617

2 4 10 1412 16 19 2522 4236 45

Insert 5 8 2617 41

52 4 19 2522 36 4241 45

Insert 20 8 2617

19 2220 25 36 4241 45

10 1412 16

10 1412 16

41

B-tree

52 4
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B tree - Insert Insert rules I 5

Multi phase strategy



27

Insert 27 8 2617

2 4 5 19 2220 25 36 4241 4510 1412 16

Select median, 

create new node,

move to it the values

bigger than the median.

Sort keys outside the tree. 

Try to insert the median

into the parent node. 

27 4136 4542

27 36

41

42 45

8 2617 27

19 2220 25

41

27 36 42 45
Success.
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B tree Insert Insert rules II 6

Multi phase strategy



Insert 15 8 2617 41

2 4 5 19 2220 25 27 36 42 45

15

10 1412 16

10 1412 1615

8 2617 4114

?

10 12

14

15 16

Select median, 

create new node,

move to it the values

bigger than the median.

Sort keys outside the tree. 

Try to insert the median

into the parent node. 

Success?
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B tree - Insert Insert rules III 7

Multi phase strategy



Key 15 inserted into a leaf...
8 2617 41

2 4 5 19 2220 25 27 36 42 4510 12

8 1714 4126

8 14

Select median, create new node,

move to it the values bigger 

than the median together with 

the corresponding  references.

Sort values 

15 16

Cannot propagate the median into

the parent (there is no parent),

create a new root and store the

median there. 

14

... key 14 goes to parent node

The parent node is full – repeat the process analogously.

26 41

8 14

17

26 41

17
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B tree - Insert Insert rules III 8

Multi phase strategy



2 4 5 19 2220 25 27 36 42 4510 12 15 16

8 14

17

26 41

Recapitulation - insert 15

Each level acquired one new node, a new root was created too,

the tree grows upwards and remains perfectly balanced.

8 2617 41

2 4 5 19 2220 25 27 36 42 4510 1412 16

Insert 15 

Unaffected nodes
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B tree - Insert Insert rules III 9

Multi phase strategy



2 54 19 2220 25 27 36 42 604510 12 15 16

8 14

17

26 41Delete 4

2 5 19 2220 25 27 36 42 604510 12 15 16

8 14

17

26 41

Delete in a sufficiently 

full leaf.

Deleted
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B tree - Delete Delete rules I 10

Multi phase strategy



2 5 2220 25 27 36 42 604510 12 15 16

8 14

17

26 41

Delete in an internal node
The deleted key is substituted

by the smallest bigger key,

like in an usual BST.

The smallest bigger key is always in a leaf in a B-tree.

If the leaf is sufficiently full the delete operation is complete.

Delete 17

2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 41

19
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B tree - Delete Delete rules II 11

Multi phase strategy



2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 41

Delete in an 

insufficiently full leaf.

Delete 27

26 42

45 6036 41

36 4241 6045

The neighbour leaf

is sufficiently full.

Merge the keys of the two leaves

with the dividing key in the parent

into one sorted list.

Insert the median of the sorted list 

into the parent and distribute

the remainig keys into

the left and right children of the median.

26 41

42 604536
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B tree - Delete Delete rules III 12

Multi phase strategy



2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 4126 42

36 41 45 60

27 correctly deleted

Recapitulation - delete 27

2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 41

Unaffected nodes
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B tree - Delete Delete rules III 13

Multi phase strategy



Delete 12

8 14

10 14 15 16

None of the neighbours

is sufficiently full.

8 14

15 1610 12

2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 4126 42

36 41 45 60

Merge the keys 

of the node 

and of one of the neighbours 

and the median in the parent 

into one sorted list.

Move all these keys to the original node,

delete the neighbour, remove the original

median and associated reference 

from the parent.

Delete in an 

insufficiently full node.
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B tree - Delete Delete rules IV 14

Multi phase strategy



Deleted 12
The parent violates

B-tree rules.

2 5 20 2522 27 3610 1514 16

8

19

26 4126 42

36 41

If the parent of the deleted node is not sufficiently full

apply the same deleting strategy to the parent and continue the process 

towards the root until the rules of B-tree are satisfied.  

8

19

26 4126 42

26 418 2619 42

42 604545 60

8 2619 42 26 41
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B tree - Delete Delete rules IV 15

Multi phase strategy



26 418 2619 42

2 5 20 2522 27 3610 1514 16 36 41 42 604545 60

Key 12 was deleted and the tree was reconstructed accordingly.

2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 4126 42

36 41 45 60

Unaffected nodes

Recapitulation - delete  12
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B tree Delete rules IV 16

Multi phase strategy
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B tree - Insert Example 17

G PM X

A DC E J K N O R TS U V Y Z

G PM X

B DC E J K N O R TS U V Y ZA

G PM T

B DC E J K N O R S U V Y ZA

X

Q

Insert B

Insert Q
Unaffected

nodes

Single phase strategy

Cormen et al. 1990, t = 3, minimum degree 3, max degree = 6,

minimum keys in node = 2, maximum keys in node = 5. 
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B tree - Insert Example 18

G PM T

B DC E J K N O R S U V Y ZA

X

Q

G M T

B DC E J K N O R S U V Y ZA

X

QL

G

P

M T

B D E J K N O R S U V Y ZA

X

QL

C

F

P

Insert F

Insert L

Unaffected

nodes

Single phase strategy

Single phase: Split the root, because it is full, and

then continue downwards inserting L
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B tree - Delete Delete rules I 19

G

P

M T

B D E J K N O R S U V Y ZA

X

QL

C

F

G

P

M T

B D E J K N O R S U V Y ZA

X

QL

C

Delete F

1. If the key k is in node X and X is a leaf, delete the key k from X.

Unaffected

nodes

Single phase strategy



2. If the key k is in node X and X is an internal node, do the following:

J K
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B tree - Delete Insert rules II 20

G

P

M T

B D E J K N O R S U V Y ZA

X

QL

C

G

P

L T

B D E N O R S U V Y ZA

X

Q

C

Delete M

2a. If the child Y that precedes k in node X has at least t keys, then find the

predecessor kp of k in the subtree rooted at Y. Recursively delete kp, and replace k

by kp in X. (We can find kp and delete it in a single downward pass.)

2b. If Y has fewer than t keys, then, symmetrically, examine the child Z that follows k

in node X and continue as in 2a.

Single phase strategy
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B tree - Delete Delete rules II 21

J K

G

P

L T

B D E N O R S U V Y ZA

X

Q

C

J K

P

L T

B D E N O R S U V Y ZA

X

Q

C

Delete G

2c. Otherwise, i.e. if both Y and Z have only t1 keys, merge k and all of Z into 

Y, so that X loses both k and the pointer to Z, and Y now contains 2t1 keys.

Then free Z and recursively delete k from Y.

Single phase strategy
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B tree - Delete Delete rules III 22

3. If the key k is not present in internal node X, determine the child X.c of X.

X.c is a root of such subtree that contains k, if k is in the tree at all. 

If X.c has only t1 keys, execute step 3a or 3b as necessary 

to guarantee that we descend to a node containing at least t keys. 

Then continue by recursing on the appropriate child of X.

J K

P

L T

B D E N O R S U V Y ZA

X

Q

C

Delete D

Single phase strategy



PL T XC

J KB E N O R S U V Y ZA Q
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B tree - Delete Delete rules III 23

J K

P

L T

B D E N O R S U V Y ZA

X

Q

C

3a. If X.c and both of X.c ’s immediate siblings have t1 keys, merge X.c

with one sibling, which involves moving a key from X down into the new

merged node to become the median key for that node.

Delete D

PL T XC

J KB E N O R S U V Y ZA Q

Single phase strategy

Merge

Merged

D
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B tree - Delete Delete rules III 24

PL T XE

J KC N O R S U V Y ZA Q

Delete B

3b. If X.c has only t1 keys but has an immediate sibling with at least t keys,

give X.c an extra key by moving a key from X down into X.c, moving a

key fromX.c ’s immediate left or right sibling up into X, and moving the

appropriate child pointer from the sibling into X.c.

PL T XC

J KB E N O R S U V Y ZA Q

Single phase strategy



B+ tree is analogous to B-tree, namely in:

-- Being perfectly balanced all the time,

-- that nodes cannot be less than half full,

-- operational complexity.

The differences are:

-- Records (or pointers to actual records) are stored only in the leaf nodes,

-- internal nodes store only search key values which are used only as routers to 

guide the search. 

The leaf nodes of a B+-tree are linked together to form a linked list. This is done 

so that the records can be retrieved sequentially without accessing the B+-tree 

index. This also supports fast processing of range-search queries.

B+ tree

B+ tree Description 25
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28 50

60

75 85

5 20 10 15 50 55 75 8028 30 60 65 85 9590

Routers and keys 75 Data records

or pointers to them

Values in internal nodes are routers, originally each of them was a key when a 

record was inserted. Insert and Delete operations split and merge the nodes and 

thus move the keys and routers around. A router may remain in the tree even after 

the corresponding record and its key was deleted. 

Values in the leaves are actual keys associated with the records and must be 

deleted when a record is deleted (their router copies may live on).

B+ tree Description/example 26
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Leaves links



Place the key and its associated record in the leaf. 

Free slot in a leaf?   YES

1. Consider all keys in the leaf, including K, to be sorted.

2. Insert middle (median) key M in the parent node in the appropriate slot Y.

(If parent does not exist, first create an empty one = new root.)

3. Split the leaf into two new leaves L1 and L2.

4. Left leaf (L1) from Y contains records with keys smaller than M.

5. Right leaf (L2) from Y contains records with keys equal to or greater than M. 

Find, as in B tree, correct leaf to insert K.     Then there are 3 cases:

Free slot in a leaf?   NO.     Free slot in the parent node?  YES. 

Note: Splitting leaves and inner nodes works in the same way as in B-trees. 

Case 1

Case 2

B+ tree - Insert Insert I 27
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Inserting key K (and its associated data record) into B+ tree



1. Split the leaf into two leaves L1 and L2, consider all its keys including K sorted, 

denote M median of these keys.

2. Records with keys < M go to the left leaf L1.

3. Records with keys >= M go to the right leaf L2. 

4. Split the parent node P to nodes P1 and P2, consider all its keys including M

sorted, denote M1 median of these keys. 

5. Keys < M1 key go to P1.

6. Keys > M1 key go to P2.

7. If parent PP of P  is not full, insert M1 to PP and stop.

(If PP does not exist, first create an empty one = new root.)

Else  set M := M1, P := PP and continue splitting  parent nodes recursively 

up the tree, repeating from step 4.   

Free slot in a leaf?  NO.     Free slot in the parent node?  NO. 

Case 3

B+ tree - Insert Insert II 28
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Inserting key K (and its associated data record) into B+ tree

Find, as in B tree, correct leaf to insert K.     Then there are 3 cases:



25 7550

5 20 10 15 50 6055 65 75 8580 9025 30

25 7550

5 20 10 15 50 6055 65 75 8580 9025 3028

Insert 28

Changes Leaves links

Initial tree

Data records and pointers to them are not drawn here for simplicity's sake.  

B+ tree - Insert Insert example I 29
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25 6050 75

25 7550

5 20 10 15 50 6055 65 75 8580 9025 3028

Insert 70

5 20 10 15 50 55 75 8580 9025 3028 60 7065

Changes

Initial tree

B+ tree - Insert Insert example II 30

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14

Leaves links

median = 60 



25 6050 75

Insert 95

5 20 10 15 50 55 75 8580 9025 3028 60 7065

25 50

60

75 85

5 2010 15 50 55 75 8025 3028 60 7065 85 9590

Changes

Initial tree

B+ tree - Insert Insert example III 31
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Leaves links

first median = 85 

second median = 60

Note the router 60 in the root, detached

from its original position in the leaf.



Delete the key and its record from the leaf L. Arrange the keys in the leaf in 

ascending order to fill the void. If the deleted key K appears also in the parent 

node P replace it by the next bigger key K1 from L (explain why it exists) and 

leave K1 in L as well.

Leaf more than half full  or  leaf == root?   YES.

Move one (or more if you wish and rules permit)  key(s) from sibling S to the leaf 

L, reflect the changes in the parent P of L and parent P2 of sibling S.

(If S does not exist then L is the root, which may contain any number of keys).

Find, as in B tree, key K in a leaf.  Then there are 3 cases:

Leaf more than half full? NO.   Left or right sibling more than half full?  YES. 

Case 1

Case 2

B+ tree - Delete Delete I 32
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Deleting key K (and its associated data record) in B+ tree



1. Consider sibling S of L which has the same parent P as L.

2. Consider set M  of ordered keys of L and S without K but together with key K1  

in P which separates L and S.  

3. Merge: Store M in L, connect L to the other sibling of S (if exists), destroy S.   

4. Set the reference left to K1 to point to L. Delete K1 from P. If P contains K 

delete it also from P. If P is still at least half full stop, else continue with 5.

5. If any sibling SP of P is more then half full, move necessary number of keys  

from SP to P and adjust links in P, SP and their parents accordingly and stop.

Else set  L := P and continue recursively up the tree (like in B-tree), repeating 

from step 1.

Leaf more than half full? NO.   Left or right sibling more than half full?  NO. 

Case 3

B+ tree - Delete Delete II 33
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Note: Merging leaves and inner nodes works the same way as in B-trees. 

Find, as in B tree, key K in a leaf.  Then there are 3 cases:

Deleting key K (and its associated data record) in B+ tree



Delete 70

25 50

60

75 85

5 20 10 15 50 55 75 8025 3028 60 7065 85 9590

Changes

25 50

60

75 85

5 20 10 15 50 55 75 8025 3028 60 65 85 9590

Initial tree

B+ tree - Delete Delete example I 34
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Leaves links



Delete 25

Changes

25 50

60

75 85

5 20 10 15 50 55 75 8025 3028 60 65 85 9590

28 50

60

75 85

5 20 10 15 50 55 75 8028 30 60 65 85 9590

Initial tree

B+ tree - Delete Delete example II 35
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Leaves links



Delete 60

Changes

28 50

60

75 85

5 20 10 15 50 55 75 8028 30 60 65 85 9590

28 6050 85

5 20 10 15 50 55 85 959028 30 65 8075

Initial tree

B+ tree - Delete Delete example III 36
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Merge 

Leaves links

Deleted key 60

still exists

as a router



Too few keys,  merge these 

two nodes and bring a key 

from parent (recursively).

Delete 75  
28 50

60

75 85

5 10 50 55 75 8028 30 60 65 85 90

85

60 65 80 85 90

28 50

28 6050 85

5 10 50 55 85 9028 30 60 8065

Initial tree

Progress...

... done.

B+ tree - Delete Delete example IV 37
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Merge 



Find, Insert, Delete, 

all need (b logb n)  operations, where n is number of records in the tree, 

and b is the branching factor or, as it is often understood, the order of the tree.  

Note: Be careful, some authors (e.g CLRS)  define degree/order of B-tree as [b/2], there is no unified 

precise common terminology.

Range search thanks to the linked leaves is performed in time 

( b logb(n) + k/b) 

where k is the range (number of elements) of the query.

Complexities

B+ tree Operations complexity 38
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