
B4B33RPH: Řešení problémů a hry

Testování softwaru: Vývoj řízený testy.

Petr Pošík

Katedra kybernetiky

ČVUT FEL

Úvod 2
Připomenutí. 3
Kvíz. 4

TDD 5
Zákony TDD . 6
TDD Ukázka . 7
TDD Úvod . 8
TDD Číslo 2 . 9
TDD Číslo 3 . 10
TDD Číslo 4 . 11
TDD Číslo 5 . 12
TDD Číslo 6 . 13
TDD Číslo 8 . 14
TDD Číslo 9 . 15
TDD Čistý kód . 16

Matice záměn 17
Spam filter . 18
Kvíz. 19
Binární matice záměn. 20
Ukázka vývoje BCF s testy . 21

Shrnutí 22
Testování . 23
FIRST . 24
Modul doctest . 25
xUnit Framework . 26
TDD: Závěr . 27

1

Úvod 2 / 27

Z minulé přednášky

Testujte svůj kód!

■ Dokud jej nevyzkoušíte (neotestujete) alespoň na několika příkladech, nevíte, zda funguje!
■ Použijte nějaký framework pro automatické testování:

■ Snadná tvorba obsáhlé sady testů.
■ Snadné přidávání nových testů.
■ Snadné opakované spouštění všech testů.
■ Snadná vizuální kontrola, zda testy procházejí nebo selhávají.

■ Spousta možností:

■ Náš vlastní modul testing.
■ Standardní modul doctest.
■ Standardní modul unittest.
■ nosetest, pytest, . . .

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 3 / 27

Kvíz

Kdy by měl programátor podle vás vytvořit testy ke svému kódu?

A Nikdy. Testy jsou zbytečné; počkáme, až si bude zákazník stěžovat.

B Těsně před odevzdáním produktu zákazníkovi, kdy už máme vše naprogramováno.

C Těsně po napsání nějakého uceleného kusu kódu.

D Těsně před napsáním jakéhokoli kusu kódu.

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 4 / 27

2

Test-driven development

Vývoj řízený testy 5 / 27

Zákony TDD

Tři zákony TDD (Test-driven development):

1. Nenapíšeš ani kousek produkčního kódu, aniž bys předtím napsal selhávající test.
2. Nenapíšeš větší část testu, než je potřebná k selhání (chybě).
3. Nenapíšeš větší část produkčního kódu, než je potřebná ke splnění aktuálně selhávajícího testu.

Výsledek těchto pravidel:

■ velmi krátký cyklus, v němž střídavě hrajete

■ roli zákazníka, který říká, co se má udělat (píšete test), a
■ roli programátora, který říká, jak se to má dělat (píšete kód, který splňuje aktuální specifikace).

■ Testy a produkční kód se píší společně (testy o pár sekund napřed).
■ Testy pak pokrývají všechen produkční kód!

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 6 / 27

TDD Ukázka

Vytvořte funkci/metodu třídy na faktorizaci čísla na prvočíselné činitele.

■ Vstup: číslo, které chceme rozložit
■ Výstup: seznam prvočísel (mohou se opakovat), jejichž součin je roven vstupnímu číslu

Budeme k tomu potřebovat generátor prvočísel (Eratostenovo síto), který jsme si ukazovali na minulé přednášce?

A Ano

B Ne

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 7 / 27

3

TDD Ukázka: Úvodní fáze
Zakládáme test_factorize.py

import unittest

from factorization import factorize

Po spuštění test_factorize.py:

Traceback (most recent call last):

File "<string>", line 2, in <fragment>

builtins.ImportError: No module named factorization

Zakládáme prázdný factorization.py Po spuštění test_factorize.py:

Traceback (most recent call last):

File "<string>", line 2, in <fragment>

builtins.ImportError: cannot import name factorize

Upravujeme factorization.py:

def factorize():
pass

Po spuštění test_factorize.py:

--- Zadny vystup, kod bez chyby. ---

Upravujeme test_factorize.py

import unittest

from factorization import factorize

class FactorizeTest(unittest.TestCase):
pass

if __name__=="__main__":

unittest.main()

Po spuštění test_factorize.py:

--

Ran 0 tests in 0.000s

OK

builtins.SystemExit: False

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 8 / 27

TDD Ukázka: Test faktorizace čísla 2
Upravujeme test_factorize.py

class FactorizeTest(unittest.TestCase):

def test_two(self):
observed = factorize(2)

self.assertEqual(observed, [2])

Po spuštění test_factorize.py:

E

==

ERROR: test_one (__main__.FactorizeTest)

--

Traceback (most recent call last):

File "<wingdb_compile>", line 7, in test_one

TypeError: factorize() takes no arguments (1 given)

--

Ran 1 test in 0.000s

Upravujeme factorization.py:

def factorize(product):
pass

F

==

FAIL: test_one (__main__.FactorizeTest)

--

Traceback (most recent call last):

File "<wingdb_compile>", line 8, in test_one

AssertionError: None != [2]

--

Ran 1 test in 0.000s

Upravujeme factorization.py:

def factorize(product):
return [2]

.

--

Ran 1 test in 0.000s

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 9 / 27

4

TDD Ukázka: Test faktorizace čísla 3
Upravujeme test_factorize.py

def test_three(self):
observed = factorize(3)

self.assertEqual(observed, [3])

Po spuštění test_factorize.py:

F.

==

FAIL: test_three (__main__.FactorizeTest)

--

Traceback (most recent call last):

File "<wingdb_compile>", line 12, in test_three

AssertionError: Lists differ: [2] != [3]

First differing element 0:

2

3

- [2]

+ [3]

--

Ran 2 tests in 0.016s

Upravujeme factorization.py:

def factorize(product):
return [product]

..

--

Ran 2 tests in 0.000s

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 10 / 27

TDD Ukázka: Test faktorizace čísla 4
Upravujeme test_factorize.py

def test_four(self):
observed = factorize(4)

self.assertEqual(observed, [2,2])

Po spuštění test_factorize.py:

F..

==

FAIL: test_four (__main__.FactorizeTest)

--

Traceback (most recent call last):

File "<wingdb_compile>", line 16, in test_four

AssertionError: Lists differ: [4] != [2, 2]

[...snip...]

--

Ran 3 tests in 0.000s

Upravujeme factorization.py:

def factorize(product):
factors = []

while product % 2 == 0:

factors.append(2)

product /= 2

return factors

.F.

==

FAIL: test_three (__main__.FactorizeTest)

--

Traceback (most recent call last):

File "<wingdb_compile>", line 12, in test_three

AssertionError: Lists differ: [] != [3]

[...snip...]

--

Ran 3 tests in 0.016s

Upravujeme factorization.py:

def factorize(product):
factors = []

while product % 2 == 0:

factors.append(2)

product /= 2

if product != 1:

factors.append(product)

return factors

...

--

Ran 3 tests in 0.000s

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 11 / 27

5

TDD Ukázka: Test faktorizace čísla 5
Upravujeme test_factorize.py

def test_five(self):
observed = factorize(5)

self.assertEqual(observed, [5])

Po spuštění test_factorize.py:

....

--

Ran 4 tests in 0.000s

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 12 / 27

TDD Ukázka: Test faktorizace čísla 6
Upravujeme test_factorize.py

def test_six(self):
observed = factorize(6)

self.assertEqual(observed, [2,3])

Po spuštění test_factorize.py:

.....

--

Ran 5 tests in 0.000s

Test faktorizace čísla 7 vynecháváme, je to stejný případ, jako pro 3 a 5.

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 13 / 27

6

TDD Ukázka: Test faktorizace čísla 8
Upravujeme test_factorize.py

def test_eight(self):
observed = factorize(8)

self.assertEqual(observed, [2,2,2])

Po spuštění test_factorize.py:

......

--

Ran 6 tests in 0.000s

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 14 / 27

TDD Ukázka: Test faktorizace čísla 9
Upravujeme test_factorize.py

def test_nine(self):
observed = factorize(9)

self.assertEqual(observed, [3,3])

Po spuštění test_factorize.py:

...F...

==

FAIL: test_nine (__main__.FactorizeTest)

--

Traceback (most recent call last):

File "<wingdb_compile>", line 32, in test_nine

AssertionError: Lists differ: [9] != [3, 3]

[...snip...]

--

Ran 7 tests in 0.000s

Upravujeme factorization.py:

def factorize(product):
factors = []

for factor in range(2,product+1):
while product % factor == 0:

factors.append(factor)

product /= factor

return factors

.......

--

Ran 7 tests in 0.015s

■ Jsme schopni přijít na nějaký další test, kde by náš kód selhal?
■ Nevadí náhodou, že jako faktory bereme všechna čísla a nikoli jen prvočísla? Jak by se kód lišil?

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 15 / 27

7

TDD Ukázka: Je naše funkce napsaná čistě?
Stávající factorization.py:

def factorize(product):
factors = []

for factor in range(2,product+1):
while product % factor == 0:

factors.append(factor)

product /= factor

return factors

.......

--

Ran 7 tests in 0.015s

Přepsaný factorization.py:

def factorize(product):
factors = []

for factor in range(2,product+1):
product, factors_subset = factor_out(product, factor)

factors.extend(factors_subset)

return factors

def factor_out(product, factor):

factors = []

while product % factor == 0:

factors.append(factor)

product /= factor

return product, factors

.......

--

Ran 7 tests in 0.000s

Která z verzí se vám jeví přehlednější/čitelnější?

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 16 / 27

Binární matice záměn 17 / 27

Z úlohy “Spam filter”

Předpokládejme:

■ máme sadu emailů uložených v souborech
■ pro každý email z této sady víme, zda je to spam nebo ham
■ máme jakýkoli funkční spam filter
■ pro každý email z naší sady víme, zda jej filtr klasifikuje jako spam nebo ham

Jakých chyb se může spam filtr dopustit? Matice záměn!

V datové sadě
pozitivních negativních

Pozitivní předpověd’ TP FP

Negativní předpověd’ FN TN

True positives (TP): počet případů klasifikátorem správně označených jako pozitivní.

False positives (FP): počet případů klasifikátorem chybně označených jako pozitivní.

False negatives (FN): počet případů klasifikátorem chybně označených jako negativní.

True negatives (TN): počet případů klasifikátorem správně označených jako negativní.

Míra kvality filtru je pak nějakou funkcí TP, TN, FP a FN.

Domluvme se, že pozitivní bude znamenat SPAM.

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 18 / 27

8

Kvíz

Pro úlohu Spam filtru:

V datové sadě
pozitivních (SPAM) negativních (OK)

Pozitivní předpověd’ (SPAM) TP FP

Negativní předpověd’ (OK) FN TN

Který případ je pro uživatele spam filtru nejhorší?

A TP (správně pozitivní)

B FP (chybně/falešně pozitivní)

C TN (správně negativní)

D FN (chybně/falešně negativní)

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 19 / 27

Binární matice záměn

Binary confusion matrix, BCM:

■ Takový “lepší” čítač (čtveřice čítačů).
■ Cíl: Ze slovníků truth a prediction napočítat matici záměn.

>>> truth = {

’email1’: ’OK’,

’email2’: ’OK’,

’email3’: ’SPAM’,

...

}

>>> prediction = {

’email1’: ’SPAM’,

’email2’: ’OK’,

’email3’: ’SPAM’,

...

}

Požadavky na BCF:

■ Lze nastavit libovolný kód pro spam a ham (zde např OK a SPAM).
■ Metoda as_dict() vrátí čítače ve formě slovníku.
■ Po vytvoření objektu jsou všechny čítače vynulované.
■ Zavolám-li metodu update(’SPAM’, ’SPAM’), inkrementuje se čítač TP a hodnota ostatních se nezmění.
■ . . .
■ Zavolám-li metodu update() s nesprávným argumentem, vyhodí se výjimka ValueError.
■ Zavolám-li metodu compute_from_dicts(truth, prediction), čítače TP, FP, TN, FN se správně aktualizují.

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 20 / 27

9

Ukázka vývoje BCF s testy

Demo
P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 21 / 27

Automatizované testování: shrnutí

Zpracováno podle
Gerard Meszarosz: xUnit Test Patterns: Refactoring Test Code,
Addison-Wesley, 2007. 22 / 27

Testování

Kvalita softwaru z pohledu testování:

■ Jak dobře kód splňuje specifikace?

Testování z pohledu QA týmu (acceptance tests, functional tests):

■ Testujeme, protože jsme si jistí, že kód obsahuje chyby! (Nesplňuje specifikace zákazníka.)
■ Testujeme poté, co je kód hotový.
■ Obvykle black-box testování.
■ Testování je spíš měření kvality softwaru, nikoli způsob, jak napsat kvalitní software.
■ Zpětná vazba přichází příliš pozdě.
■ V minulosti prováděny převážně ručně.

Testování z pohledu programátora (unit tests, integration tests):

■ Testuji, protože si chci být jistý, že jednotka, na které právě pracuji, dělá to, co po ní chci. (Splňuje požadavky, které vznikly v
důsledku designu architektury softwaru.)

■ Obvykle white-box testování.
■ V minulosti většinou dočasný kód, který se po otestování zahodil.

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 23 / 27

10

Automatizované testy: F.I.R.S.T.

Automatizované testy by měly být F.I.R.S.T.

Fast

■ Pomalé testy −→ nebudete je spouštět často −→ chyby odhalíte pozdě

Independent

■ Jeden test by neměl nastavovat podmínky pro další test.
■ Musí jít spustit každý test samostatně a celou sadu testů v jakémkoli pořadí.
■ Závislé testy −→ jedna chyba spustí celý řetězec chyb v navazujících testech −→ složité hledání chyby.

Repeatable

■ Možnost zopakovat testy kýmkoli a kdekoli se stejným výsledkem.
■ Testy lze spustit jen někde −→ budou se pouštět zřídka −→ chyby odhalíte pozdě

Self-validating

■ Dvoustavový výstup −→ snadné ověřit, zda test prošel nebo selhal.
■ Složitý (dlouhý) výstup, který je nutno “ručně” zkontrolovat −→ málo časté testování −→ pozdní odhalení chyb.

Timely

■ Testy by měly být psány včas, ideálně před produkčním kódem.
■ Testy psané po produkčním kódu −→ kód se špatně testuje −→ nebudete se chtít s jeho testováním zdržovat.

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 24 / 27

Modul doctest

■ Specialita Pythonu (opravte mě, pokud se pletu).
■ Velmi vhodný pro jednoduché testy.
■ Nevhodný pro složitější testy vyžadující přípravu a úklid.

class PrimesGenerator:
"""Prime numbers generator.

>>> pg = PrimesGenerator()

>>> pg.get_primes_up_to(1)

[]

>>> pg.get_primes_up_to(2)

[2]

>>> pg.get_primes_up_to(3)

[2, 3]

>>> pg.get_primes_up_to(4)

[2, 3]

>>> pg.get_primes_up_to(5)

[2, 3, 5]

>>> pg.get_primes_up_to(20)

[2, 3, 5, 7, 11, 13, 17, 19]

"""

...

if __name__ == "__main__":

import doctest

doctest.testmod()

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 25 / 27

11

xUnit Framework

■ Standardní testovací framework.
■ Implementován v mnoha jazycích (naučte se ho, bude se vám hodit).
■ V Pythonu implementován jako modul unittest.

import unittest

from primes3 import PrimesGenerator

class PrimesGeneratorTest(unittest.TestCase):

known_values = ((0, []),

(1, []),

(2, [2]),

(3, [2,3]),

(4, [2,3]),

(5, [2,3,5]),

(7, [2,3,5,7]),

(20, [2,3,5,7,11,13,17,19]))

def setUp(self):
self.pg = PrimesGenerator()

def test_get_primes_up_to(self):
for limit, expected in self.known_values:

observed = self.pg.get_primes_up_to(limit)
self.assertEqual(observed, expected)

...

if __name__==’__main__’:

unittest.main()

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 26 / 27

TDD: Závěr

Testy

■ slouží jako specifikace.
■ slouží jako dokumentace.
■ pomáhají pochopit algoritmus.
■ pomáhají předejít zbytečným složitostem v kódu.
■ určují, kdy “je hotovo”.
■ pomáhají zajistit, abychom úpravami do kódu nevnesli nové chyby.

P. Pošík c© 2020 B4B33RPH: Řešení problémů a hry – 27 / 27

12

	Úvod
	Z minulé prednášky
	Kvíz

	TDD
	Zákony TDD
	TDD Ukázka
	TDD Úvod
	TDD Císlo 2
	TDD Císlo 3
	TDD Císlo 4
	TDD Císlo 5
	TDD Císlo 6
	TDD Císlo 8
	TDD Císlo 9
	TDD Cistý kód

	Matice zámen
	Spam filter
	Kvíz
	Binární matice zámen
	Ukázka vývoje BCF s testy

	Shrnutí
	Testování
	Automatizované testy: F.I.R.S.T.
	Modul doctest
	xUnit Framework
	TDD: Záver

