B4B33RPH: Regen{ problémfi a hry

Testovani softwaru: Vyvoj fizeny testy.

Petr Posik

Katedra kybernetiky
CVUT FEL

Uvod

TDD
ZAkony TDDo
TDD UKEZKA . . . oot e e e
TDD UVOA . .« oot e e e
TDD CHSIO 2 . . e e e e e e
TDD CHSIO B - . e e e e e e e e e e e
TDD CHSIO A . . o e ettt e e
TDD CHSIO B - . e oo e e e e e e e e
TDD CHSLO 6. . e et
TDD CHSIO 8 . . e e e et e e e e e e e e
TDD CHSIO 0. . et e e
TDD CISEY KOG .+« e ettt ettt et e e e e e e e e e e e e e e e e e e

Matice zamén

Binadrni matice ZAMEN.ot e e
Ukdzka vivoje BCE s testy o

Shrnuti
TEStOVANTot e e e e e
B RS T . ..ttt e e e e e e
LY CoT LT e oYl Y3
XURNIE FrameWOrK .« . oo ettt et e e et e e e e e e e
TDD: ZAVET . . oottt et e e e e e e e e e

Uvod 2/27

Z minulé pfednasky
Testujte sviij kéd!
= Dokud jej nevyzkousite (neotestujete) alespori na nékolika p¥ikladech, nevite, zda funguje!
m PouZijte néjaky framework pro automatické testovani:
m Snadnd tvorba obsdhlé sady testti.
® Snadné pfidavani novych testt.
® Snadné opakované spousténi vSech testi.
® Snadnd vizudlni kontrola, zda testy prochazeji nebo selhavaji.
= Spousta moZnosti:
m Na3 vlastni modul testing.
m Standardni modul doctest.
s Standardni modul unittest.

®m nosetest, pytest, ...

P. Posik (© 2020 B4B33RPH: Resen{ problémti a hry -3 / 27

Kviz

Kdy by mél programator podle vés vytvofit testy ke svému kédu?

l Nikdy. Testy jsou zbyte¢né; po¢kdme, az si bude zakaznik stéZovat.

B Tésné pted odevzdanim produktu zdkaznikovi, kdy uz mame vSe naprogramovano.
l Tésné po napsani né&jakého uceleného kusu kodu.

l Tésné pfed napsanim jakéhokoli kusu kédu.

P. Posik (© 2020 B4B33RPH: Regeni problémti a hry -4 / 27

Test-driven development

Vyvoj fizeny testy 5/27

Zakony TDD

T#i zakony TDD (Test-driven development):
1. NenapiSes$ ani kousek produkéniho kédu, aniz bys pfedtim napsal selhavajici test.
2. Nenapises vétsi ¢ast testu, neZ je potfebnd k selhdni (chybé).
3. Nenapises vétsi ¢ast produkéniho kédu, nez je potfebnd ke splnéni aktualné selhdvajictho testu.

Vysledek téchto pravidel:
= velmi krétky cyklus, v némz stfidavé hrajete
m roli zdkaznika, ktery ¥ikd, co se mé udélat (piSete test), a
m roli programaétora, ktery 11k4, jak se to md délat (piSete kod, ktery spliiuje aktudlni specifikace).
m Testy a produkéni kéd se pisi spolecné (testy o pér sekund napted).
m Testy pak pokryvaji vSechen produkéni kod!

P. Posik (© 2020 B4B33RPH: Regen{ problémti a hry - 6 / 27

TDD Ukazka

Vytvofte funkci/metodu t¥idy na faktorizaci ¢isla na prvociselné ¢initele.
= Vstup: &islo, které chceme rozlozit
= Vystup: seznam prvocisel (mohou se opakovat), jejichZ soucin je roven vstupnimu &islu

Budeme k tomu potiebovat generator prvocisel (Eratostenovo sito), ktery jsme si ukazovali na minulé ptednasce?

l Ano

P. Posik (© 2020 B4B33RPH: Regen{ problémt a hry -7 / 27

TDD Ukézka: Uvodni faze

Zakldddme test_factorize.py Po spusténi test_factorize.py:
unittest Traceback (most recent call last):
factorization factorize File "<string>", line 2, <fragment>

builtins.ImportError: No module named factorization

Zakladame prazdny factorization.py Po spudténi test_factorize.py:
Traceback (most recent call last):
File "<string>", line 2, <fragment>
builtins.ImportError: cannot name factorize
Upravujeme factorization.py: Po spudténi test_factorize.py:
factorize(): --- Zadny vystup, kod bez chyby. ---
Upravujeme test_factorize.py Po spusténi test_factorize.py:
unittest
factorization factorize e eieemeecieeiaoeaos

Ran 0 tests 0.000s
FactorizeTest(unittest.TestCase):
0K
builtins.SystemExit: False
__name__=="__main__":
unittest.main()

P. Posik (© 2020 B4B33RPH: Regeni problémtia hry -8 / 27

TDD Ukézka: Test faktorizace ¢isla 2

Upravujeme test_factorize.py Po spusténi test_factorize.py:
FactorizeTest(unittest.TestCase): E
test_two(self): ERROR: test_one (__main__.FactorizeTest)
observed = factorize(2) @ eeeeeeee e eeeeeeeeeeeeeneecccceeemeeececeencccccnececccnenoo
self.assertEqual(observed, [2]) Traceback (most recent call last):
File "<wingdb_compile>", line 7, test_one

TypeError: factorize() takes no arguments (1 given)

Ran 1 test 0.000s

Upravujeme factorization.py: .

factorize(product):
FAIL: test_one (__main__.FactorizeTest)

Traceback (most recent call last):
File "<wingdb_compile>", line 8, test_one
AssertionError: None !'= [2]

Ran 1 test 0.000s

Upravujeme factorization.py:

factorize(product):
121 Ran 1 test 0.000s

P. Posik (© 2020 B4B33RPH: Regeni problémtia hry -9 / 27

TDD Ukézka: Test faktorizace ¢isla 3

Upravujeme test_factorize.py

test_three(self)
observed = factorize(3)
self.assertEqual(observed, [3])

Po spusténi test_factorize.py:

F.

FAIL: test_three (__main__.FactorizeTest)

First differing element 0:

Traceback (most recent call last):
File "<wingdb_compile>", line 12, test_three
AssertionError:

Lists differ: [2] != [3]

2
3
- [2]
+ [3]
Ran 2 tests 0.016s
Upravujeme factorization.py:
factorize(product): TS oSS oo oooooooooooooooooooooosooooooooo
[product] Ran 2 tests 0.000s

P. Posik (© 2020

B4B33RPH: Regeni problémti a hry — 10 / 27

TDD Ukézka: Test faktorizace ¢isla 4

Upravujeme test_factorize.py

test_four(self):
observed = factorize(4)
self.assertEqual(observed, [2,2])

Po spusténi test_factorize.py:

F..

FAIL: test_four (__main__.FactorizeTest)

Traceback (most recent call last):

factors = []
product % 2 == 0:
factors.append(2)

File "<wingdb_compile>", line 16, test_four
AssertionError: Lists differ: [4] != [2, 2]
[...snip...]
Ran 3 tests 0.000s
Upravujeme factorization.py: .
factorize(product):
FAIL: test_three (__main__.FactorizeTest)

Traceback (most recent call last):

product /= 2 File "<wingdb_compile>", line 12, test_three
factors AssertionError: Lists differ: [] != [3]
[...snip...]
Ran 3 tests 0.016s
Upravujeme factorization.py:
factorize(product): TS STSSmosooooooososssmoooeod
factors = [] Ran 3 tests 0.000s
product % 2 == 0:
factors.append(2)
product /= 2
product != 1:
factors.append(product)
factors

P. Posik (© 2020

B4B33RPH: Regeni problémti a hry — 11 / 27

TDD Ukézka: Test faktorizace ¢isla 5

Upravujeme test_factorize.py Po spusténi test_factorize.py:

test_five(self): -
observed = factorize(5) e eeeeeeeeeeceeeeeceieeecncee-eeeoan
self.assertEqual(observed, [5]) Ran 4 tests 0.000s

P. Posik (© 2020 B4B33RPH: Regeni problémti a hry - 12 / 27

TDD Ukézka: Test faktorizace ¢isla 6

Upravujeme test_factorize.py Po spusténi test_factorize.py:
test_six(self):

observed = factorize(6) e eeeeeeieeeeesaeeeeeseeeeeeaeeeeeeeeeeesaeeeeeeeeesesaenenao
self.assertEqual(observed, [2,3]) Ran 5 tests 0.000s

Test faktorizace ¢isla 7 vynechdvame, je to stejny p¥ipad, jako pro 3 a 5.

P. Posik (© 2020 B4B33RPH: Regeni problémti a hry — 13 / 27

TDD Ukézka: Test faktorizace ¢isla 8

Upravujeme test_factorize.py Po spusténi test_factorize.py:
test_eight(self):

observed = factorize(8) e eeeeeeceeeeeceiececnceceeeenoan
self.assertEqual(observed, [2,2,2]) Ran 6 tests 0.000s

P. Posik (© 2020 B4B33RPH: Regeni problémti a hry — 14 / 27

TDD Ukézka: Test faktorizace ¢isla 9

Upravujeme test_factorize.py Po spusténi test_factorize.py:
test_nine(self): Y S
observed = factorize(9)
self.assertEqual(observed, [3,3]) FAIL: test_nine (__main__.FactorizeTest)

Traceback (most recent call last):

File "<wingdb_compile>", line 32, test_nine
AssertionError: Lists differ: [9] !'= [3, 3]
[...snip...]

Ran 7 tests 0.000s

Upravujeme factorization.py:

factorize(product):
factors = [] Ran 7 tests 0.015s
factor range(2,product+1):

product % factor ==
factors.append(factor)
product /= factor
factors

= Jsme schopni ptijit na néjaky dalsi test, kde by nas kod selhal?
m Nevadi ndhodou, Ze jako faktory bereme vSechna ¢isla a nikoli jen prvocisla? Jak by se kod 1isil?

P. Posik (© 2020 B4B33RPH: Regeni problémti a hry — 15 / 27

TDD Ukazka: Je nase funkce napsana ¢isté?

Stavajici factorization.py:

factorize(product): TS ooooooooooooooooooooooooooooo-oo
factors = [] Ran 7 tests 0.015s
factor range(2,product+1):

product % factor ==
factors.append(factor)
product /= factor
factors

Pfepsany factorization.py:

factorize(product): TS SSsosososooosssssmoooeod
factors = [] Ran 7 tests 0.000s
factor range(2,product+1):

product, factors_subset = factor_out(product, factor)
factors.extend(factors_subset)
factors

factor_out(product, factor):
factors = []
product % factor ==
factors.append(factor)
product /= factor
product, factors

P. Posik (© 2020 B4B33RPH: Regeni problémti a hry —16 / 27

Binarni matice zdmén 17 / 27

Z tlohy “Spam filter”
Predpokladejme:
mame sadu emailt uloZenych v souborech

pro kazdy email z této sady vime, zda je to spam nebo ham

n
n
= mame jakykoli funkéni spam filter
n

pro kazdy email z nasi sady vime, zda jej filtr klasifikuje jako spam nebo ham

Jakych chyb se miize spam filtr dopustit? Matice zdmén!

V datové sadé
pozitivnich negativnich

Pozitivni pfedpovéd’ TP FP
Negativni pfedpovéd’ FN TN

True positives (TP): po¢et piipadu klasifikdtorem sprdoné oznacenych jako pozitivni.
False positives (FP): pocet pfipadi klasifikdtorem chybné oznatenych jako pozitioni.
False negatives (FN): pocet ptipadi klasifikdtorem chybné oznacenych jako negativni.
True negatives (TN): pocet piipadti klasifikdtorem sprdoné oznaenych jako negationi.
Mira kvality filtru je pak néjakou funkci TP, TN, FP a FN.

Domluvme se, Ze pozitivni bude znamenat SPAM.

P. Posik (© 2020 B4B33RPH: Regeni problémti a hry — 18 / 27

Kviz

Pro tlohu Spam filtru:

V datové sadé

pozitivnich (SPAM) negativnich (OK)
Pozitivni pfedpovéd’ (SPAM) TP FP
Negativni pfedpovéd’ (OK) FN TN

Ktery piipad je pro uZivatele spam filtru nejhorsi?
l TP (spravné pozitivni)

B FP (chybné/falesné pozitivni)

l TN (spravné negativni)

l EN (chybné/falesné negativni)

P. Posik © 2020

B4B33RPH: Regeni problémd a hry — 19 / 27

Binarni matice zdmén
Binary confusion matrix, BCM:
m Takovy “lepsi” ¢itad (¢tvefice Citacth).
m Cil: Ze slovnikti truth a prediction napo¢itat matici zdmén.

>>> truth = { >>> prediction = {
‘emaill’: 'OK’, ‘emaill’: 'SPAM’,
'email2’: 'OK’, 'email2’: 'OK’,
"email3’: 'SPAM’, "email3’: 'SPAM’,
} }

Pozadavky na BCF:

Lze nastavit libovolny kéd pro spam a ham (zde napt OK a SPAM).
Metoda as_dict() vrati ¢itace ve formeé slovniku.
Po vytvofeni objektu jsou v8echny &itace vynulované.

Zavolam-li metodu update(’'SPAM’, 'SPAM’), inkrementuje se Cita¢ TP a hodnota ostatnich se nezmeéni.

Zavoldm-li metodu update() s nesprdvnym argumentem, vyhodi se vyjimka ValueError.
Zavolam-li metodu compute_from_dicts(truth, prediction), ¢itace TP, FP, TN, FN se spravné aktualizuji.

P. Posik © 2020

B4B33RPH: Regeni problémti a hry —20 / 27

Ukazka vyvoje BCF s testy

Demo

P. Posik (© 2020 B4B33RPH: Regeni problémti a hry — 21 / 27

Automatizované testovani: shrnuti

Zpracovano podle
Gerard Meszarosz: xUnit Test Patterns: Refactoring Test Code,
Addison-Wesley, 2007. 22 /27

Testovani

Kuwalita softwaru z pohledu testovani:

= Jak dobfe kéd splituje specifikace?

Testovéani z pohledu QA tymu (acceptance tests, functional tests):

Testujeme, protoZe jsme si jisti, Ze kod obsahuje chyby! (Nesplituje specifikace zdkaznika.)
Testujeme poté, co je kéd hotovy.

Obvykle black-box testovani.

Testovani je spis méreni kvality softwaru, nikoli zptisob, jak napsat kvalitni software.
Zpétnd vazba ptichazi piili§ pozdé.

V minulosti provadény pfevazné ru¢né.

Testovani z pohledu programaétora (unit tests, integration tests):
m Testuji, protoZe si chci byt jisty, Ze jednotka, na které pravé pracuji, déla to, co po ni chci. (Spliiuje poZadavky, které vznikly v
dtisledku designu architektury softwaru.)
= Obvykle white-box testovani.
=V minulosti vétsinou do¢asny kod, ktery se po otestovani zahodil.

P. Posik (© 2020 B4B33RPH: Regeni problémti a hry — 23 / 27

10

Automatizované testy: F1.R.S.T.
Automatizované testy by mély byt EL.R.S.T.

Fast
= Pomalé testy —> nebudete je spoustét ¢asto — chyby odhalite pozdé

Independent
m Jeden test by nemél nastavovat podminky pro dalsi test.
m Musi jit spustit kazdy test samostatné a celou sadu testii v jakémkoli potadi.
m Z4avislé testy — jedna chyba spusti cely fetézec chyb v navazujicich testech — slozité hledani chyby.

Repeatable
m MoZnost zopakovat testy kymkoli a kdekoli se stejnym vysledkem.
m Testy lze spustit jen nékde — budou se poustét ziidka — chyby odhalite pozdé

Self-validating
= Dvoustavovy vystup — snadné ovéfit, zda test prosel nebo selhal.

X7

= Slozity (dlouhy) vystup, ktery je nutno “ru¢né” zkontrolovat — malo asté testovani — pozdni odhaleni chyb.

Timely
m Testy by mély byt psany vcas, idedlné pied produkénim kédem.
= Testy psané po produkénim kédu — kéd se Spatné testuje — nebudete se chtit s jeho testovanim zdrZovat.

P. Posik (© 2020 B4B33RPH: Regeni problémti a hry — 24 / 27

Modul doctest

= Specialita Pythonu (opravte mé, pokud se pletu).
m Velmi vhodny pro jednoduché testy.

m Nevhodny pro sloZitéjsi testy vyZzadujici p¥ipravu a tklid.

PrimesGenerator:
"""Prime numbers generator

>>> pg = PrimesGenerator()
>>> pg.get_primes_up_to(1)

>>> pg.get_primes_up_to(2)

[2]

>>> pg.get_primes_up_to(3)
[2, 3]

>>> pg.get_primes_up_to(4)
[2, 3]

>>> pg.get_primes_up_to(5)
[2, 3, 5]

>>> pg.get_primes_up_to(20)
[2, 3, 5, 7, 11, 13, 17, 19]

__name__ == "__main__":
doctest
doctest.testmod()

P. Posik (© 2020 B4B33RPH: Regeni problémti a hry —25 / 27

11

xUnit Framework

m Standardni testovaci framework.
= Implementovan v mnoha jazycich (naucte se ho, bude se vdm hodit).
m V Pythonu implementovéan jako modul unittest.

unittest
primes3 PrimesGenerator

PrimesGeneratorTest(unittest.TestCase):

known_values = ((0, [1),
(1, [,

(2, 121),

(3, [2,3]),

(4, [2,31),

(5, 12,3,51),

(7, 12,3,5,71),

(20, 12,3,5,7,11,13,17,19]))

setUp(self):
self.pg = PrimesGenerator()

test_get_primes_up_to(self):
limit, expected self.known_values:
observed = self.pg.get_primes_up_to(limit)
self.assertEqual(observed, expected)

’.

__name__=='__main
unittest.main()

P. Posik (© 2020

B4B33RPH: Regeni problémti a hry — 26 / 27

TDD: Zavér
Testy
= slouZi jako specifikace.
m slouZijako dokumentace.
= pomahaji pochopit algoritmus.
® pomahaji pfedejit zbytenym sloZitostem v kédu.
= uréuji, kdy “je hotovo”.
® pomdéhaji zajistit, abychom tipravami do kédu nevnesli nové chyby.

P. Posik (© 2020

12

B4B33RPH: Regeni problémti a hry —27 / 27

	Úvod
	Z minulé prednášky
	Kvíz

	TDD
	Zákony TDD
	TDD Ukázka
	TDD Úvod
	TDD Císlo 2
	TDD Císlo 3
	TDD Císlo 4
	TDD Císlo 5
	TDD Císlo 6
	TDD Císlo 8
	TDD Císlo 9
	TDD Cistý kód

	Matice zámen
	Spam filter
	Kvíz
	Binární matice zámen
	Ukázka vývoje BCF s testy

	Shrnutí
	Testování
	Automatizované testy: F.I.R.S.T.
	Modul doctest
	xUnit Framework
	TDD: Záver

