Environment representation and modeling

Miroslav Kulich
Intelligent and Mobile Robotics Group
Gerstner Laboratory for Intelligent Decision Making and Control
Czech Technical University in Prague

Wednesday 27/07/2011

Why mapping?

- Learning maps is one of the fundamental problems in mobile robotics.
- Maps allow robots to efficiently carry out their tasks, allow localization ...
- Successful robot systems rely on maps for localization, path planning, activity planning etc.
- Mapping as a Chicken and Egg Problem
- Mapping involves to simultaneously estimate the pose of the vehicle and the map. The general problem is therefore denoted as the simultaneous localization and mapping problem (SLAM).
- Throughout this section we will describe how to calculate a map given we know the pose of the robot.

Problems in mapping

- Sensor interpretation
- How do we extract relevant information from raw sensor data?
- How do we represent and integrate this information over time?
- Robot locations have to be estimated
- How can we identify that we are at a previously visited place?
- This problem is the so-called data association problem.

Environment representation and modeling

- Environment Representation
- Continuous Metric $\rightarrow x, y, \phi$
- Discrete Metric \rightarrow metric grid
- Discrete Topological \rightarrow topological grid
- Environment Modeling
- Raw sensor data, e.g. laser range data, gray-scale images
- large volume of data, low distinctiveness
- makes use of all acquired information
- Low level features, e.g. line other geometric features
- medium volume of data, average distinctiveness
- filters out the useful information, still ambiguities
- High level features, e.g. doors, a car, the Eiffel tower
- low volume of data, high distinctiveness
- filters out the useful information, few/no ambiguities, not enough information

Choose the appropriate type of the map according to task you are solving!

Lecture outline

- Introduction to probability
- Spatial decomposition
- Grid maps
- Structures, we already know...
- Geometric representation
- Topological maps

Gentle introduction to probability theory

- Key idea: explicit representation of uncertainty using the calculus of probability theory
- $\mathrm{p}(\mathrm{X}=\mathrm{x})$ probability that the random variable X has the value x
- $0 \leq p(x) \leq 1$
- $p($ true $)=1, p($ false $)=0$
- $p(A \vee B)=p(A)+p(B)-p(A \wedge B)$

Discrete and continuous random variable

- Discrete: X is finite, i.e. $X=x_{1}, x_{2}, \ldots, x_{n}$
- Continuous: X takes on values in the
 continuum
- p is called probability mass function
- Several distributions
- Mostly known: Normal distribution (Gaussian)
- $p(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

Multivariete normal distribution

$$
p(x)=\frac{1}{\sqrt{2 \pi|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

- Eigenvectors and eigenvalues of covariance matrix determine elipses.

Joint and conditional probability

- $p(X=x$ and $Y=y)=p(x, y)$
- If X and Y are independent then

$$
p(x, y)=p(x) p(y)
$$

- $p(x \mid y)$ is the probability of x given y

$$
\begin{aligned}
& p(x \mid y)=p(x, y) / p(y) \\
& p(x, y)=p(x \mid y) / p(y)
\end{aligned}
$$

- If X and Y are independent then

$$
p(x, y)=p(x)
$$

Law of Total probability, Marginals

Discrete case

$\sum_{x}^{p(x)=1}$

$$
p(x)=\sum_{y} p(x, y)
$$

$$
p(x)=\sum_{y} p(x \mid y) p(y)
$$

Continuous case

$$
\begin{gathered}
\int_{x} p(x) d x=1 \\
p(x)=\int_{y} p(x, y) d y \\
p(x)=\int_{y} p(x \mid y) p(y) d y
\end{gathered}
$$

Bayes formula

$$
\begin{gathered}
p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x) \\
\Rightarrow
\end{gathered}
$$

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}
$$

$$
\begin{aligned}
& p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}=\eta p(y \mid x) p(x) \\
& \eta=p(y)^{-1}=\frac{1}{\sum_{x} p(y \mid x) p(x)}
\end{aligned}
$$

Spatial decomposition

Fixed cell decomposition

- We loose details - narrow passages disapper

Spatial decomposition

Adaptive cell decomposition

Occupancy grid maps

- Introduced by Moravec and Elfes in 1985
- Because of intrinsic limitations in any sonar, it is important to compose a coherent world-model using information gained from multiple reading
- Represent environment by a grid.
- Estimate the probability that a location is
 occupied by an obstacle.
- Key assumptions
- Occupancy of individual cells ($m[x y]$) is independent

$$
\operatorname{Bel}\left(m_{t}\right)=p\left(m_{t} \mid u_{1}, z_{2}, \ldots, u_{t-1}, z_{t}\right)=\prod_{x, y} \operatorname{Bel}\left(m_{t}^{[x y]}\right)
$$

- Robot positions are known!

Updating occupancy grid maps

- Idea: Update each individual cell using a binary Bayes filter.

$$
\operatorname{Bel}\left(m_{t}^{[x y]}\right)=\eta p\left(z_{t} \mid m_{t}^{[x y]}\right) \int p\left(m_{t}^{[x y]} \mid m_{t-1}^{[x y]}, u_{t-1}\right) \operatorname{Bel}\left(m_{t-1}^{[x y]}\right) d m_{t-1}^{[x y]}
$$

- Additional assumption: Map is static.

$$
\operatorname{Bel}\left(m_{t}^{[x y]}\right)=\eta p\left(z_{t} \mid m_{t}^{[x y]}\right) \int \operatorname{Bel}\left(m_{t-1}^{[x y]}\right)
$$

Occupancy grid cells

- The proposition occ (i, j) means:
- The cell $C_{i j}$ is occupied.
- Probability: $p(o c c(i, j))$ has range $[0,1]$.
- Odds: o(occ $(i, j))$ has range $[0,+\infty)$.

$$
o(A)=\frac{p(A)}{p(\neg A)}
$$

- Log odds: $\log o(o c c(i, j))$ has range $(-\infty,+\infty)$
- Each cell $C_{i j}$ holds the value $\log o(o c c(i, j))$

Probabilistic occupancy grids

- We will apply Bayes rule:

$$
p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B)}
$$

- where A is occ (i, j)
- and B is an observation $r=D$
- We can simplify this by using the log odds representation.

Bayes rule using odds

- Bayes rule:

$$
p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B)}
$$

- Likewise:

$$
p(\neg A \mid B)=\frac{p(B \mid \neg A) p(\neg A)}{p(B)}
$$

- SO:

$$
o(A \mid B)=\frac{p(A \mid B)}{p(\neg A \mid B)}=\frac{p(B \mid A) p(A)}{p(B \mid \neg A) p(\neg A)}=\lambda(B \mid A) o(A)
$$

- where:

$$
o(A \mid B)=\frac{p(A \mid B)}{p(\neg A \mid B)}
$$

and

$$
\lambda(B \mid A)=\frac{p(B \mid A)}{p(B \mid \neg A)}
$$

Easy update using Bayes

- Bayes rule can be written:

$$
o(A \mid B)=\lambda(B \mid A) o(A)
$$

- Take log odds to make multiplication into addition:

$$
\log o(A \mid B)=\log \lambda(B \mid A)+\log o(A)
$$

- Easy update for cell content.

Occupancy grid cell update

- Cell $C_{i j}$ holds $\log o(o c c(i, j))$.
- Evidence $r=D$ means sensor r returns D.
- For each cell $C_{i j}$ accumulate evidence from each sensor reading:

$$
\log o(A \mid B)=\log \lambda(B \mid A)+\log o(A)
$$

$\log o(o c c(i, j) \mid r=D)=\log o(\operatorname{occ}(i, j))+\log \lambda(r=D \mid \operatorname{occ}(i, j))$

Sensor model for sonar

Probability density $p\left(z_{t} \mid m_{t}^{[x y]}\right)$ is defined:

$$
p\left(z_{t} \mid m_{t}^{[x y]}\right)=\frac{1+\operatorname{model}_{O}^{Z_{t}}(\alpha, d)-\operatorname{model}_{V}^{Z_{t}}(\alpha, d)}{2}
$$

where (α, \boldsymbol{d}) are polar coordinates of the cell $m_{t}^{[x y]}$ in sensor coordinate system and z_{t} is measured distance.

Sensor model for sonar (Elfes)

Model is defined by:

- width of the signal: Ψ
- precision of sensor measurement: ϵ For measured distance r we get:

$$
\begin{aligned}
\operatorname{model}_{v}^{r}(\delta, \phi) & =V_{r}(\delta) A_{n}(\phi) \\
\operatorname{model}_{o}^{r}(\delta, \phi) & =O_{r}(\delta) A_{n}(\phi)
\end{aligned}
$$

where

$$
\begin{aligned}
& V_{r}(\delta)=\left\{\begin{array}{lll}
1-\left(\frac{\delta}{r}\right)^{2}, & \text { for } & \text { otherwise } \\
0 & \delta \in<0, r-\epsilon> \\
O_{r}(\delta) & =\left\{\begin{array}{lll}
1-\left(\frac{\delta-r}{\epsilon}\right)^{2}, & \text { for } & \delta \in<r-\epsilon, r+\epsilon> \\
0 & \text { otherwise }
\end{array}\right. \\
A_{n}(\phi)=\left\{\begin{array}{lll}
1-\left(\frac{2 \phi}{\Psi}\right)^{2}, & \text { for } & \phi \in\left\langle-\frac{\psi}{2}, \frac{\psi}{2}\right\rangle \\
0 & \text { otherwise }
\end{array}\right.
\end{array}\right) .
\end{aligned}
$$

Sensor model for sonar

Example - incremental updating of occupancy grids

Example - map obtained with ultrasound sensors

The maximum likelihood map is obtained by clipping the occupancy grid map at a threshold of 0.5

Sensor model for a laser range-finder

The model filters measurements longer than X :
model $_{v}^{r}(\delta)= \begin{cases}1-\left(\frac{\delta}{r-\epsilon}\right)^{2}, & \text { for } \delta \in<0, r-\epsilon> \\ 0 & \text { otherwise }\end{cases}$
model $_{o}^{r}(\delta)= \begin{cases}1-\left(\frac{\delta-r}{\epsilon}\right)^{2}, & \text { for } r<X \wedge \delta \in<r-\epsilon, r+\epsilon> \\ 0 & \text { otherwise }\end{cases}$

Laser model - a practical approach

- Connect a cell corresponding the sensor position with the hit cell.
- Set all cells on the line as empty.
- Set the hit cell as occupied.
- Apply Bayes rule to update the grid.
- Use some line drawing algorithm (Bresenham).
- Improvement: use flood-fill algorithm to draw the whole scan.

Alternative: Simple counting

Reflection maps

- For every cell count
- hits (x, y) : number of cases where a beam ended at $\langle x, y\rangle$
- misses (x, y) : number of cases where a beam passed through $\langle x, y\rangle$

$$
\operatorname{Bel}\left(m^{[x y]}\right)=\frac{\operatorname{hits}(x, y)}{\operatorname{hits}(x, y)+\operatorname{misses}(x, y)}
$$

- Value of interest: $p((\operatorname{reflects}(x, y)))$

The measurement model

pose at time t :
x_{t}
beam n of scan t :
$z_{t, n}$
maximum range reading: $\quad \zeta_{t, n}=1$ beam reflected by an object: $\zeta_{t, n}=0$

$$
p\left(z_{t, n} \mid x_{t}, m\right)= \begin{cases}\prod_{k=0}^{z_{t, n}-1}\left(1-m_{f\left(x_{t}, n, k\right)}\right) & \text { if } \zeta_{t, n}=1 \\ m_{f\left(x_{t}, n, z_{t, n}\right)} \prod_{k=0}^{z_{t, n}-1}\left(1-m_{f\left(x_{t}, n, k\right)}\right) & \text { if } \zeta_{t, n}=0\end{cases}
$$

Computing the most likely mapping

- Compute values for m that maximize

$$
m^{*}=\arg \max _{m} p\left(m \mid z_{1}, z_{2}, \ldots, z_{t}, x_{1}, x_{2}, \ldots, x_{t}\right)
$$

- Assuming an uniform prior probability for $p(m)$, this is equivalent to maximizing (apply Bayes rule):

$$
\begin{aligned}
m^{*} & =\arg \max _{m} p\left(z_{1}, z_{2}, \ldots, z_{t} \mid m, x_{1}, x_{2}, \ldots, x_{t}\right) \\
& =\arg \max _{m} \prod_{t=1}^{T} p\left(z_{t} \mid m, x_{t}\right) \\
& =\arg \max _{m} \sum_{t=1}^{T} \ln p\left(z_{t} \mid m, x_{t}\right)
\end{aligned}
$$

Computing the most likely mapping

$$
\begin{aligned}
m^{*} & =\arg \max _{m}\left[\sum _ { j = 1 } ^ { J } \sum _ { t = 1 } ^ { T } \sum _ { n = 1 } ^ { N } \left(I\left(f\left(x_{t}, n, z_{t, n}\right)=j\right)\left(1-\zeta_{t, n}\right) \ln m_{j}\right.\right. \\
& \left.\left.+\sum_{k=0}^{z_{t, n}-1} I\left(f\left(x_{t}, n, k\right)=j\right) \ln \left(1-m_{j}\right)\right)\right]
\end{aligned}
$$

Suppose the number of times a beam

- that is not a maximum range beam ended in cell $j(\operatorname{hits}(j))$.

$$
\alpha_{j}=\sum_{t=1}^{T} \sum_{n=1}^{N}\left(I\left(f\left(x_{t}, n, z_{t, n}\right)=j\right)\left(1-\zeta_{t, n}\right)\right.
$$

- intercepted cell j without ending in it $(\operatorname{misses}(j))$.

$$
\beta_{j}=\sum_{t=1}^{T} \sum_{n=1}^{N}\left[\sum_{k=0}^{z_{t, n}-1} I\left(f\left(x_{t}, n, k\right)=j\right)\right]
$$

Computing the most likely mapping

We assume that all cells m_{j} are independent:

$$
m^{*}=\arg \max _{m}\left(\sum_{j=1}^{J} \alpha_{j} \ln m_{j}+\beta_{j} \ln \left(1-m_{j}\right)\right)
$$

If we set

$$
\frac{\partial m}{\partial m_{j}}=\frac{\alpha_{j}}{m_{j}}-\frac{\beta_{j}}{1-m_{j}}
$$

we obtain

$$
m_{j}=\frac{\alpha_{j}}{\alpha_{j}+\text { beta }_{j}}
$$

\Downarrow
Computing the most likely map amounts to counting how often a cell has reflected a measurement and how often it was intercepted.

Difference between Occupancy Grid Maps and Counting

- The counting model determines how often a cell reflects a beam.
- The occupancy model represents whether or not a cell is occupied by an object.
- Although a cell might be occupied by an object, the reflection probability of this object might be very small.

Comparison

Occupancy map \times Reflection map

Grid maps - summary

- Occupancy grid maps are a popular approach to represent the environment of a mobile robot given known poses.
- In this approach each cell is considered independently from all others.
- It stores the posterior probability that the corresponding area in the environment is occupied.
- Occupancy grid maps can be learned efficiently using a probabilistic approach.
- Reflection maps are an alternative representation.
- They store in each cell the probability that a beam is reflected by this cell.
- We provided a sensor model for computing the likelihood of measurements and showed that the counting procedure underlying reflection maps yield the optimal map.

Geometric representation

- Environment modeling by geometric primitives.
- The environment can be approximated:
- line segments - most frequent, high precision \rightarrow large number of segments.
- second order curves - better approximation, computationally expensive, how to plan?
- Pros: maps available, easy planning.
- Cons: difficult to build from sensor data.

Exact cell decomposition

- Trapezoidal
- Cylindrical
- Triangulation

How to create a geometric map

line based

- Directly from raw sensor data
- Detection of line segments.
- Correspondence finding.
- Adding new segments
- From a grid map
- Building a grid map.
- Detecting line segments in the grid map.

Line segment description

Many possibilities

End points
Slope-intercept form
Normal form
Covariance matrix
(A, B)
$y=a x+b$
$x \cos (\alpha)+y \sin (\alpha)=r$

Covariance matrix

- Suppose that points $\left\{P_{i}\right\}_{i=1}^{n}$, where $P_{i}=\left(x_{i}, y_{i}\right)$ form a line u.
- Covariance matrix is defined:

$$
C=\left[\begin{array}{cc}
\sigma_{x}^{2} & \sigma_{x y} \\
\sigma_{x y} & \sigma_{y}^{2}
\end{array}\right]
$$

where σ_{x}^{2} a σ_{y}^{2} are variances in x and y coordinates and $\sigma_{x y}$ is their covariance:

$$
\sigma_{x y}=\frac{\sum_{i=1}^{n}\left(x_{i}-m_{x}\right)\left(y_{i}-m_{y}\right)}{n}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{n}-m_{x} m_{y}
$$

where $m_{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$ a $m_{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}$.

Covariance matrix as an ellipse

- We can express covariance (line segment) as an ellipse.
- The directions of semi-axes correspond to the eigenvectors of this covariance matrix and
- their lengths to the square roots of the eigenvalues.

Eigenvalues can be determined as:

$$
\begin{aligned}
& \lambda_{1}=\frac{\sigma_{x}^{2}+\sigma_{y}^{2}+\sqrt{\left(\sigma_{x}^{2}-\sigma_{y}^{2}\right)^{2}+4 \sigma_{x y}^{2}}}{2} \\
& \lambda_{2}=\frac{\sigma_{x}^{2}+\sigma_{y}^{2}-\sqrt{\left(\sigma_{x}^{2}-\sigma_{y}^{2}\right)^{2}+4 \sigma_{x y}^{2}}}{2}
\end{aligned}
$$

Ratio of the eigenvalues $\Lambda=\frac{\lambda_{1}}{\lambda_{2}}$ describe quality of the segment.

Detection of line segments

- Problem: Find line segments approximating a given set of points (scan).
- Approaches:
- sequence - points treated one by one.
- iterative - processes whole scan
- Our approach:
- Use sequence algorithm to split the input set into ,,continuous" sub-sets.
- Use iterative algorithm to find line-segments for each sub-set.
- Use covariance matrix to describe the line-segments.

Sequence algorithms

- Processes a raw scan (measured distances).
- if $\left|r_{i}-r_{i-1}\right|>$ Threashold then start new segment.

- Processes data points.
- Actual segment is approximated by line (least squares).
- if $d\left(I_{k}, p_{i}\right)>$ Threashold then start new segment.

Successive Edge Following

Example

Iterative algorithm

Iterative End Point Fit

1. Connect the first and last points with a line.
2. Detect a point with a maximum distance to the line
3. If the distance $d\left(I_{k}, p_{m}\right)>$ Threashold then split the point into two groups.
4. Perform steps 1-3 for each of the groups.
5. Join pairs of adjoining segments if the resulting segment is ,,good".

Iterative End Point Fit

Example

After IEPF

$\underset{\text { Senzor }}{\Delta}$
Final result

Correspondence finding

- Problem1: are two segments the same?
- Problem2: how to merge them?

Crowley

$\left(\phi_{i}, \sigma_{\phi_{i}}^{2}, \rho_{i}, \sigma_{\rho_{i}}^{2}, x_{i}, y_{i}, h_{i}\right)$, where ϕ_{i} - slope, ρ_{i} - distance to origin, variances ϕ_{i} and $\rho_{i} \sigma_{\phi_{i}}^{2}$ and $\sigma_{\rho_{i}}^{2}$, $\left(x_{i}, y_{i}\right)$ center h_{i} half length.
Two segments are the same if:

$$
\begin{array}{r}
\left|\phi_{1}-\phi_{2}\right| \leq \sigma_{\phi_{1}}^{2}+\sigma_{\phi_{2}}^{2} \\
\left|\rho_{1}-\rho_{2}\right| \leq \sigma_{\rho_{1}}^{2}+\sigma_{\rho_{2}}^{2} \\
\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} \leq h_{1}+h_{2}
\end{array}
$$

Skrzypczynski

Two segments are the same if:

$$
\begin{aligned}
& a+b<x+T o l \\
& c+d<x+T o l \\
& a+c<y+T o l \\
& b+d<y+T o l
\end{aligned}
$$

Map building from a grid map

- Based on occupancy grid proccessing using mathematical morphology.

Input grid

Segmentation

Dilation \& erosion

Map building from a grid map

Skeleton

Skeleten splitting

Final approximation

Topological map

- defined as a graph - nodes and connections

Building topological map from occupancy grid S. Thrun, A. Bücken

