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Probability

Why mapping?

• Learning maps is one of the fundamental problems in mobile
robotics.

• Maps allow robots to efficiently carry out their tasks, allow
localization . . .

• Successful robot systems rely on maps for localization, path
planning, activity planning etc.

• Mapping as a Chicken and Egg Problem
• Mapping involves to simultaneously estimate the pose of the

vehicle and the map. The general problem is therefore denoted
as the simultaneous localization and mapping problem
(SLAM).

• Throughout this section we will describe how to calculate a
map given we know the pose of the robot.



Probability

Problems in mapping

• Sensor interpretation
• How do we extract relevant information from raw sensor data?
• How do we represent and integrate this information over time?

• Robot locations have to be estimated
• How can we identify that we are at a previously visited place?
• This problem is the so-called data association problem.
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Environment representation and modeling

• Environment Representation
• Continuous Metric → x , y , φ
• Discrete Metric → metric grid
• Discrete Topological → topological grid

• Environment Modeling
• Raw sensor data, e.g. laser range data, gray-scale images

• large volume of data, low distinctiveness
• makes use of all acquired information

• Low level features, e.g. line other geometric features
• medium volume of data, average distinctiveness
• filters out the useful information, still ambiguities

• High level features, e.g. doors, a car, the Eiffel tower
• low volume of data, high distinctiveness
• filters out the useful information, few/no ambiguities, not

enough information

Choose the appropriate type of the map according to task you are
solving!
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Lecture outline

• Introduction to probability

• Spatial decomposition
• Grid maps
• Structures, we already know . . .
• Geometric representation

• Topological maps
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Gentle introduction to probability theory

• Key idea: explicit representation of uncertainty using the
calculus of probability theory

• p(X=x) probability that the random variable X has the value x

• 0 ≤ p(x) ≤ 1

• p(true) = 1, p(false) = 0

• p(A ∨ B) = p(A) + p(B)− p(A ∧ B)
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Discrete and continuous random variable

• Discrete: X is finite, i.e.
X = x1, x2, . . . , xn

• Continuous: X takes on values in the
continuum

• p is called probability mass function

• Several distributions

• Mostly known: Normal distribution
(Gaussian)

• p(x) = 1√
2πσ

e−
(x−µ)2

2σ2
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Multivariete normal distribution

p(x) =
1√

2π|Σ|
e−

1
2

(x−µ)T Σ−1(x−µ)

• Eigenvectors and eigenvalues of covariance matrix determine
elipses.
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Joint and conditional probability

• p(X = x and Y = y) = p(x , y)

• If X and Y are independent then

p(x , y) = p(x)p(y)

• p(x |y) is the probability of x given y

p(x |y) = p(x , y)/p(y)

p(x , y) = p(x |y)/p(y)

• If X and Y are independent then

p(x , y) = p(x)
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Law of Total probability, Marginals

Discrete case∑
x

p(x) = 1

p(x) =
∑
y

p(x , y)

p(x) =
∑
y

p(x |y)p(y)

Continuous case∫
x

p(x)dx = 1

p(x) =

∫
y

p(x , y)dy

p(x) =

∫
y

p(x |y)p(y)dy
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Bayes formula

p(x , y) = p(x |y)p(y) = p(y |x)p(x)

⇒

p(x |y) =
p(y |x)p(x)

p(y)
=

likelihood · prior

evidence

p(x |y) =
p(y |x)p(x)

p(y)
= ηp(y |x)p(x)

η = p(y)−1 =
1∑

x p(y |x)p(x)
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Spatial decomposition
Fixed cell decomposition

• We loose details - narrow passages disapper
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Spatial decomposition
Adaptive cell decomposition
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Occupancy grid maps

• Introduced by Moravec and Elfes in 1985

• Because of intrinsic limitations in any
sonar, it is important to compose a
coherent world-model using information
gained from multiple reading

• Represent environment by a grid.

• Estimate the probability that a location is
occupied by an obstacle.

• Key assumptions
• Occupancy of individual cells (m[xy ]) is independent

Bel(mt) = p(mt |u1, z2, . . . , ut−1, zt) =
∏
x,y

Bel(m
[xy ]
t )

• Robot positions are known!
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Updating occupancy grid maps

• Idea: Update each individual cell using a binary Bayes filter.

Bel(m
[xy ]
t ) = ηp(zt |m[xy ]

t )

∫
p(m

[xy ]
t |m

[xy ]
t−1, ut−1)Bel(m

[xy ]
t−1)dm

[xy ]
t−1

• Additional assumption: Map is static.

Bel(m
[xy ]
t ) = ηp(zt |m[xy ]

t )

∫
Bel(m

[xy ]
t−1)
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Occupancy grid cells

• The proposition occ(i , j) means:

- The cell Cij is occupied.

• Probability: p(occ(i , j)) has range [0, 1].

• Odds: o(occ(i , j)) has range [0,+∞).

o(A) =
p(A)

p(¬A)

• Log odds: log o(occ(i , j)) has range (−∞,+∞)

• Each cell Cij holds the value log o(occ(i , j))
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Probabilistic occupancy grids

• We will apply Bayes rule:

p(A|B) =
p(B|A)p(A)

p(B)

• where A is occ(i , j)
• and B is an observation r = D

• We can simplify this by using the log odds representation.
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Bayes rule using odds

• Bayes rule:

p(A|B) =
p(B|A)p(A)

p(B)

• Likewise:

p(¬A|B) =
p(B|¬A)p(¬A)

p(B)

• so:

o(A|B) =
p(A|B)

p(¬A|B)
=

p(B|A)p(A)

p(B|¬A)p(¬A)
= λ(B|A)o(A)

• where:

o(A|B) =
p(A|B)

p(¬A|B)

and

λ(B|A) =
p(B|A)

p(B|¬A)
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Easy update using Bayes

• Bayes rule can be written:

o(A|B) = λ(B|A)o(A)

• Take log odds to make multiplication into addition:

log o(A|B) = log λ(B|A) + log o(A)

• Easy update for cell content.
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Occupancy grid cell update

• Cell Cij holds log o(occ(i , j)).

• Evidence r = D means sensor r returns D.

• For each cell Cij accumulate evidence from each sensor
reading:

log o(A|B) = log λ(B|A) + log o(A)

log o(occ(i , j)|r = D) = log o(occ(i , j)) + logλ(r = D|occ(i , j))



Probability

Sensor model for sonar
Probability density p(zt |m[xy ]

t ) is defined:

p(zt |m[xy ]
t ) =

1 + modelztO (α, d)−modelztV (α, d)

2
,

where (α, d) are polar coordinates of the cell m
[xy ]
t in sensor

coordinate system and zt is measured distance.
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Sensor model for sonar (Elfes)
Model is defined by:

• width of the signal: Ψ

• precision of sensor measurement: ε

For measured distance r we get:

model rv (δ, φ) = Vr (δ)An(φ)
model ro(δ, φ) = Or (δ)An(φ),

where

Vr (δ) =

{
1−

(
δ
r

)2
, for δ ∈< 0, r − ε >

0 otherwise

Or (δ) =

{
1−

(
δ−r
ε

)2
, for δ ∈< r − ε, r + ε >

0 otherwise

An(φ) =

{
1−

(
2φ
Ψ

)2
, for φ ∈

〈
−Ψ

2 ,
Ψ
2

〉
0 otherwise
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Sensor model for sonar
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Example - incremental updating of occupancy grids
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Example - map obtained with ultrasound sensors

The maximum likelihood map is obtained by clipping the
occupancy grid map at a threshold of 0.5
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Sensor model for a laser range-finder

The model filters measurements longer than X :

model rv (δ) =

{
1−

(
δ

r−ε

)2
, for δ ∈< 0, r − ε >

0 otherwise

model ro(δ) =

{
1−

(
δ−r
ε

)2
, for r < X ∧ δ ∈< r − ε, r + ε >

0 otherwise
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Laser model - a practical approach

• Connect a cell corresponding the sensor position with the hit cell.

• Set all cells on the line as empty.

• Set the hit cell as occupied.

• Apply Bayes rule to update the grid.

• Use some line drawing algorithm (Bresenham).

• Improvement: use flood-fill algorithm to draw the whole scan.
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Alternative: Simple counting
Reflection maps

• For every cell count
• hits(x , y): number of cases where a beam ended at 〈x , y〉
• misses(x , y): number of cases where a beam passed through
〈x , y〉

Bel(m[xy ]) =
hits(x , y)

hits(x , y) + misses(x , y)

• Value of interest: p((reflects(x , y)))
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The measurement model

pose at time t: xt
beam n of scan t: zt,n
maximum range reading: ζt,n = 1
beam reflected by an object: ζt,n = 0

p(zt,n|xt ,m) =

{ ∏zt,n−1
k=0 (1−mf (xt ,n,k)) if ζt,n = 1

mf (xt ,n,zt,n)

∏zt,n−1
k=0 (1−mf (xt ,n,k)) if ζt,n = 0
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Computing the most likely mapping

• Compute values for m that maximize

m∗ = arg max
m

p(m|z1, z2, . . . , zt , x1, x2, . . . , xt)

• Assuming an uniform prior probability for p(m), this is
equivalent to maximizing (apply Bayes rule):

m∗ = arg max
m

p(z1, z2, . . . , zt |m, x1, x2, . . . , xt)

= arg max
m

T∏
t=1

p(zt |m, xt)

= arg max
m

T∑
t=1

ln p(zt |m, xt)
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Computing the most likely mapping

m∗ = arg max
m

 J∑
j=1

T∑
t=1

N∑
n=1

(I (f (xt , n, zt,n) = j)(1− ζt,n) ln mj

+

zt,n−1∑
k=0

I (f (xt , n, k) = j) ln(1−mj))


Suppose the number of times a beam

• that is not a maximum range beam ended in cell j (hits(j)).

αj =
T∑
t=1

N∑
n=1

(I (f (xt , n, zt,n) = j) (1− ζt,n)

• intercepted cell j without ending in it (misses(j)).

βj =
T∑
t=1

N∑
n=1

zt,n−1∑
k=0

I (f (xt , n, k) = j)


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Computing the most likely mapping

We assume that all cells mj are independent:

m∗ = arg max
m

 J∑
j=1

αj ln mj + βj ln (1−mj)



If we set

∂m

∂mj
=
αj

mj
−

βj
1−mj

we obtain

mj =
αj

αj + betaj

⇓

Computing the most likely map amounts to counting how often a
cell has reflected a measurement and how often it was intercepted.
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Difference between Occupancy Grid Maps and Counting

• The counting model determines how often a cell reflects a
beam.

• The occupancy model represents whether or not a cell is
occupied by an object.

• Although a cell might be occupied by an object, the reflection
probability of this object might be very small.
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Comparison
Occupancy map × Reflection map
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Grid maps - summary

• Occupancy grid maps are a popular approach to represent the
environment of a mobile robot given known poses.

• In this approach each cell is considered independently from all
others.

• It stores the posterior probability that the corresponding area
in the environment is occupied.

• Occupancy grid maps can be learned efficiently using a
probabilistic approach.

• Reflection maps are an alternative representation.

• They store in each cell the probability that a beam is reflected
by this cell.

• We provided a sensor model for computing the likelihood of
measurements and showed that the counting procedure
underlying reflection maps yield the optimal map.
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Geometric representation

• Environment modeling by geometric primitives.

• The environment can be approximated:
• line segments - most frequent, high precision → large number

of segments.
• second order curves - better approximation, computationally

expensive, how to plan?

• Pros: maps available, easy planning.

• Cons: difficult to build from sensor data.
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Exact cell decomposition

• Trapezoidal

• Cylindrical

• Triangulation
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How to create a geometric map
line based

• Directly from raw sensor data
• Detection of line segments.
• Correspondence finding.
• Adding new segments

• From a grid map
• Building a grid map.
• Detecting line segments in the grid map.
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Line segment description

Many possibilities
End points (A,B)
Slope–intercept form y = ax + b
Normal form x cos(α) + y sin(α) = r
Covariance matrix



Probability

Covariance matrix

• Suppose that points {Pi}ni=1, where Pi = (xi , yi ) form a line u.

• Covariance matrix is defined:

C =

[
σ2
x σxy

σxy σ2
y

]
,

where σ2
x a σ2

y are variances in x and y coordinates and σxy is
their covariance:

σxy =

∑n
i=1(xi −mx)(yi −my )

n
=

∑n
i=1 xiyi

n
−mxmy ,

where mx =
∑n

i=1 xi
n a my =

∑n
i=1 yi
n .
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Covariance matrix as an ellipse

• We can express covariance (line segment) as an ellipse.

• The directions of semi-axes correspond to the eigenvectors of
this covariance matrix and

• their lengths to the square roots of the eigenvalues.

Eigenvalues can be determined
as:

λ1 =
σ2
x + σ2

y +
√

(σ2
x − σ2

y )2 + 4σ2
xy

2

λ2 =
σ2
x + σ2

y −
√

(σ2
x − σ2

y )2 + 4σ2
xy

2

Ratio of the eigenvalues Λ = λ1
λ2

describe quality of the segment.
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Detection of line segments

• Problem: Find line segments approximating a given set of
points (scan).

• Approaches:
• sequence - points treated one by one.
• iterative - processes whole scan

• Our approach:
• Use sequence algorithm to split the input set into

,,continuous” sub-sets.
• Use iterative algorithm to find line-segments for each sub-set.
• Use covariance matrix to describe the line-segments.
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Sequence algorithms

Successive Edge Following (SEF)

• Processes a raw scan
(measured distances).

• if |ri − ri−1| > Threashold
then start new segment.

Line Tracking (LT)

• Processes data points.

• Actual segment is
approximated by line (least
squares).

• if d(lk , pi ) > Threashold
then start new segment.
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Successive Edge Following
Example



Probability

Iterative algorithm

Iterative End Point Fit

1. Connect the first and last points with a line.

2. Detect a point with a maximum distance to the line

3. If the distance d(lk , pm) > Threashold then split the point
into two groups.

4. Perform steps 1-3 for each of the groups.

5. Join pairs of adjoining segments if the resulting segment is
,,good”.
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Iterative End Point Fit
Example

After IEPF Final result
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Correspondence finding

• Problem1: are two segments the same?

• Problem2: how to merge them?

Crowley(
φi , σ

2
φi
, ρi , σ

2
ρi
, xi , yi , hi

)
, where

φi - slope, ρi - distance to origin,
variances φi and ρi σ

2
φi

and σ2
ρi

,
(xi , yi ) center hi half length.

Two segments are the same if:

| φ1 − φ2 |≤ σ2
φ1

+ σ2
φ2

| ρ1 − ρ2 |≤ σ2
ρ1

+ σ2
ρ2

(x1 − x2)2 + (y1 − y2)2 ≤ h1 + h2

Skrzypczynski

Two segments are the same if:

a + b < x + Tol

c + d < x + Tol

a + c < y + Tol

b + d < y + Tol
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Map building from a grid map

• Based on occupancy grid proccessing using mathematical
morphology.

Input grid Segmentation Dilation & erosion
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Map building from a grid map

Skeleton Skeleten splitting Final approximation
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Topological map

• defined as a graph - nodes and connections
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Building topological map from occupancy grid
S. Thrun, A. Bücken
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