Environment representation and modeling

Miroslav Kulich

Intelligent and Mobile Robotics Group Gerstner Laboratory for Intelligent Decision Making and Control Czech Technical University in Prague

Wednesday 27/07/2011

Why mapping?

- Learning maps is one of the fundamental problems in mobile robotics.
- Maps allow robots to efficiently carry out their tasks, allow localization . . .
- Successful robot systems rely on maps for localization, path planning, activity planning etc.
- Mapping as a Chicken and Egg Problem
 - Mapping involves to simultaneously estimate the pose of the vehicle and the map. The general problem is therefore denoted as the simultaneous localization and mapping problem (SLAM).
 - Throughout this section we will describe how to calculate a map given we know the pose of the robot.

Problems in mapping

- Sensor interpretation
 - How do we extract relevant information from raw sensor data?
 - How do we represent and integrate this information over time?
- Robot locations have to be estimated
 - How can we identify that we are at a previously visited place?
 - This problem is the so-called data association problem.

Environment representation and modeling

- Environment Representation
 - Continuous Metric $\rightarrow x, y, \phi$
 - Discrete Metric → metric grid
 - Discrete Topological \rightarrow topological grid
- Environment Modeling
 - Raw sensor data, e.g. laser range data, gray-scale images
 - large volume of data, low distinctiveness
 - makes use of all acquired information
 - Low level features, e.g. line other geometric features
 - medium volume of data, average distinctiveness
 - filters out the useful information, still ambiguities
 - High level features, e.g. doors, a car, the Eiffel tower
 - low volume of data, high distinctiveness
 - filters out the useful information, few/no ambiguities, not enough information

Choose the appropriate type of the map according to task you are solving!

Lecture outline

- Introduction to probability
- Spatial decomposition
 - Grid maps
 - Structures, we already know ...
 - Geometric representation
- Topological maps

Gentle introduction to probability theory

- Key idea: explicit representation of uncertainty using the calculus of probability theory
- p(X=x) probability that the random variable X has the value x
- $0 \le p(x) \le 1$
- p(true) = 1, p(false) = 0
- $p(A \vee B) = p(A) + p(B) p(A \wedge B)$

Discrete and continuous random variable

• **Discrete**: *X* is finite, i.e.

$$X = x_1, x_2, \ldots, x_n$$

- Continuous: X takes on values in the continuum
- p is called probability mass function
- Several distributions
- Mostly known: Normal distribution (Gaussian)

•
$$p(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Multivariete normal distribution

$$p(x) = \frac{1}{\sqrt{2\pi|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

• Eigenvectors and eigenvalues of covariance matrix determine elipses.

Joint and conditional probability

- p(X = x and Y = y) = p(x, y)
- If X and Y are independent then

$$p(x,y) = p(x)p(y)$$

• p(x|y) is the probability of x given y

$$p(x|y) = p(x,y)/p(y)$$

$$p(x,y) = p(x|y)/p(y)$$

• If X and Y are independent then

$$p(x, y) = p(x)$$

Law of Total probability, Marginals

Discrete case

$$\sum_{x} p(x) = 1$$

$$p(x) = \sum_{y} p(x, y)$$

$$p(x) = \sum_{y} p(x|y)p(y)$$

Continuous case

$$\int_{X} p(x)dx = 1$$

$$p(x) = \int_{Y} p(x, y) dy$$

$$p(x) = \int_{Y} p(x|y)p(y)dy$$

Bayes formula

$$p(x, y) = p(x|y)p(y) = p(y|x)p(x)$$
 \Rightarrow

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{likelihood \cdot prior}{evidence}$$

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \eta p(y|x)p(x)$$
$$\eta = p(y)^{-1} = \frac{1}{\sum_{x} p(y|x)p(x)}$$

Spatial decomposition

Fixed cell decomposition

• We loose details - narrow passages disapper

Spatial decomposition

Adaptive cell decomposition

Occupancy grid maps

- Introduced by Moravec and Elfes in 1985
- Because of intrinsic limitations in any sonar, it is important to compose a coherent world-model using information gained from multiple reading
- Represent environment by a grid.
- Estimate the probability that a location is occupied by an obstacle.

- Key assumptions
 - Occupancy of individual cells (m[xy]) is independent

$$Bel(m_t) = p(m_t|u_1, z_2, \dots, u_{t-1}, z_t) = \prod_{x,y} Bel(m_t^{[xy]})$$

Robot positions are known!

Updating occupancy grid maps

• Idea: Update each individual cell using a binary Bayes filter.

$$Bel(m_t^{[xy]}) = \eta p(z_t | m_t^{[xy]}) \int p(m_t^{[xy]} | m_{t-1}^{[xy]}, u_{t-1}) Bel(m_{t-1}^{[xy]}) dm_{t-1}^{[xy]}$$

Additional assumption: Map is static.

$$Bel(m_t^{[xy]}) = \eta p(z_t|m_t^{[xy]}) \int Bel(m_{t-1}^{[xy]})$$

Occupancy grid cells

- The proposition occ(i, j) means:
 - The cell C_{ij} is occupied.
- Probability: p(occ(i, j)) has range [0, 1].
- Odds: o(occ(i, j)) has range $[0, +\infty)$.

$$o(A) = \frac{p(A)}{p(\neg A)}$$

- Log odds: $\log o(occ(i,j))$ has range $(-\infty, +\infty)$
- Each cell C_{ij} holds the value $\log o(occ(i,j))$

Probabilistic occupancy grids

• We will apply Bayes rule:

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

- where A is occ(i, j)
- and B is an observation r = D
- We can simplify this by using the log odds representation.

Bayes rule using odds

Bayes rule:

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

Likewise:

$$p(\neg A|B) = \frac{p(B|\neg A)p(\neg A)}{p(B)}$$

so:

$$o(A|B) = \frac{p(A|B)}{p(\neg A|B)} = \frac{p(B|A)p(A)}{p(B|\neg A)p(\neg A)} = \lambda(B|A)o(A)$$

where:

$$o(A|B) = \frac{p(A|B)}{p(\neg A|B)}$$

and

$$\lambda(B|A) = \frac{p(B|A)}{p(B|\neg A)}$$

Easy update using Bayes

• Bayes rule can be written:

$$o(A|B) = \lambda(B|A)o(A)$$

Take log odds to make multiplication into addition:

$$\log o(A|B) = \log \lambda(B|A) + \log o(A)$$

Easy update for cell content.

Occupancy grid cell update

- Cell C_{ij} holds $\log o(occ(i,j))$.
- Evidence r = D means sensor r returns D.
- For each cell C_{ij} accumulate evidence from each sensor reading:

$$\log o(A|B) = \log \lambda(B|A) + \log o(A)$$

$$\log o(occ(i,j)|r=D) = \log o(occ(i,j)) + \log \lambda(r=D|occ(i,j))$$

Sensor model for sonar

Probability density $p(z_t|m_t^{[xy]})$ is defined:

$$p(z_t|m_t^{[xy]}) = \frac{1 + model_O^{z_t}(\alpha, d) - model_V^{z_t}(\alpha, d)}{2},$$

where (α, d) are polar coordinates of the cell $m_t^{[xy]}$ in sensor coordinate system and z_t is measured distance.

Sensor model for sonar (Elfes)

Model is defined by:

- width of the signal: Ψ
- ullet precision of sensor measurement: ϵ

For measured distance r we get:

$$model_{v}^{r}(\delta, \phi) = V_{r}(\delta)A_{n}(\phi)$$

 $model_{o}^{r}(\delta, \phi) = O_{r}(\delta)A_{n}(\phi),$

where

$$V_r(\delta) = \left\{ egin{array}{ll} 1-\left(rac{\delta}{r}
ight)^2, & ext{ for } & \delta \in <0, r-\epsilon> \ 0 & ext{ otherwise} \end{array}
ight.$$
 $O_r(\delta) = \left\{ egin{array}{ll} 1-\left(rac{\delta-r}{\epsilon}
ight)^2, & ext{ for } & \delta \in < r-\epsilon, r+\epsilon> \ 0 & ext{ otherwise} \end{array}
ight.$ $A_n(\phi) = \left\{ egin{array}{ll} 1-\left(rac{2\phi}{\Psi}
ight)^2, & ext{ for } & \phi \in \left<-rac{\Psi}{2}, rac{\Psi}{2}
ight> \ 0 & ext{ otherwise} \end{array}
ight.$

Sensor model for sonar

Example - incremental updating of occupancy grids

Example - map obtained with ultrasound sensors

The maximum likelihood map is obtained by clipping the occupancy grid map at a threshold of 0.5

Sensor model for a laser range-finder

The model filters measurements longer than X:

$$\begin{array}{ll} \mathit{model}_v^r(\delta) & = & \left\{ \begin{array}{l} 1 - \left(\frac{\delta}{r - \epsilon}\right)^2, & \text{for } \delta \in <0, r - \epsilon > \\ 0 & \text{otherwise} \end{array} \right. \\ \mathit{model}_o^r(\delta) & = & \left\{ \begin{array}{l} 1 - \left(\frac{\delta - r}{\epsilon}\right)^2, & \text{for } r < X \land \delta \in < r - \epsilon, r + \epsilon > \\ 0 & \text{otherwise} \end{array} \right. \end{array}$$

Laser model - a practical approach

- Connect a cell corresponding the sensor position with the hit cell.
- Set all cells on the line as empty.
- Set the hit cell as occupied.
- Apply Bayes rule to update the grid.
- Use some line drawing algorithm (Bresenham).
- Improvement: use flood-fill algorithm to draw the whole scan.

Alternative: Simple counting Reflection maps

- For every cell count
 - hits(x, y): number of cases where a beam ended at $\langle x, y \rangle$
 - misses(x, y): number of cases where a beam passed through $\langle x, y \rangle$

$$Bel(m^{[xy]}) = \frac{hits(x,y)}{hits(x,y) + misses(x,y)}$$

• Value of interest: p((reflects(x, y)))

The measurement model

pose at time t:

beam n of scan t: $z_{t,n}$

maximum range reading: $\zeta_{t,n} = 1$

beam reflected by an object: $\zeta_{t,n}=0$

$$p(z_{t,n}|x_t,m) = \begin{cases} \prod_{k=0}^{z_{t,n}-1} (1 - m_{f(x_t,n,k)}) & \text{if } \zeta_{t,n} = 1\\ m_{f(x_t,n,z_{t,n})} \prod_{k=0}^{z_{t,n}-1} (1 - m_{f(x_t,n,k)}) & \text{if } \zeta_{t,n} = 0 \end{cases}$$

Computing the most likely mapping

Compute values for m that maximize

$$m^* = \arg\max_{m} p(m|z_1, z_2, \dots, z_t, x_1, x_2, \dots, x_t)$$

• Assuming an uniform prior probability for p(m), this is equivalent to maximizing (apply Bayes rule):

$$m^* = \arg \max_{m} p(z_1, z_2, \dots, z_t | m, x_1, x_2, \dots, x_t)$$

$$= \arg \max_{m} \prod_{t=1}^{T} p(z_t | m, x_t)$$

$$= \arg \max_{m} \sum_{t=1}^{T} \ln p(z_t | m, x_t)$$

Computing the most likely mapping

$$m^* = \arg\max_{m} \left[\sum_{j=1}^{J} \sum_{t=1}^{T} \sum_{n=1}^{N} (I(f(x_t, n, z_{t,n}) = j)(1 - \zeta_{t,n}) \ln m_j + \sum_{k=0}^{z_{t,n}-1} I(f(x_t, n, k) = j) \ln(1 - m_j)) \right]$$

Suppose the number of times a beam

that is not a maximum range beam ended in cell j (hits(j)).

$$\alpha_{j} = \sum_{t=1}^{T} \sum_{n=1}^{N} (I(f(x_{t}, n, z_{t,n}) = j) (1 - \zeta_{t,n})$$

intercepted cell j without ending in it (misses(j)).

$$\beta_j = \sum_{t=1}^{T} \sum_{n=1}^{N} \left[\sum_{k=0}^{z_{t,n}-1} I(f(x_t, n, k) = j) \right]$$

Computing the most likely mapping

We assume that all cells m_i are independent:

$$m^* = rg \max_m \left(\sum_{j=1}^J lpha_j \ln m_j + eta_j \ln (1-m_j)
ight)$$

If we set
$$\frac{\partial m}{\partial m_j} = \frac{\alpha_j}{m_j} - \frac{\beta_j}{1-m_j} \qquad \qquad m_j = \frac{\alpha_j}{\alpha_j + beta_j}$$

Computing the most likely map amounts to counting how often a cell has reflected a measurement and how often it was intercepted.

Difference between Occupancy Grid Maps and Counting

- The counting model determines how often a cell reflects a beam.
- The occupancy model represents whether or not a cell is occupied by an object.
- Although a cell might be occupied by an object, the reflection probability of this object might be very small.

Comparison

Occupancy map \times Reflection map

Grid maps - summary

- Occupancy grid maps are a popular approach to represent the environment of a mobile robot given known poses.
- In this approach each cell is considered independently from all others.
- It stores the posterior probability that the corresponding area in the environment is occupied.
- Occupancy grid maps can be learned efficiently using a probabilistic approach.
- Reflection maps are an alternative representation.
- They store in each cell the probability that a beam is reflected by this cell.
- We provided a sensor model for computing the likelihood of measurements and showed that the counting procedure underlying reflection maps yield the optimal map.

Geometric representation

- Environment modeling by geometric primitives.
- The environment can be approximated:
 - line segments most frequent, high precision \rightarrow large number of segments.
 - second order curves better approximation, computationally expensive, how to plan?
- Pros: maps available, easy planning.
- Cons: difficult to build from sensor data.

Exact cell decomposition

- Trapezoidal
- Cylindrical
- Triangulation

How to create a geometric map

- Directly from raw sensor data
 - Detection of line segments.
 - Correspondence finding.
 - Adding new segments
- From a grid map
 - Building a grid map.
 - Detecting line segments in the grid map.

Line segment description

Many possibilities End points (A,B)Slope-intercept form y=ax+bNormal form $x\cos(\alpha)+y\sin(\alpha)=r$ Covariance matrix

Covariance matrix

- Suppose that points $\{P_i\}_{i=1}^n$, where $P_i = (x_i, y_i)$ form a line u.
- Covariance matrix is defined:

$$C = \left[\begin{array}{cc} \sigma_{x}^{2} & \sigma_{xy} \\ \sigma_{xy} & \sigma_{y}^{2} \end{array} \right],$$

where σ_x^2 a σ_y^2 are variances in x and y coordinates and σ_{xy} is their covariance:

$$\sigma_{xy} = \frac{\sum_{i=1}^{n} (x_i - m_x)(y_i - m_y)}{n} = \frac{\sum_{i=1}^{n} x_i y_i}{n} - m_x m_y,$$

where
$$m_X = \frac{\sum_{i=1}^n x_i}{n}$$
 a $m_Y = \frac{\sum_{i=1}^n y_i}{n}$.

Covariance matrix as an ellipse

- We can express covariance (line segment) as an ellipse.
- The directions of semi-axes correspond to the eigenvectors of this covariance matrix and
- their lengths to the square roots of the eigenvalues.

Eigenvalues can be determined as:

$$\begin{split} \lambda_1 &= \frac{\sigma_x^2 + \sigma_y^2 + \sqrt{(\sigma_x^2 - \sigma_y^2)^2 + 4\sigma_{xy}^2}}{2} \\ \lambda_2 &= \frac{\sigma_x^2 + \sigma_y^2 - \sqrt{(\sigma_x^2 - \sigma_y^2)^2 + 4\sigma_{xy}^2}}{2} \end{split}$$

Ratio of the eigenvalues $\Lambda = \frac{\lambda_1}{\lambda_2}$ describe quality of the segment.

Detection of line segments

- Problem: Find line segments approximating a given set of points (scan).
- Approaches:
 - sequence points treated one by one.
 - iterative processes whole scan
- Our approach:
 - Use sequence algorithm to split the input set into ,,continuous" sub-sets.
 - Use iterative algorithm to find line-segments for each sub-set.
 - Use covariance matrix to describe the line-segments.

Sequence algorithms

Successive Edge Following (SEF)

- Processes a raw scan (measured distances).
- if $|r_i r_{i-1}| > Threashold$ then start new segment.

- Processes data points.
- Actual segment is approximated by line (least squares).
- if $d(l_k, p_i) > Threashold$ then start new segment.

Successive Edge Following

Example

Iterative algorithm

Iterative End Point Fit

- 1. Connect the first and last points with a line.
- 2. Detect a point with a maximum distance to the line
- 3. If the distance $d(l_k, p_m) > Threashold$ then split the point into two groups.
- 4. Perform steps 1-3 for each of the groups.
- 5. Join pairs of adjoining segments if the resulting segment is "good".

Iterative End Point Fit

Correspondence finding

- Problem1: are two segments the same?
- Problem2: how to merge them?

Crowley

 $\left(\phi_i,\sigma_{\phi_i}^2,\rho_i,\sigma_{\rho_i}^2,x_i,y_i,h_i\right)$, where ϕ_i - slope, ρ_i - distance to origin, variances ϕ_i and ρ_i $\sigma_{\phi_i}^2$ and $\sigma_{\rho_i}^2$, $\left(x_i,y_i\right)$ center h_i half length. Two segments are the same if:

$$|\phi_1 - \phi_2| \le \sigma_{\phi_1}^2 + \sigma_{\phi_2}^2$$

$$|\rho_1 - \rho_2| \le \sigma_{\rho_1}^2 + \sigma_{\rho_2}^2$$

$$(x_1 - x_2)^2 + (y_1 - y_2)^2 < h_1 + h_2$$

Two segments are the same if:

$$a+b < x+Tol$$

 $c+d < x+Tol$
 $a+c < y+Tol$
 $b+d < y+Tol$

Map building from a grid map

 Based on occupancy grid processing using mathematical morphology.

Input grid

Segmentation

Dilation & erosion

Map building from a grid map

Skeleton

Skeleten splitting

Final approximation

Topological map

• defined as a graph - nodes and connections

Building topological map from occupancy grid

S. Thrun, A. Bücken

