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Why mapping?

Learning maps is one of the fundamental problems in mobile
robotics.

Maps allow robots to efficiently carry out their tasks, allow
localization ...

Successful robot systems rely on maps for localization, path
planning, activity planning etc.
Mapping as a Chicken and Egg Problem
e Mapping involves to simultaneously estimate the pose of the
vehicle and the map. The general problem is therefore denoted
as the simultaneous localization and mapping problem
(SLAM).
e Throughout this section we will describe how to calculate a
map given we know the pose of the robot.



Probability

Problems in mapping

e Sensor interpretation

e How do we extract relevant information from raw sensor data?
e How do we represent and integrate this information over time?

e Robot locations have to be estimated

e How can we identify that we are at a previously visited place?
e This problem is the so-called data association problem.



Probability

Environment representation and modeling

e Environment Representation
e Continuous Metric — x,y, ¢
e Discrete Metric — metric grid
e Discrete Topological — topological grid
e Environment Modeling
e Raw sensor data, e.g. laser range data, gray-scale images

e large volume of data, low distinctiveness
® makes use of all acquired information

e Low level features, e.g. line other geometric features

e medium volume of data, average distinctiveness
e filters out the useful information, still ambiguities

e High level features, e.g. doors, a car, the Eiffel tower

e low volume of data, high distinctiveness
e filters out the useful information, few/no ambiguities, not
enough information

Choose the appropriate type of the map according to task you are
solving!



Lecture outline

e Introduction to probability

e Spatial decomposition
e Grid maps
e Structures, we already know ...
e Geometric representation

e Topological maps
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Gentle introduction to probability theory

Key idea: explicit representation of uncertainty using the
calculus of probability theory

p(X=x) probability that the random variable X has the value x
0<p(x)<1

p(true) =1, p(false) =0

p(AV B) = p(A) + p(B) — p(AA B)
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Probability

Discrete and continuous random variable

p(x)

e Discrete: X is finite, i.e.
X =Xx1,X2,...,Xp
e Continuous: X takes on values in the X
continuum
e pis called probability mass function
e Several distributions . T g
e Mostly known: Normal distribution " | R =
(Gaussian)
L b N
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e p(x) = \/%e
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Multivariete normal distribution

p(x) = —— e 30m)TE ()

V27| X|

e Eigenvectors and eigenvalues of covariance matrix determine
elipses.
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Joint and conditional probability

p(X=xand Y =y) = p(x,y)
If X and Y are then

p(x,y) = p(x)p(y)
e p(xl|y) is the probability of
p(xly) = p(x,y)/p(y)

p(x,y) = p(xly)/p(y)
If X and Y are then

p(x,y) = p(x)



Probability

Law of Total probability, Marginals

Discrete case Continuous case
ZP(X) =1 /p(x)dx =1
p(x) = ZP(XaY) p(x) = /p(x,y)dy
p(x) = 3" p(xly)p(y) p(x) = / p(x1y)p(y)dy

Y
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Bayes formula

p(x,y) = p(xly)p(y) = p(y|x)p(x)

=
p(y|x)p(x) _ likelihood - prior

Pixly) = ply) evidence
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Probability

Spatial decomposition

Fixed cell decomposition

e We loose details - narrow passages disapper

IINEEEE]




Probability

Spatial decomposition

Adaptive cell decomposition

start




Probability

Occupancy grid maps

Introduced by Moravec and Elfes in 1985

Because of intrinsic limitations in any
sonar, it is important to compose a
coherent world-model using information
gained from multiple reading

Represent environment by a grid.

Estimate the probability that a location is
occupied by an obstacle.

o Key assumptions
e Occupancy of individual cells (m[xy]) is independent

Bel(m.) = p(me|uy, 22, ..., ur_1, z) = [ ] Bel(mt*)
X,y

e Robot positions are known!



Probability

Updating occupancy grid maps

e |dea: Update each individual cell using a binary Bayes filter.
Bel(m) = np(zc|m™) [ () mb), ue) Bel(mf ]l
e Additional assumption: Map is static.

Bel(m™) = np(zc|m™) [ Bel(mf?])
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Occupancy grid cells

The proposition occ(i,j) means:
- The cell G is occupied.

Probability: p(occ(i,j)) has range [0, 1].
Odds: o(occ(i,j)) has range [0, +00).

_ p(A)
= oA

Log odds: log o(occ(i,)) has range (—oo, +00)

Each cell Cjj holds the value log o(occ(i,j))



Probability

Probabilistic occupancy grids

e We will apply Bayes rule:

p(BIA)p(A)

p(al) = P2

e where A'is occ(i, )
e and B is an observation r = D

e We can simplify this by using the log odds representation.



Probability

e Bayes rule:

e Likewise:

o(A|B) =

e where:

and

Bayes rule using odds

p(A|B) =

p(—A|B) =

p(BIA)p(A)

p(B)

p(B)

p(AIB)  p(BIA)P(A)

p(=AB) ~ p(B[-A)p(-A)

o(A|B) =

A(BJA) =

P(A|B)
p(—A|B)

P(B|A)
p(B|-A)

p(B|=A)p(=A)

— \(B|A)o(A)
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Easy update using Bayes

e Bayes rule can be written:
o(A|B) = A(B|A)o(A)
e Take log odds to make multiplication into addition:
log o(A|B) = log A\(B|A) + log o(A)

e Easy update for cell content.



Probability

Occupancy grid cell update

e Cell Cjj holds log o(occ(i, j)).
e Evidence r = D means sensor r returns D.

e For each cell Cj; accumulate evidence from each sensor
reading:
log o(A|B) = log A\(B|A) + log o(A)

log o(occ(i, j)|r = D) = log o(occ(i, j)) + log\(r = D|occ(i, j))
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Sensor model for sonar
Probability density p(z¢|ml®)) is defined:
1 + modelg (c, d) — modely} (v, d)
2 )
where (o, d) are polar coordinates of the cell ml®! in sensor
coordinate system and z; is measured distance.

p(ze|mP)
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Sensor model for sonar (Elfes)
Model is defined by:
e width of the signal: W
e precision of sensor measurement: ¢

For measured distance r we get:

model’(6,¢) = V,(86)An(e)

model}(6,¢) = O(5)An(0),
where
5\2
e - {107 R ecor-c>
0 otherwise
o) = {10 o secrarves
0 otherwise

NS
N|€
~

An(9) = {;_(%ﬁ)z for vel-z

otherwise
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Sensor model for sonar




Example - incremental updating of occupancy grids

DA
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Example - map obtained with ultrasound sensors

The maximum likelihood map is obtained by clipping the
occupancy grid map at a threshold of 0.5



Probability

Sensor model for a laser range-finder

The model filters measurements longer than X:

5 \2
model}(§) = {;_<,_E) , forde<0,r—e>

otherwise
2
1— (&5, forr< XAde<r—er+e>
modely(9) - = { 0 ( ‘ ) otherwise
z e B e
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Laser model - a practical approach
HEEN

X
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e Connect a cell corresponding the sensor position with the hit cell.

Set all cells on the line as empty.

Set the hit cell as occupied.

Apply Bayes rule to update the grid.
e Use some line drawing algorithm (Bresenham).

e |Improvement: use flood-fill algorithm to draw the whole scan.
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Alternative: Simple counting

Reflection maps

e For every cell count

e hits(x,y): number of cases where a beam ended at (x, y)
e misses(x,y): number of cases where a beam passed through

(x,¥)

hits(x, y)
hits(x, y) + misses(x, y)

Bel(mP¥1) =

e Value of interest: p((reflects(x,y)))



Probability

The measurement model

pose at time t: Xt B

beam n of scan t: Zt,n b“""_’

maximum range reading: Ctn=1 ] 7

beam reflected by an object: (¢, =0 /
mlr Ir ”"_'.'Jr

Zt,nfl

o 1-m Xr.N if n— 1
pzebee,m) = § Lo (1= Mrteon) b
Me(xeunzen) [Zo " (1= Meaeniy) i Cen =0




Probability

Computing the most likely mapping

e Compute values for m that maximize

*
m* = arg mn?xp(m|zl,22, ey ZE X1, XDy ey Xt)

e Assuming an uniform prior probability for p(m), this is
equivalent to maximizing (apply Bayes rule):

*
m* = arg mrﬁxp(zl,zz, cey Zelmyxy, X, e Xe)

T
= argmapr(zt\m,xt)
i
T
= argmrngInp(zt|m,xt)
t=1



Probability

Computing the most likely mapping

J T
m" = argmrgx ZZZ(/(f(Xt,mZt,n):j)(l—Ct,n)|”mj

Jj=1 t=1 n=1

Zin—1

+ Z I (f(xe, n, k) =j) In(1 — my))

Suppose the number of times a beam

e that is not a maximum range beam ended in cell j (hits(j)).

= D3 (I (F(xes 1 2en) = J) (1= Ceon)

t=1 n=1
e intercepted cell j without ending in it (misses(J)).

ztn—1

ZZ Z I (f(xe, n, k) = J)

t=1 n=1 k=0
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Computing the most likely mapping

We assume that all cells m; are independent:

J
m* = ar ; ; ; — m;
g max Zozjln m; + B In (1 — mj)
j=1
If we set we obtain
om o G o %
8mj mj 1-— m;j Q;j + betaj

4

Computing the most likely map amounts to counting how often a
cell has reflected a measurement and how often it was intercepted.
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Difference between Occupancy Grid Maps and Counting

e The counting model determines how often a cell reflects a
beam.

e The occupancy model represents whether or not a cell is
occupied by an object.

e Although a cell might be occupied by an object, the reflection
probability of this object might be very small.
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Comparison

Occupancy map x Reflection map

PR AT
If_:l.‘,m[r .Lﬁt—ihmﬂ
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Grid maps - summary

Occupancy grid maps are a popular approach to represent the
environment of a mobile robot given known poses.

In this approach each cell is considered independently from all
others.

It stores the posterior probability that the corresponding area
in the environment is occupied.

Occupancy grid maps can be learned efficiently using a
probabilistic approach.

Reflection maps are an alternative representation.

They store in each cell the probability that a beam is reflected
by this cell.

We provided a sensor model for computing the likelihood of
measurements and showed that the counting procedure
underlying reflection maps yield the optimal map.



Probability

Geometric representation

e Environment modeling by geometric primitives.
e The environment can be approximated:

e line segments - most frequent, high precision — large number
of segments.

e second order curves - better approximation, computationally
expensive, how to plan?

e Pros: maps available, easy planning.

Cons: difficult to build from sensor data.

T =
i B

(a) (b)
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Exact cell decomposition

e Trapezoidal
e Cylindrical

e Triangulation




Probability

How to create a geometric map

line based

e Directly from raw sensor data
e Detection of line segments.
e Correspondence finding.
e Adding new segments
e From a grid map
e Building a grid map.
e Detecting line segments in the grid map.



Probability

Line segment description

Many possibilities

End points (A, B)
Slope—intercept form y =ax+ b
Normal form x cos(a) + ysin(a) = r

Covariance matrix
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Covariance matrix

e Suppose that points {P;}7_;, where P; = (x;, y;) form a line u.
e Covariance matrix is defined:

2
C:|:O-X O-Xz}’:|’

Oxy Oy

2 2

where o5 a o}, are variances in x and y coordinates and oy is

their covariance:

n L L n o
Oxy = Zi:l(XI ,:X)(yl my) = ZI::, XiYi — Myxmy,

" "y
where my = 72’;1 fam, = === %
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Covariance matrix as an ellipse

e We can express covariance (line segment) as an ellipse.

e The directions of semi-axes correspond to the eigenvectors of
this covariance matrix and

e their lengths to the square roots of the eigenvalues.

Eigenvalues can be determined
as:
o2+ 0}2, + \/(0)2( —02)> + 402,
A\ =
! 2
o2+ 0}2, - \/(0)2( —02)> + 402,
Ao = 5

Ratio of the eigenvalues A = )‘—; describe quality of the segment.
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Detection of line segments

e Problem: Find line segments approximating a given set of
points (scan).
e Approaches:
e sequence - points treated one by one.
e iterative - processes whole scan
e Our approach:
e Use sequence algorithm to split the input set into
,,continuous” sub-sets.
e Use iterative algorithm to find line-segments for each sub-set.
e Use covariance matrix to describe the line-segments.
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Sequence algorithms

Successive Edge Following (SEF) Line Tracking (LT)
P 3 Iy n I;_—-;——L_i;‘
Fig
e Processes a raw scan e Processes data points.
(measured distances). o Actual segment is
e if |[ri — ri_1| > Threashold approximated by line (least

then start new segment. squares).
e if d(Ik, pi) > Threashold
then start new segment.
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Successive Edge Following

Example
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Probability

Iterative algorithm

Iterative End Point Fit

Connect the first and last points with a line.

. Detect a point with a maximum distance to the line

If the distance d(/x, pm) > Threashold then split the point
into two groups.

Perform steps 1-3 for each of the groups.

Join pairs of adjoining segments if the resulting segment is
,,good".

ssses "‘\

Merge
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Iterative End Point Fit

Example

After IEPF Final result
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Correspondence finding

e Probleml: are two segments the same?

e Problem?2: how to merge them?

Crowley
(gb;, Jél_, Pis Ugi, Xi, Yis h;), where
@i - slope, p; - distance to origin,
variances ¢; and p; U«%; and aﬁi,
(xi, yi) center h; half length.
Two segments are the same if:

| ¢1 — ¢2 |< 05, + 03,
| p1—p2|< 05 + 03,
(1 —x)?+ (y1 — y2)* < h1 + ho

Skrzypczynski
b

Two segments are the same if:

a+b<x+ Tol
c+d<x+ Tol
at+c<y+ Tol
b+d<y+ Tol



Probability

Map building from a grid map

e Based on occupancy grid proccessing using mathematical
morphology.

Input grid Segmentation Dilation & erosion



Probability

Map building from a grid map

!

Skeleten splitting Final approximation

Skeleton



Probability

Topological map

e defined as a graph - nodes and connections




Probability

Building topological map from occupancy grid
S. Thrun, A. Blcken
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