Simple Neural Network

You are given the following neural network model parametrized by weight vector \mathbf{w}. Model takes as a input vector \mathbf{x} and outputs \mathbf{y} :

$$
y=\sin \left(\mathbf{w}^{T} \mathbf{x}\right)-b
$$

Where:

$$
\mathbf{x}=[2,1], \mathbf{w}=[\pi / 2, \pi], b=0, \tilde{y}=2
$$

1) Draw a computational graph of forward pass of this small neural network
2) Compute feedforward pass with initial weights \mathbf{w} and input data feature \mathbf{x}
3) Calculate gradients of output y with respect to \mathbf{w}, i. e $\frac{\partial y}{\partial w}$
4) Use L_{2} loss (Mean square error) to compute loss value between forward prediction y and label \bar{y}. Add loss into computational graph.
5) Use chain rule to compute the gradient $\frac{\partial L}{\partial \mathrm{w}}$ and update weights with learning rate parameter $\alpha=0.5$
6) Draw computational graph

$$
y=\sin \left(\mathbf{w}^{T} \mathbf{x}\right)-b
$$

1) Draw computational graph

$$
y=\sin \left(\mathbf{w}^{T} \mathbf{x}\right)-b
$$ w

X

1) Draw computational graph

$$
y=\sin \left(\mathbf{w}^{T} \mathbf{x}\right)-b
$$

w

1) Draw computational graph

$$
y=\sin \left(\mathbf{w}^{T} \mathbf{x}\right)-b
$$

w

1) Draw computational graph

$$
y=\sin \left(\mathbf{w}^{T} \mathbf{x}\right)-b
$$

w
-b

1) Draw computational graph

$$
y=\sin \left(\mathbf{w}^{T} \mathbf{x}\right)-b
$$

2) Feedforward pass

1) Draw computational graph

$$
y=\sin \left(\mathbf{w}^{T} \mathbf{x}\right)-b
$$

w

2) Feedforward pass

$$
y=\sin \left(\mathbf{w}^{T} \mathbf{x}\right)-b=
$$

1) Draw computational graph

$$
y=\sin \left(\mathbf{w}^{T} \mathbf{x}\right)-b
$$

w

2) Feedforward pass
$y=\sin \left(\mathbf{w}^{T} \mathbf{x}\right)-b=\sin \left(\left(\begin{array}{ll}\pi / 2 & \pi\end{array}\right)\binom{2}{1}\right)-0=0$

3) Gradients

3) Gradients

[^0]
3) Gradients

$$
\frac{\partial y}{\partial \mathbf{w}}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial\left(w^{T} x\right)} \frac{\partial\left(w^{T} x\right)}{\partial w}
$$

3) Gradients

$$
\frac{\partial y}{\partial z}=\frac{\partial(z-b)}{\partial z}=1
$$

$$
\frac{\partial y}{\partial \mathbf{w}}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial\left(w^{T} x\right)} \frac{\partial\left(w^{T} x\right)}{\partial w}
$$

3) Gradients

$$
\frac{\partial y}{\partial z}=\frac{\partial(z-b)}{\partial z}=1 \quad \frac{\partial z}{\partial\left(w^{T} x\right)}=\frac{\partial \sin \left(w^{T} x\right)}{\partial w^{T} x}=\cos \left(w^{T} x\right)
$$

$$
\frac{\partial y}{\partial \mathbf{w}}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial\left(w^{T} x\right)} \frac{\partial\left(w^{T} x\right)}{\partial w}
$$

3) Gradients

$$
\frac{\partial y}{\partial z}=\frac{\partial(z-b)}{\partial z}=1 \quad \frac{\partial z}{\partial\left(w^{T} x\right)}=\frac{\partial \sin \left(w^{T} x\right)}{\partial w^{T} x}=\cos \left(w^{T} x\right) \quad \frac{\partial\left(w^{T} x\right)}{\partial w}=x
$$

$$
\frac{\partial y}{\partial \mathbf{w}}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial\left(w^{T} x\right)} \frac{\partial\left(w^{T} x\right)}{\partial w}
$$

3) Gradients

$$
\frac{\partial y}{\partial z}=\frac{\partial(z-b)}{\partial z}=1 \quad \frac{\partial z}{\partial\left(w^{T} x\right)}=\frac{\partial \sin \left(w^{T} x\right)}{\partial w^{T} x}=\cos \left(w^{T} x\right) \quad \frac{\partial\left(w^{T} x\right)}{\partial w}=x
$$

- Use Chain rule

$$
\frac{\partial y}{\partial \mathbf{w}}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial\left(w^{T} x\right)} \frac{\partial\left(w^{T} x\right)}{\partial w}=1 * \cos \left(w^{T} x\right) * x=\cos (2 \pi) * x=x
$$

4) Compute L2 loss from prediction and label. Add loss into computational graph
L_{2} loss $=$

5) Compute L2 loss from prediction and label. Add loss into computational graph

$$
L_{2} \text { loss }=\|y-\hat{y}\|^{2}=(0-2)^{2}=4
$$

4) Compute L2 loss from prediction and label. Add loss into computational graph

$$
L_{2} \text { loss }=\|y-\hat{y}\|^{2}=(0-2)^{2}=4
$$

4) Compute L2 loss from prediction and label. Add loss into computational graph

$$
L_{2} \text { loss }=\|y-\hat{y}\|^{2}=(0-2)^{2}=4
$$

5) Compute loss gradients. Update weights.

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{w}}=
$$

5) Compute loss gradients. Update weights.

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{w}}=\frac{\partial \mathcal{L}}{\partial u} \frac{\partial u}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial w^{T} x} \frac{\partial w^{T} x}{\partial w}=
$$

5) Compute loss gradients. Update weights.

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{w}}=\frac{\partial \mathcal{L}}{\partial u} \frac{\partial u}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial w^{T} x} \frac{\partial w^{T} x}{\partial w}=
$$

5) Compute loss gradients. Update weights.

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \mathbf{w}}=\frac{\partial \mathcal{L}}{\partial u} \frac{\partial u}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial w^{T} x} \frac{\partial w^{T} x}{\partial w}= \\
& \frac{\partial u}{\partial y}=\frac{\partial(y-\hat{y})}{\partial y}=1
\end{aligned}
$$

5) Compute loss gradients. Update weights.

6) Compute loss gradients. Update weights.

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{w}}=\frac{\partial \mathcal{L}}{\partial u} \frac{\partial u}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial w^{T} x} \frac{\partial w^{T} x}{\partial w}=2(y-\hat{y}) * 1 * x=-4 x
$$

$$
\frac{\partial u}{\partial y}=\frac{\partial(y-\hat{y})}{\partial y}=1 \quad \frac{\partial \mathcal{L}}{\partial u}=\frac{\partial\|y-\hat{y}\|^{2}}{\partial\|y-\hat{y}\|}=2(y-\hat{y}) \quad \mathbf{w}_{i+1}=\mathbf{w}_{i}-\alpha \frac{\partial \mathcal{L}}{\partial \mathbf{w}}=\binom{\pi / 2+4}{\pi+2}
$$

Convolutional Layer

You are given input feature map \mathbf{x} and kernel \mathbf{w} :

$$
\mathbf{x}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & 1 & -1 \\
0 & 0 & 2
\end{array}\right), \mathbf{w}=\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)
$$

Stride denotes length of convolutional stride, padding denotes symetric zero-padding. Compute outputs of following layers:

1) $\operatorname{conv}(\mathbf{x}, \mathbf{w}$, stride $=1$, padding $=0)=$
2) $\operatorname{conv}(\mathbf{x}, \mathbf{w}$, stride $=3$, padding $=1)=$
3) $\max (\mathbf{x}, 2 x 2)=$

Convolution

$$
\mathbf{z}=\operatorname{conv}(\mathbf{x}, \mathbf{w}, \text { stride }=1, \text { pad }=0)
$$

$$
\mathbf{X}=\begin{array}{|c|c|c|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline 0 & 0 & 2 \\
\hline
\end{array}
$$

$$
\mathbf{W}=\begin{array}{|l|l|}
\hline 1 & -1 \\
\hline 0 & 2 \\
\hline
\end{array}
$$

Convolution
 $$
\mathbf{z}=\operatorname{conv}(\mathbf{x}, \mathbf{w}, \text { stride }=1, \text { pad }=0)
$$

$$
\mathbf{X}=\begin{array}{|l|l|l|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline 0 & 0 & 2 \\
\hline
\end{array} \quad \mathbf{W}=\begin{array}{|l|c|}
\hline 1 & -1 \\
\hline 0 & 2 \\
\hline
\end{array}
$$

$$
z_{11}=\operatorname{sum}\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] *\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\right)=3
$$

Convolution
 $$
\mathbf{z}=\operatorname{conv}(\mathbf{x}, \mathbf{w}, \text { stride }=1, \text { pad }=0)
$$

$$
\mathbf{X}=\begin{array}{|c|c|c|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline
\end{array} \quad \mathbf{W}=\begin{array}{|l|l|}
\hline 1 & -1 \\
\hline 0 & 2 \\
\hline
\end{array}
$$

$$
z_{11}=\operatorname{sum}\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] *\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\right)=3 \quad z_{12}=\operatorname{sum}\left(\left[\begin{array}{cc}
0 & 2 \\
1 & -1
\end{array}\right] *\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\right)=-4
$$

Convolution
 $$
\mathbf{z}=\operatorname{conv}(\mathbf{x}, \mathbf{w}, \text { stride }=1, \text { pad }=0)
$$

$$
\mathbf{X}=\begin{array}{|c|c|c|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline
\end{array} \quad \mathbf{W}=\begin{array}{|l|l|}
\hline 1 & -1 \\
\hline 0 & 2 \\
\hline
\end{array}
$$

$$
z_{11}=\operatorname{sum}\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] *\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\right)=3 \quad z_{12}=\operatorname{sum}\left(\left[\begin{array}{cc}
0 & 2 \\
1 & -1
\end{array}\right] *\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\right)=-4
$$

$$
z_{21}=\operatorname{sum}\left(\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right] *\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\right)=1 \quad z_{22}=\operatorname{sum}\left(\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right] *\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\right)=6
$$

Convolution

$$
\mathbf{z}=\operatorname{conv}(\mathbf{x}, \mathbf{w}, \text { stride }=1, \text { pad }=0)
$$

$$
\mathbf{X}=\begin{array}{|c|c|c|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline
\end{array} \quad \mathbf{W}=\begin{array}{|c|c|}
\hline 1 & -1 \\
\hline 0 & 2 \\
\hline
\end{array} \quad \mathbf{Z}=\begin{array}{|c|c|}
\hline 3 & -4 \\
\hline 1 & 6 \\
\hline
\end{array}
$$

$$
z_{11}=\operatorname{sum}\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] *\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\right)=3 \quad z_{12}=\operatorname{sum}\left(\left[\begin{array}{cc}
0 & 2 \\
1 & -1
\end{array}\right] *\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\right)=-4
$$

$$
z_{21}=\operatorname{sum}\left(\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right] *\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\right)=1 \quad z_{22}=\operatorname{sum}\left(\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right] *\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\right)=6
$$

$$
\mathbf{z}=\operatorname{conv}(\mathbf{x}, \mathbf{w}, \text { stride }=3, \text { padding }=1)
$$

$$
\mathbf{X}=\begin{array}{|c|c|c|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline
\end{array} \quad \mathbf{W}=\begin{array}{|c|c|}
\hline 1 & -1 \\
\hline 0 & 2 \\
\hline
\end{array}
$$

$\mathbf{x}_{\text {padding }}=$| 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 2 | 0 |
| 0 | 2 | 1 | -1 | 0 |
| 0 | 0 | 0 | 2 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$$
\mathbf{z}=\operatorname{conv} v(\mathbf{x}, \mathbf{w}, \text { stride }=3, \text { padding }=1)
$$

$$
\mathbf{X}=\begin{array}{|c|c|c|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline
\end{array} \quad \mathbf{W}=\begin{array}{|c|c|}
\hline 1 & -1 \\
\hline 0 & 2 \\
\hline
\end{array}
$$

$\mathbf{x}_{\text {padding }}=$| 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 2 | 0 |
| 0 | 2 | 1 | -1 | 0 |
| 0 | 0 | 0 | 2 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$$
\mathbf{z}=\operatorname{conv} v(\mathbf{x}, \mathbf{w}, \text { stride }=3, \text { padding }=1)
$$

$$
\mathbf{X}=\begin{array}{|c|c|c|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline
\end{array} \quad \mathbf{W}=\begin{array}{|c|c|}
\hline 1 & -1 \\
\hline 0 & 2 \\
\hline
\end{array}
$$

$\mathbf{x}_{\text {padding }}=$| 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 2 | 0 |
| 0 | 2 | 1 | -1 | 0 |
| 0 | 0 | 0 | 2 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$$
\mathbf{z}=\operatorname{conv}(\mathbf{x}, \mathbf{w}, \text { stride }=3, \text { padding }=1)
$$

$$
\mathbf{X}=\begin{array}{|c|c|c|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline
\end{array} \quad \mathbf{W}=\begin{array}{|c|c|}
\hline 1 & -1 \\
\hline 0 & 2 \\
\hline
\end{array}
$$

$$
\mathbf{z}=\operatorname{conv}(\mathbf{x}, \mathbf{w}, \text { stride }=3, \text { padding }=1)
$$

$$
\mathbf{X}=\begin{array}{|c|c|c|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline
\end{array} \quad \mathbf{W}=\begin{array}{|c|c|}
\hline 1 & -1 \\
\hline 0 & 2 \\
\hline
\end{array}
$$

$$
\mathbf{z}=\operatorname{conv}(\mathbf{x}, \mathbf{w}, \text { stride }=3, \text { padding }=1)
$$

$$
\mathbf{p}=\max (\mathbf{x}, 2 x 2)
$$

$$
\mathbf{X}=\begin{array}{|c|c|c|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline 0
\end{array} \quad \mathbf{W}=\begin{array}{|l|l|}
\hline 1 & -1 \\
\hline 0 & 2 \\
\hline
\end{array}
$$

$$
\mathbf{X}=\begin{array}{|c|c|c|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline 0 & 0 & 2 \\
\hline
\end{array}
$$

$$
\mathbf{z}=\operatorname{conv}(\mathbf{x}, \mathbf{w}, \text { stride }=3, \text { padding }=1)
$$

$$
\mathbf{p}=\max (\mathbf{x}, 2 x 2)
$$

$$
\mathbf{X}=\begin{array}{|c|c|c|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & -1 \\
\hline
\end{array} \quad \mathbf{W}=\begin{array}{|l|l|}
\hline 1 & -1 \\
\hline 0 & 2 \\
\hline
\end{array}
$$

$$
\left.\mathbf{X}=\begin{array}{|c|c|c}
\hline 1 & 0 & 2 \\
2 & 1 & -1 \\
0 & 0 & 2
\end{array}\right] \mathbf{p}=\begin{array}{|l|l|}
\hline 2 & 2 \\
\hline 2 & 2 \\
\hline
\end{array}
$$

[^0]: $\frac{\partial y}{\partial \mathbf{w}}$

