Simple Neural Network

You are given the following neural network model parametrized by weight vector \mathbf{w} . Model takes as a input vector \mathbf{x} and outputs y:

$$y = sin(\mathbf{w}^T \mathbf{x}) - b$$

Where:

$$\mathbf{x} = [2, 1], \ \mathbf{w} = [\pi/2, \pi], \ b = 0, \ \tilde{y} = 2$$

- 1) Draw a computational graph of forward pass of this small neural network
- 2) Compute feedforward pass with initial weights w and input data feature x
- 3) Calculate gradients of output y with respect to \mathbf{w} , i. e $\frac{\partial y}{\partial \mathbf{w}}$
- 4) Use L_2 loss (Mean square error) to compute loss value between forward prediction y and label $ilde{y}$. Add loss into computational graph.
- 5) Use chain rule to compute the gradient $\frac{\partial L}{\partial \mathbf{w}}$ and update weights with learning rate parameter α = 0.5

$$y = sin(\mathbf{w}^T\mathbf{x}) - b$$

$$y = sin(\mathbf{f w}^T\mathbf{x}) - b$$

W

X

$$y = sin(\mathbf{w}^T\mathbf{x}) - b$$

2) Feedforward pass

$$y = sin(\mathbf{f w}^T\mathbf{x}) - b$$

2) Feedforward pass

$$y = sin(\mathbf{w}^T \; \mathbf{x}) - b =$$

2) Feedforward pass

$$y = sin(\mathbf{w}^{^T} \mathbf{x}) - b = \ sin((\pi/2 \ \pi) inom{2}{1}) - 0 = \ \mathbf{0}$$

 $\frac{\partial y}{\partial \mathbf{w}}$

$$\frac{\partial y}{\partial \mathbf{w}} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial (w^T x)} \frac{\partial (w^T x)}{\partial w}$$

$$rac{\partial y}{\partial z} = rac{\partial (z-b)}{\partial z} = 1$$

$$\frac{\partial y}{\partial \mathbf{w}} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial (w^T x)} \frac{\partial (w^T x)}{\partial w}$$

$$oxed{rac{\partial y}{\partial z} = rac{\partial (z-b)}{\partial z} = 1} oxed{rac{\partial z}{\partial (w^Tx)} = rac{\partial sin(w^Tx)}{\partial w^Tx} = cos(w^Tx)}$$

$$\frac{\partial y}{\partial \mathbf{w}} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial (w^T x)} \frac{\partial (w^T x)}{\partial w}$$

$$\left[rac{\partial y}{\partial z} = rac{\partial (z-b)}{\partial z} = 1
ight] \left[rac{\partial z}{\partial (w^Tx)} = rac{\partial sin(w^Tx)}{\partial w^Tx} = cos(w^Tx)
ight] \left[rac{\partial (w^Tx)}{\partial w} = x
ight]$$

$$\frac{\partial y}{\partial \mathbf{w}} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial (w^T x)} \frac{\partial (w^T x)}{\partial w}$$

$$oxed{rac{\partial y}{\partial z} = rac{\partial (z-b)}{\partial z} = 1} oxed{rac{\partial z}{\partial (w^Tx)} = rac{\partial sin(w^Tx)}{\partial w^Tx} = cos(w^Tx)} oxed{rac{\partial (w^Tx)}{\partial w} = x}$$

Use Chain rule

$$rac{\partial y}{\partial \mathbf{w}} \ = rac{\partial y}{\partial z} rac{\partial z}{\partial (w^T x)} rac{\partial (w^T x)}{\partial w} = 1 * cos(w^T x) * x = cos(2\pi) * x = x$$

$$L_2 \; loss =$$

$$|L_2| loss = ||y - \hat{y}||^2 = (0-2)^2 = 4$$

$$|L_2| loss = ||y - \hat{y}||^2 = (0-2)^2 = 4$$

$$|L_2| loss = ||y - \hat{y}||^2 = (0-2)^2 = 4$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} =$$

$$rac{\partial \mathcal{L}}{\partial \mathbf{w}} = rac{\partial \mathcal{L}}{\partial u} rac{\partial u}{\partial u} rac{\partial y}{\partial z} rac{\partial z}{\partial w^T x} rac{\partial w^T x}{\partial w} =$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \left[\frac{\partial \mathcal{L}}{\partial u} \frac{\partial u}{\partial y} \right] \frac{\partial y}{\partial z} \frac{\partial z}{\partial w^T x} \frac{\partial w^T x}{\partial w} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \left[\frac{\partial \mathcal{L}}{\partial u} \frac{\partial u}{\partial y} \right] \frac{\partial y}{\partial z} \frac{\partial z}{\partial w^T x} \frac{\partial w^T x}{\partial w} =$$

$$\left| \frac{\partial u}{\partial y} = \frac{\partial (y - \hat{y})}{\partial y} = 1 \right|$$

-b
$$\alpha=0.5$$
 $\mathcal{L}=4$

W $\sin(\cdot)$ $\sin(\cdot)$ y $+$ y $+$ y $+$ y $+$ x $+$

$$rac{\partial \mathcal{L}}{\partial \mathbf{w}} = \left[rac{\partial \mathcal{L}}{\partial u} \, rac{\partial u}{\partial y}
ight] rac{\partial y}{\partial z} \, rac{\partial z}{\partial w^T x} \, rac{\partial w^T x}{\partial w} = 2(y - \hat{y}) * 1 * x = -4x$$

$$oxed{rac{\partial u}{\partial y} = rac{\partial (y - \hat{y})}{\partial y} = 1} oxed{rac{\partial \mathcal{L}}{\partial u} = rac{\partial ||y - \hat{y}||^2}{\partial ||y - \hat{y}||}} = 2(y - \hat{y})$$

$$\left|rac{\partial \mathcal{L}}{\partial \mathbf{w}}
ight|=\left|rac{\partial \mathcal{L}}{\partial u} rac{\partial u}{\partial y}
ight|rac{\partial y}{\partial z} rac{\partial z}{\partial w^T x} rac{\partial w^T x}{\partial w}
ight|=2(y-\hat{y})*1*x=-4x$$

$$egin{aligned} rac{\partial u}{\partial y} = rac{\partial (y - \hat{y})}{\partial y} = 1 \end{aligned} egin{aligned} rac{\partial \mathcal{L}}{\partial u} = rac{\partial ||y - \hat{y}||^2}{\partial ||y - \hat{y}||} = 2(y - \hat{y}) \end{aligned} \mathbf{w}_{i+1} = \mathbf{w}_i - lpha rac{\partial \mathcal{L}}{\partial \mathbf{w}} = \begin{pmatrix} \pi/2 + 4 \\ \pi + 2 \end{pmatrix} \end{aligned}$$

Convolutional Layer

You are given input feature map **x** and kernel **w**:

$$\mathbf{x} = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}, \ \mathbf{w} = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$$

Stride denotes length of convolutional stride, padding denotes symetric zero-padding.

$$1)\; conv(\; \mathbf{x}, \mathbf{w}, \; stride = 1, \; padding = 0) \; = \;$$

$$2)\;conv(\;\mathbf{x},\mathbf{w},\;stride=3,\;padding=1)\;=\;$$

3)
$$max(\mathbf{x}, 2x2) =$$

$$\mathbf{z} = conv(\ \mathbf{x}, \mathbf{w},\ stride = 1,\ pad = 0)$$

$$\mathbf{z} = conv(\ \mathbf{x}, \mathbf{w},\ stride = 1,\ pad = 0)$$

$$z_{11}=sum(egin{bmatrix}1&0\2&1\end{bmatrix}*egin{bmatrix}1&-1\0&2\end{bmatrix})=3$$

$$\mathbf{z} = conv(\ \mathbf{x}, \mathbf{w},\ stride = 1,\ pad = 0)$$

$$\mathbf{x} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

$$z_{11}=sum(egin{bmatrix}1&0\2&1\end{bmatrix}*egin{bmatrix}1&-1\0&2\end{bmatrix})=3 \hspace{0.5cm} z_{12}=sum(egin{bmatrix}0&2\1&-1\end{bmatrix}*egin{bmatrix}1&-1\0&2\end{bmatrix})=-4$$

$$\mathbf{z} = conv(\mathbf{x}, \mathbf{w}, \ stride = 1, \ pad = 0)$$

$$\mathbf{x} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

$$z_{11}=sum(egin{bmatrix}1&0\2&1\end{bmatrix}*egin{bmatrix}1&-1\0&2\end{bmatrix})=3 \hspace{0.5cm} z_{12}=sum(egin{bmatrix}0&2\1&-1\end{bmatrix}*egin{bmatrix}1&-1\0&2\end{bmatrix})=-4$$

$$z_{21}=sum(egin{bmatrix}2&1\0&0\end{bmatrix}*egin{bmatrix}1&-1\0&2\end{bmatrix})=1 \hspace{0.5cm} z_{22}=sum(egin{bmatrix}1&-1\0&2\end{bmatrix}*egin{bmatrix}1&-1\0&2\end{bmatrix})=6$$

$$\mathbf{z} = conv(\mathbf{x}, \mathbf{w}, \ stride = 1, \ pad = 0)$$

$$\mathbf{x} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

$$\mathbf{Z} = \begin{bmatrix} 3 & -4 \\ 1 & 6 \end{bmatrix}$$

$$z_{11}=sum(egin{bmatrix}1&0\2&1\end{bmatrix}*egin{bmatrix}1&-1\0&2\end{bmatrix})=3\hspace{0.5cm}z_{12}=sum(egin{bmatrix}0&2\1&-1\end{bmatrix}*egin{bmatrix}1&-1\0&2\end{bmatrix})=-4$$

$$z_{21}=sum(egin{bmatrix}2&1\0&0\end{bmatrix}*egin{bmatrix}1&-1\0&2\end{bmatrix})=1 \hspace{0.5cm} z_{22}=sum(egin{bmatrix}1&-1\0&2\end{bmatrix}*egin{bmatrix}1&-1\0&2\end{bmatrix})=6$$

$$\mathbf{z} = conv(\mathbf{x}, \mathbf{w}, stride = 3, padding = 1)$$

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\mathbf{z} = conv(\mathbf{x}, \mathbf{w}, stride = 3, padding = 1)$$

$$\mathbf{x} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\mathbf{x}_{padding} = egin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 2 & 1 & -1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{z} = conv(\mathbf{x}, \mathbf{w}, stride = 3, padding = 1)$$

$$\mathbf{x} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\mathbf{x}_{padding} = egin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 2 & 0 \ 0 & 2 & 1 & -1 & 0 \ 0 & 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{z} = conv(\mathbf{x}, \mathbf{w}, stride = 3, padding = 1)$$

$$\mathbf{x} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

$$\mathbf{x}_{padding} = egin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 2 & 0 & \ 0 & 2 & 1 & -1 & 0 & \ 0 & 0 & 0 & 2 & 0 & \ 0 & 0 & 0 & 0 & 0 & \ \end{pmatrix}$$

$$\mathbf{z} = conv(\mathbf{x}, \mathbf{w}, stride = 3, padding = 1)$$

$$\mathbf{x} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\mathbf{x}_{padding} = egin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 2 & 0 \ 0 & 2 & 1 & -1 & 0 \ 0 & 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 0 & 0 \ \end{pmatrix}$$

$$\mathbf{z} = conv(\mathbf{x}, \mathbf{w}, stride = 3, padding = 1)$$

$$\mathbf{p} = max(\mathbf{x}, 2 x 2)$$

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\mathbf{x}_{padding} = egin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 2 & 0 \ 0 & 2 & 1 & -1 & 0 \ 0 & 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 0 & 0 \ \end{pmatrix}$$

$$\mathbf{z} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{z} = conv(\mathbf{x}, \mathbf{w}, stride = 3, padding = 1)$$

$$\mathbf{p} = max(\mathbf{x}, 2 x 2)$$

$$\mathbf{x} = \begin{array}{c|cccc} 1 & 0 & 2 \\ \hline 2 & 1 & -1 \\ \hline 0 & 0 & 2 \end{array}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \longrightarrow \mathbf{p} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$\mathbf{x}_{padding} = egin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 2 & 0 \ 0 & 2 & 1 & -1 & 0 \ 0 & 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{z} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$