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Outline

* Pre-requisites: linear algebra, Bayes rule
« MAP/ML estimation, prior and overfitting
* Linear regression

e Linear classification
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e Fast summary of Maximum A-Posteriori estimation of
parameters of a probability distribution
* Motivation example: estimation of a motion model

motion Y

| robot  —p
enginetorque x @ @

terrain
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e Fast summary of Maximum A-Posteriori estimation of
parameters of a probability distribution
* Motivation example: estimation of a motion model

motion Y J X x
engine torque x @ @
terrain
D ={x1,y1--- XN, YN}
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e Fast summary of Maximum A-Posteriori estimation of
parameters of a probability distribution
* Motivation example: estimation of a motion model

motion ¥ Y X

| “obot | —p (
enginetorque x @ @
terrain X

e We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1...XN,YN |
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e Fast summary of Maximum A-Posteriori estimation of
parameters of a probability distribution
* Motivation example: estimation of a motion model
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e Fast summary of Maximum A-Posteriori estimation of
parameters of a probability distribution
* Motivation example: estimation of a motion model
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p(y|x, w) ~ Ny (wiz + wo, %)
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w* = arg max Hp(yi\xi, w) | = arg m“i,n Z(wﬂb’z +wo — yi)°
i i



p(y|x, w) ~ ./\/’y(wgzz:2 + wix + wo, 02)
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p(y|x, w) ~ N, (wax* + wzx® + wex? + wix + wg, o)
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1.0 0.0

w" = arg max (H p(yil X, W))

1



W' = arg max
W

0.8

1.0 0.0

H p(yi ‘X’b W)p(W)
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» We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1...XN, YN }

D
W' = arg mve,xp(W\D) = arg mvgx P L‘Z%Z;(W)
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» We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1...XN, YN }

X

p(D|w)p(w)
w' = argmax p(w|D) = arg max
PP w p(D)

= arg mvexp(D\w)p(w) = arg mvgxp(xl, Y1 ... XN, YN |W)p(W)

m Ehas . . . .
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» We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1...XN, YN }

X

p(D|w)p(w)
w' = argmax p(w|D) = arg max
i) w p(D)

= arg mvexp(D\w)p(w) = arg mvgxp(xl, Y1 ... XN, YN |W)p(W)

.i.d.
= arg max (H p(x;, in)) p(w)

W .
1
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e We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1...XN,YN }

X

p(D|w)p(w)
w' = argmax p(w|D) = arg max
PP w p(D)

= arg mvgxp(D\w)p(w) = arg mvexp(xl, Y1 ... XN, YN |W)p(W)

HP(Xi, yzW)) p(w)

1

= arg max (H p(Yil X, W)P(Xi)) p(w)

1

= arg max
W
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e We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1...XN,YN }

) p(D|w)p(w)
w' = argmax p(w|D) = arg max
= arg maxp(D\w = arg maxp(x1 Y1 ... XN, YN |W)p(W)

— angmax prz,y@w)m

(

= argmax (Hp Yi|Xi, W p(Xi)) p(w)

= arg max (Z log(p(yi|xi, w)) + logp(xz-)> + log p(w)
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» We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1...XN, YN }

= argmax (Z log(p(y;|x, w))) log p(w)

W

= argmin (Z — log(p(vi|xi, W))) + (—log p(w))

1

log likelihood prior/regulariser

= arg max (H p(yilx;, W)p(w))

1
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W>l<

= argmin|( Y —log(p(yi|xi, w))

0.1

W

1

log likelihood

0.2 0.3 0.4 0.5

0.6

_|_

(—log p(w))

prior/regulariser
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W>l<

R
IR NP3

= argmin Z —log(p(yi|xi, w)) ||+ (—logp(w))

log likelihood prior/regulariser
Y1 § X
(

p(y\x, W)
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W>l<

R
) ]

= arg min Z—log(p(dei»W)) +

W

1

log likelihood prior/regulariser

p(y\x, W)

Czech Technical University in Prague
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w* = argmin|( » —log(p(yi|xi, w)) ||+ (~logp(w))

W

1

log likelihood prior/regulariser

Regression: P(y|x, w) ~ N, (f(x,w),0?)
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W>l<

= argmin|( Y ~—log(p(ys|x;, ))

W

1

log likelihood

_|_

prior/regulariser

(—log p(w))

Regression: P(y|x, w) ~ N, (f(x,w),0?)

R
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| = X
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w* = argmin|( » —log(p(yi|xi, w)) ||+ (~logp(w))

W

1

log likelihood prior/regulariser

Regression: P(y|x, w) ~ N, (f(x,w),0?)
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w* = argmin|( » —log(p(yi|xi, w)) ||+ (~logp(w))

W

1

log likelihood prior/regulariser

Regression: P(y|x, w) ~ N, (f(x,w),0°)
* Probability of observing ¥; when measuring x; IS

P(yi|xi, W) = \/2202 eXp ( (f(Xi;Va)Q_ yi)2>
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w = argmin| 3 — log(p(yilx;, W)

W

log likelihood prior/regulariser

1 ( (f (x4, W) — yi)2>

p(yi‘Xf,;,W) — Voro?2 exXp 202

* | et us substitute it into the loss Y 4
function (ignore prior for now)
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w = argmin|( 3 — log(p(y:lxi, W)

W

1

log likelihood prior/regulariser

Regression: P(y|x, w) ~ N, (f(x,w),0°)
* Probability of observing ¥; when measuring x; IS
_ 1 (f(xi, W) — yi)2
p(yi|xi, W) = oo P ( 52
* which yields well known L2 loss

y A
— arg mm g (%4, W yz)
» Especially f(x, w)=w'X
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w = argmin|( 3 — log(p(y:lxi, W)

W

1

log likelihood prior/regulariser

Regression: P(y|x, w) ~ N, (f(x,w),0°)
* Probability of observing ¥; when measuring x; IS

P(yi|xi, W) = \/2202 eXp ( (f(Xij;Na)Q_ yi)2>

* which yields well known L2 loss

= arg mm Z (xi, W yz)

T—

* Especially f(x W) =W
yields closed-form solution
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Other examples discussed during the course

3D pose regression
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Other examples discussed during the course

3D pose regression
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Other examples discussed during the course

Camera calibration
y AN

2D point
on camera image plane

| >
| X
|

3D point (e.g. lidar measurement)
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Other examples discussed during the course

Two-class object classification from RGB images

y1
alrplane
car
%&ﬁiﬂ Czech Technical University in Prague
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Other examples discussed during the course

Two-class object classification from RGB images

Y1 ;
airplane | . .......................
car &=
| X

I
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Other examples discussed during the course

Two-class object classification from RGB images

Y1 i
airplane I . .................................
car & S
| X

I
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Other examples discussed during the course

Reactive control
y N\

left/right steering |- - - - - - - -
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Other examples discussed during the course

Generative networks

winter image

summer image
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Other examples discussed during the course

e “Xx" and/or “y” could be high-dimensional

 Assuming Gaussian noise is in many cases myopic
* Pose regression left/right hand is often indistinguishable
* Right/left avoiding of an obstacle should be replaced by
a mean (center).
* Coloring of grayscale images is also obviously not
gaussian

e Linear function is obviously insufficient in many cases =>
more complex models needed.

K Czech Technical University in Prague
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wh = argmin|( 37~ log(p(yi i, w)

log likelihood prior/regulariser

* Prior is important:

no prior, powerful f => overtfitting
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wh = argmin|( 37~ log(p(yi i, w)

log likelihood prior/regulariser
* Prior is important:

no prior, simple f => underfitting

L (% W)
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w* = arg min Z—log(p(inXuW)) + (—log p(w))

o log likelihood oriorrequlariser
° PrIOr 1S 'mpOl’tan’[;
good prior

y 0\ 9 f(X”L)W)

X wenenrs

. X
0“ >
X
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w* = argmin|( » —log(p(yi|xi, w)) ||+ (~logp(w))

W

1

log likelihood prior/regulariser
* Prior is important:

* Any prior knowledge restricts class of functions f(x;, w)
(e.q. for the class of linear functions the probability of
non-zero weight for higher degrees monomials is zero)

K Czech Technical University in Prague
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W

w* = argmin (Z — log(p(yixi,W))) + (= logp(w))

1

log likelihood prior/regulariser
* Prior is important:

* Any prior knowledge restricts class of functions f(x;, w)
(e.q. for the class of linear functions the probability of
non-zero weight for higher degrees monomials is zero)

* Gaussian prior p(w) ~ N, (0, All) yields L2 regularization
(it adds eye matrix to least squares)

%‘ﬁiﬁ Czech Technical University in Prague
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*

w* = arg min Z—log(p(yi\XuW)) + (—log p(w))

log likelihood prior/regulariser
* Prior is important:

* Any prior knowledge restricts class of functions f(x;, w)
(e.g. probability of non-zero weight for higher degrees
monomials is zero)

* Gaussian prior p(w) ~ N, (0, All) yields L2 regularization
(it adds eye matrix to least squares)

* Regression with L1 regularization is known as Lasso

) Czech Technical University in Prague
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W

w* = argmin (Z — log(p(yixi,W))) + (= logp(w))

1

log likelihood prior/regulariser
* Prior is important:

* Any prior knowledge restricts class of functions f(x;, w)
(e.g. probability of non-zero weight for higher degrees
monomials is zero)

* Gaussian prior p(w) ~ N, (0, All) yields L2 regularization
(it adds eye matrix to least squares)

* Regression with L1 regularization is known as Lasso

* Well chosen prior partially reduces overfitting

 Occam’s Razor

K Czech Technical University in Prague
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w* = argmin|{ » —log(p(yi|xi, w)) ||+ (~log p(w))

W

1

loss function prior/regulariser

-a — "

=3
)

William of Ockham leprechauns can be
(1287-1347) involved in any explanation
https://en.wikipedia.org/wiki/Occam%2/s_razor
%ﬁ-fi’é Czech Technical University in Prague
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w* = argmin|( » —log(p(yi|xi, w)) ||+ (~logp(w))

W :
(

log likelihood prior/regulariser

It is very important to avoid any “not-well justified
leprechauns” In the model, otherwise any learning
(parameter estimations) may suffer from too complex

explanations => overfitting
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W

w* = argmin (Z — log(p(yixi,W))) + (= logp(w))

1

log likelihood prior/regulariser

* |tis very important to avoid any “not-well justified
leprechauns” In the model, otherwise any learning
(parameter estimations) may suffer from too complex
explanations => overfitting

* Consequently we study different phenomenas
e animal cortex structure (for ConvNets)

e geometry of rigid motion (for robot/scene motion or DKT)
* projective transformation of pinhole cameras
to create as simple (i.e.leprechauns-free) model as possible
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w* = argmin|{ »_ ~log(p(yilxi, w))
ML estimate

log likelihood
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w* = argmin|( » —log(p(yi|xi, w))
ML estimate log likelihood

MAP estimate

b{!_;?j :

- (—log p(w))

prior/regulariser
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Conclusions

 Explained regression as MAP/ML estimator
e Discussed under/overtitting and regularisations

Competencies required for the test T1

* Derive MAP/ML estimate for regression,

 Compute L2-loss,

 Understand ditference between loss, likelihood and prior
* Understand role of prior in undertitting/overtitting.
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