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Outline

* |ayers:
e convolutional layer
* activation function (i.e. non-linearities)
* pbatch normalization layer
* max-pooling layer
* |oss-layers
e summary of the learning procedure
* train, test, val data,
* nyper-parameters,
* regularizations
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2D convolution forward pass
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# initialise
import torch.nn as nn
# define 2D convolutional laxer

first layer = nn.Conv2d(in channels=3, out channels=2,
kernel size=2, stride=1,
padding=1)
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2D convolution forward pass
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also number

# initialise of kernels
import torch.nn as nn
# define 2D convolutional laxer

first layer = nn.Conv2d(in channels=3, out channels=3,
kernel size=2, stride=1,
padding=1)
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2D convolution forward pass

X

OXOX3
also number

# initialise of kernels
import torch.nn as nn
# define 2D convolutional laxer
first layer = nn.Conv2d(in channels=3, out channels=2,

kernel size=2, stride=1,

padding=1)
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2D convolution forward pass
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Very important property of convolutional layer is:

Local gradient is also convolution !!!
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Learning
What happens to deep conv outputs when weights are huge?

y = torch.randn(1000,1)

for 1 1n range(20):
weights = torch.randn(1000,1000)
y = welaghts @ v
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Learning
What happens to deep conv outputs when weights are small”?

y = torch.randn(1000,1)

for 1 1n range(30):
weights = torch.randn(1000,1000)/100
y = weights @ y
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Learning
What happens to deep conv gradient when weights are small’:
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Learning
What happens to deep conv gradient when weights are small”

X = torch.randn(1000,1)
X.requires grad ()
y=X
for 1 1n range(30):
weights = torch.randn(1000,1000)/100

y = weights @ y
y.sum() .backward()
X.grad 120 -
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Outline

* |ayers:
* convolutional layer
e activation function (i.e. non-linearities)
* pbatch normalization layer
* max-pooling layer
* |oss-layers
e summary of the learning procedure
* train, test, val data,
* nyper-parameters,
* regularizations
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Activation functions

S|gmo|d 1 Leaky RelL U )
o(z) = —1 max(0.1z, x)
l4-e—*

tanh Maxout
tanh(fB ) e ? max (wi x + by, was x + bs)
RelLU FLU
>
max(0, ) v w2l
B § ale" —1) <0 o—rrorA i
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Learning
What happens to deep conv outputs when weights are huge?

y = torch.randn(1000,1)

for 1 1n range(20):
weights = torch.randn(1000,1000)
y = weights @ y
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Learning
What happens to deep sigm outputs when weights are huge?

y = torch.randn(1000,1)

for 1 1n range(30):
weights = torch.randn(1000,1000)
y = torch.sigmoid(weights @ y)
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Learning
e |let us plug image as input, what values are propagated?
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D
feature feature featurel oo feature
map map map | " map
Image ?2?? layer: 27?27?
layer: conv sigmoid layer: convZ
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Learning
e |let us plug image as input, what values are propagated?
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(—1;1) (—00; +00)layer:  (0;1)
layer: conv sigmoid layer: convZ
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Learning
What happens to deep sigm outputs when weights are huge?
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. conv sigm 7?77 conv2 sigm 77?7
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Learning
What happens to deep sigm outputs when weights are huge?
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* what happen to backprop gradient when weights are huge”
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* what happen to backprop gradient when weights are huge”
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* what happen to backprop gradient when weights are huge”

Op _ Oy1 dv Op Op _ Oy dv Op
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* what happen to backprop gradient when weights are huge”
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* what happen to backprop gradient when weights are huge”
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* what happen to backprop gradient when weights are huge”

1

Sigmoid
o(x) = 1+(13—‘”
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* what happen to backprop gradient when weights are huge”

Sigmoid T a3 =0
o(r) = 1+(13—‘”
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* what happen to backprop gradient when weights are huge”

1

Sigmoid * zero gradient when saturated
o(z) = —1 * not zero-centered (pos. output)
trem® /'« computationally expensive
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e what happens when sigmoid input is only positive?

1

Sigmoid * zero gradient when saturatead
o(z) = —1 * not zero-centered (pos. output)
trem®  ___Jl « computationally expensive
@: L1 - 1 ap =/ —ap = T2 - 1 ap =7
8UJ1 a’U 8?1]2 an
oy1 1

oy D@D
Owsy >
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e what happens when sigmoid input is only positive?

1

Sigmoid
o(r) = 1+(13—‘”
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e what happens when sigmoid input is only positive?

1

Sigmoid

o(r) = 1+(13—‘”

op Op Op 0
Op_ 4. 0p Op _ 4y . 0D
Ow1 . ov = Ows ) OV >0

dwy
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e what happens when sigmoid input is only positive?

1

Sigmoid
o(r) = 1+(1i_‘”
Op Op Op 0 0
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e what happens when sigmoid input is only positive?

1

Sigmoid
o(x) = 1+(1i_‘”
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e what happens when sigmoid input is only positive?

Sigmoid oL(w)  OL(p)
0(T) = t5e= ow  Op
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e what happens when sigmoid input is only positive?

Sigmoid1 oL(w) OL(p) Ip =0
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e what happens when sigmoid input is only positive?

1
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e what happens when sigmoid input is only positive?

1
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e what happens when sigmoid input is only positive?

1

Singidl 0L(w) OL(p) Op -0
0(T) = {7o== ow  Jdp 0w <0
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e what happens when sigmoid input is only positive?

1

Sigmoid 0L(w) OL(p) dp -0
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e what happens when sigmoid input is only positive?

1

Sigmoid 0L(w) OL(p) dp -0
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e what happens when sigmoid input is only positive?

1

Sigmoid 0L(w) OL(p) dp -0
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e what happens when sigmoid input is only positive?

1

Sigﬂmiﬂ'1 0L(w) OL(p) Op -0
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R
IR NP3

-10 10

Toc

Ow

opt

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

41



e what happens when sigmoid input is only positive?

1

Sigﬂfmiﬁ'1 0L(w) OL(p) Op -0
0(T) = {7o== ow  Jdp 0w <0
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e what happens when sigmoid input is only positive?

1

Singidl 0L(w) OL(p) Op -0
0(T) = {7o== ow  Jdp 0w <0

stgmotd
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* what happens when sigmoid input is only positive”

SR 38
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sigmoid activation function
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* what happens when sigmoid input is only positive”

step

tanh activation function

Czech Technical University in Prague
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Activation functions

1

Sigmoid * zero gradient when saturatead
o(z) = —1 * not zero-centered (pos. output)
t+e /., s computationally expensive

,ﬁ%ﬁ?ﬁﬁ Czech Technical University in Prague "
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Activation functions

1

Sigmoid * zero gradient when saturatead
o(z) = —1 * not zero-centered (pos. output)
t+e /. s computationally expensive

PyTorch: nn.Sigmoid()

A

] e ] Faculty of Electrical Engineering, Department of Cybernetics 4
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tanh
tanh(z)

Activation functions
1 ,f---""'

-10 ‘ 10
1

* zero gradient when saturated

e computationally expensive

 Pylorch

: nn.Tanh ()

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Activation functions

10

RelLU
max (0, x)

—-10

o Zero-gradientwhen-saturated (partially => dead Rel.U!)

* Nnot zero-centered (only positive ouputs)

¢ comptatoRaly-expehRsive

e Pylorch: nn.ReLu()

O max(0, ) 0 z<0

* packprop: —
ox 1 otherwise
%i% Czech Technical University in Prague
] W1y Faculty of Electrical Engineering, Department of Cybernetics
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Activation functions

10

RelLU
max (0, x)

-10 10

o zero-gradientwhen-saturated (partially => dead RelL U!)

* Not zero-centered (only positive ouputs)

* computationaty-expensive

L9 M
o
x OO CQ\
XX o 00>
X x © X

>
L1
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Activation functions

10

Leaky RelLU

max(0.1z, x)

1 10

¢ Zero-gradientwhen-saturated
. OTZEre s.sntslllesl (O .'555%8 SHPHHS)

 PyTorch: nn.LeakyReLU(negative slope=le-2)

Small gradient for negative values give tiny chance to recover

. 1
+ backprop: Omax(0.1z, ) _ )01 =<0

ox 1 otherwise

,,%L U« Czech Technical University in Prague
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Activation functions

10

ELU
T x>0
ae® —1) =<0 - L

¢ Zero-gradient-when-saturated (partially)
. (onl o |
e computationally expensive

 Pylorch: nn.LeakyReLU(alpha=1)

i&f/? Czech Technical University in Prague
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Summary

* Use RelLU and avoid undesired properties by
e good weight initialization
* data preprocessing
* patch normalization

10

RelLU
max (0, x)

e Still you want to keep “reasonable values” to avoid:
e diminishing/exploding gradient
 dead Rel.u or saturated sigmoid

K Czech Technical University in Prague
] Wiy Faculty of Electrical Engineering, Department of Cybernetics
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Learning
* what happens to sigm outputs when weights are small?

= —o-

'y
sigm ‘ conv?2 sigm
SEK Czech Technical University in Prague -

] Wiy Faculty of Electrical Engineering, Department of Cybernetics



Learning
* what happens to sigm outputs when weights are huge?

= —o-

Sigm | I conv2 sigm I I
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Outline

 SGD vs deterministic gradient
* what makes learning to fall
* |ayers:
* activation function (i.e. non-linearities)

initialization

batch normalization layer
max-pooling layer
loss-layers

e summary of the learning procedure
* train, test, val data,

hyper-parameters,
regularizations

Czech Technical University in Prague
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Data preprocessing & initializations

* |nput preprocessing:
* Pixels values shifted zero mean to avoid only
positive inputs and the unwanted “zig-zag”
behaviour

% r@ Czech Technical University in Prague

. . . . 57
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Data preprocessing & initializations

* Input preprocessing:
* Pixels values shifted zero mean to avoid only

positive inputs and the unwanted “zig-zag’
behaviour

* Weight initialization:
e w =( all gradients the same
 w~ MN(0,0) diminishing/exploding values
e wit) ~ N (0, 1/N(i)) preserves variance of signal
among layers

S . . . .
%’QJ Czech Technical University in Prague

] Wiy Faculty of Electrical Engineering, Department of Cybernetics o8



Preserve signal variance among layers (i.e. var(y) = var(z;) )

var(zg) = 1

var(ziwy) = (var(zy) + ,u?cl)(va,r(wl) + :U?ul) — /‘:21:1 ui}l

%g?& Czech Technical University in Prague
A

Faculty of Electrical Engineering, Department of Cybernetics >



Preserve signal variance among layers (i.e. var(y) = var(z;) )

1 Var(w |

var(zy) =

L9

var ’&12) —
var(zg) = 1

var(ziwy) = (var(zy) + ,u?cl)(va,r(wl) + :U?ul) — /‘:21:1 ui}l

= var(xzy)var(w;) =1

%g?& Czech Technical University in Prague
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Preserve signal variance among layers (i.e. var(y) = var(z;) )

Var(w
i _ 1

var(zy) =

L9

var ’&12) —
var(zg) = 1

var(ziwy) = (var(zy) + ,u?cl)(va,r(wl) + :U?ul) — /‘:21:1 ui}l

%g?& Czech Technical University in Prague

/ NS Faculty of Electrical Engineering, Department of Cybernetics o



Preserve signal variance among layers (i.e. var(y) = var(z;) )

L1 \ d
var(wi)
- 1

var(zry) =

L9

var ’&12) —
var(zg) = 1

var(ziwy) = (var(zy) + ,uil)(var(wl) + Mfazul) — '“:2131 /'L'?Ul

var(y) = var(ziw; + xows) = var(ziwy ) + var(zows) = 2

/ﬁ‘s‘ﬁ%&ﬁ Czech Technical University in Prague

Faculty of Electrical Engineering, Department of Cybernetics o



Preserve signal variance among layers (i.e. var(y) = var(z;) )

L1 \ 4
var(wi)
- 1

var(zry) =

L9

var ’&12) —
var(zg) = 1

var(ziwy) = (var(zy) + ,uil)(var(wl) + Mfazul) — '“:2131 /'L'?Ul

var(y) = var(xiwi + rowsy) = var(xiw; ) + var(zows)

/ﬁ‘s‘ﬁ%&ﬁ Czech Technical University in Prague

Faculty of Electrical Engineering, Department of Cybernetics 03



Preserve signal variance among layers (i.e. var(y) = var(z;) )

Yy
L1
1 var(wi) \
1) =

var(zry) =
L2

var ’&)2) —
var(zg) =1

var(xlwl) S (V&I‘(ZBl) + ,ngcl)(var(wl) T :uzzul) o :u:?n 'u'?Ul

var(y) = var(xiwi + rowsy) = var(xiw; ) + var(zows)
ar(y) = var(wizy + wexo + -+ + WNTN) =

N
1
_ Zvar(wi)var(xi) ~ N * var(w;)var(z; )= var(w;) = N



Xavier initialization [Glorot 2010]

Signal in randomly initialized weights w ~ N (0, o) forward
(and backward) pass

Layer: 1 Layer: 2 Layer: 3 Layer: 4 Layer: 5 Layer: 6 Layer: 7 Layer: 8 Layer: 9 Layer: 10
Mean: 0.0002 Mean: 0.0001 Mean:-0.0000 Mean: 0.0000 Mean:-0.0000 Mean: 0.0000 Mean:0.0000 Mean: 0.0000 Mean: 0.0000 Mean:-0.0000
Std: 0.138282 Std: 0.019431 Std: 0.002762 Std: 0.000392 Std: 0.000056 Std: 0.000008 Std: 0.000001 Std: 0.000000 Std: 0.000000 Std: 0.000000

0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

“"@;8 Czech Technical University in Prague
/ 7S] Faculty of Electrical Engineering, Department of Cybernetics
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Xavier initialization [Glorot 2010]

Signal in Xavier initialized weights w® ~ N (0,1/N®)
forward (and backward) pass (better but not ideal)

Layer: 2 Layer: 3 Layer: 4 Layer: § Layer: 6 Layer: 7 Layer: 8 Layer: 9 Layer: 10
Mean: 0.0001 Mean:0.0002 Mean: -0.0023 Mean: 0.0004 Mean: 0.0007 Mezn: -00005 Mean:-0.0013 Mean: 0.0005 Mean: 0.0008
Std: 0.484867 Sid: 0.406623 Std: 0.356070 Std: 0.321102 Std: 0.296671 Std: 0.278827 Sid: 0.268218 Std: 0.255245 Stc: 0.240942

-1 0 T - 0 1 -1 0 1 -1 0 1 -1 0 1T -1 0 1 -1 0 1 - 0 1 -1 0 1

%%8 Czech Technical University in Prague o
f T 5] Faculty of Electrical Engineering, Department of Cybernetics



Kaimimg initialization
https://arxiv.org/pdf/1502.01852. pdf

. . 2
Rel.u reduces variance 2x by itself = var(w;) = N

0.95F

0.9}

Vv oa | Wy
0.85} | 1 Mw\}""‘“\
— Eii,Varlw,l =1 ours 08| —— EﬁlVar[w,] =1 ours
o8l J\’W ot

-- nVarlw,] =1 Xavier

Emor

-- A Var[w,] =1 Xavier

0.75

0 0x5 1 1?5 é 2?5 0 ; é :13 :1 5 6 7 8 9
Epoch Epoch

° PyTbmﬂm nn.init.xavier uniform(convl.weight)

nn.init.calculate gain('sigmoid’)

%’?& Czech Technical University in Prague 67
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Outline

 SGD vs deterministic gradient
* what makes learning to fall
* |ayers:
* activation function (i.e. non-linearities)

nitialization
patch normalization layer
max-pooling layer

oss-layers

e summary of the learning procedure
* train, test, val data,
* hyper-parameters,
* regularizations

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

Batch is 4D tensor (visualization in 3D) of values =i (cubes)

1 = (iNviC7iH77;W)
IS 4D Index

A

H, W
7 7777

v
/ 4

T?ﬁ Czech Technical University in Prague
0 ] Faculty of Electrical Engineering, Department of Cybernetics
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

Batch is 4D tensor (visualization in 3D) of values =i (cubes)

1 = (iN7i07iH7iW)
IS 4D Index

Set of cubes determined by indices
S; =4k | ko =ic}

5.1,1,1,1 — {(17 17 17 1)7 (27 17 17 1)7 I (N7 17 H7 W)}

SN,l,H,W — {(17 ]-7 17 1)7 (27 17 ]-7 1)7 I (N7 17H7 W)}

,%Léj;?ﬁﬁ Czech Technical University in Prague

" . . . : 70
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

H, W
[TTT 777
[T 7777
(T 7777

M

%/%‘8 Czech Technical University in Prague
NP Faculty of Electrical Engineering, Department of Cybernetics



https://arxiv.org/pdf/1502.03167.pd

Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

H, W
L L L L L LS
AV AE
L S L [ L)

M

Normalize all values in channel | by estimated mu and std

%/%‘8 Czech Technical University in Prague
NP Faculty of Electrical Engineering, Department of Cybernetics
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

H, W

Yi = YT; + B,

In some cases biased values are needed => introduce
trainable affine transformation initialized in gamma=1, beta =0

%%%B Czech Technical University in Prague
/ NP3 Faculty of Electrical Engineering, Department of Cybernetics
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

\

H, W
77777

m L - L - y) — )

/7

e Testing phase: w; = E[z;] and o; = E[(z; —

estimated over the whole training set.

%ﬁ%ﬁ Czech Technical University in Prague
/ 2] Faculty of Electrical Engineering, Department of Cybernetics
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

batch size channels width  height

~ |/

>>> input = torch.randn(20, 100, 35, 45)
>>> m = nn.BatchNorm2d(100)
>>> output = m(input)

What is dimensionality of the output”?

,.%U{Dé Czech Technical University in Prague
] ®rsy Faculty of Electrical Engineering, Department of Cybernetics
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

batch size channels width  height

~ |/

>>> input = torch.randn(20, 100, 35, 45)
>>> m = nn.BatchNorm2d(100)
>>> output = m(input)

What is dimensionality of the output”?
the same: 20x100x35x45

What is dimensionality of mean p

(4 _h'fr:,T) 3 . . . .
%L‘?Zé Czech Technical University in Prague
e\ . . . .
] ®Tes] Faculty of Electrical Engineering, Department of Cybernetics
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

batch size channels width  height

~ |/

>>> input = torch.randn(20, 100, 35, 45)
>>> m = nn.BatchNorm2d(100)
>>> output = m(input)

What is dimensionality of the output”?
the same: 20x100x35x45

What is dimensionality of mean p

100 dimensional vector

(4 _h'fr:,T) 3 . . . .
%L‘?Zé Czech Technical University in Prague
e\ . . . .
] ®Tes] Faculty of Electrical Engineering, Department of Cybernetics
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

0.8

- = = |nception
----- BN-Baseline
----- - BN-x5
BN-x30
4 BN—x5-Sigmoid
¢ Steps to match Inception

10M 15M 20M 25M 30M

_"J)/ 3 . . . .
R Czech Technical University in Prague .

J p)?‘:g Faculty of Electrical Engineering, Department of Cybernetics
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Computational graph of BN

*yi

, /iﬂ Czech Technical University in Prague
/A 79
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Homework:

fill-in backprop of BN
0y,
(9.2?7;

="

*yi

, /iﬂ Czech Technical University in Prague
A 80
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

_x :: v, B
:: Y1 llllllll_ \ _llllllll _llllllll
1 *"i: —CD— —
5x5x3 Ax4x3 Ax4x3 Ax4x3
feature feature feature feature
map map map map
layer: layer: layer: layer:
conv BN nonlin conv?
:{\ Czech Technical University in Prague a1

*” Faculty of Electrical Engineering, Department of Cybernetics
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Why batch normalization helps®??
https://arxiv.org/pdf/1805.11604.pdf

[Santurkar, NIPS, 2019]

* They show that BN improves beta-smoothness (i.e.
Lipschitzness in loss and gradient) and predictivness.

104
B Standard 250 s Standard 45 - Standard
40 - Standard + BatchNorm

Standard + BatchNorm

+ BatchNorm

Y
<
S

w

W
c
-4 3]
o 2
T4 )

é’ 2 150
[
b o

w = 100
g ko,

10 g 50
O]

0

0 S5k 10k 15% 0 5k 10k 15k 0 5k 10k 15k
Steps Steps Steps

(a) loss landscape (b) gradient predictiveness (c¢) “effective” S-smoothness

)%}5 Czech Technical University in Prague
¥ . . - . 82
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Batch Normalization - conclusions
* Testing data (no mini-batch available):

e The same, but u; = E|z;] and

0; = E[(z; — E[z:])7]

estimated over the whole training set.

e => suffers from training/testing

discrepancy.

BN is reparametrization of the original NN with the same

expressive power.

* BN is model regularizer: one traini

normalized difterently => small jitte
 Works well on classification prob

partially unclear (beta-smoothness

ng example always
tigle

ems, the reason Is
or covariate shift).

* Not suitable for recurrent networks. Different BN for
each time-stamp => need to store statistics for each time-

stamp.
* Does not work on generative netoworks. The reason is
wunclear.
~§v”‘3 Czech Technical University in Prague 83
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

H, W
L L L L L LS

m y - L - L — r

J;%B Czech Technical University in Prague
I3 Faculty of Electrical Engineering, Department of Cybernetics
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Layer normalization [Ba, Kiros, Hinton 2016]
https://arxiv.org/pdf/1607.06450.pdf

NAVANRVAWAY

(AR
AN

Layer normalization performs well on RNN

“@iﬁ Czech Technical University in Prague
e . . . - . 85
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Group normalization [Wu, He, 2018]}
https://arxiv.org/pdi/1803.08494 . pdf

Group normalization performs well for style transter (GANS)
and RNN but does not outperform BN for image classification

Batch Norm Layer Norm Instance Norm
/<§5\§§ Q\Q > /(% >
< S \% S
— TN . ST o PN 1 1A |
= N = |+ = N L= =
ol DN b . /'// I' K N /'// j |
: \\ \\\ I == //,/ \\ //,/ | 1
L R —1T | 4+ N [ = =1
\\ \\\ ,,/’/,/ N ] L
U L N i // 5 =1 // |~
\\ //-’ ~ ////
C "N C N
Classification RNN Style transfer
%,\%%‘8 Czech Technical University in Prague
A . . ' _ 86
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Group Normalization - conclusions

 GN achieves performance comparable with BN on image
classification tasks.

—+Batch Norm
34 | |-~ Group Norm

error (%)

&

22 1 1 |
32 16 8 4
batch size (1mages per worker)

[Wu, He, CVPR, 2018] https://arxiv.org/pdf/1803.08494 .pdf e

o



Group Normalization - conclusions

 GN achieves performance comparable with BN on image
classification tasks.

e For smaller mini-batches GN outperforms BN significantly

36 1

—+Batch Norm
34 | |-©-Group Norm

32 16 8 4
batch size (1mages per worker)

[Wu, He, CVPR, 2018] https://arxiv.org/pdf/1803.08494.pdf e

o



error (%)

Group Normalization - conc
 GN achieves performance comparab

classification tasks.

usions
e with BN on image

Sufficiently large mini-batch size = 32

lrain error

s s
[ - , .
VN e -~ Batch Norm (BN)
. . "I .
R : =-=*Layer Norm (LN)
SNos T i -~ Instance Norm (IN)
- ST ] . .
50 iy — = Group Norm (GN)
|
b
45 - '\.‘
|‘|'\
wr T
N o
N '.
a5 \',\,\ SR 0 o —-~-.-].‘,>,__“-
\.“' ------ B.S _____ "‘.
Bttt 2 N
GN \ el
0 + \ .
!\\ . .
\
.\..k."-’-x -
25 F S RVmLmao -y
o
:'.U |- 1 1
0 10 20 30 40 50 60 70 S0 a0
epnchs
U

Czech Technical University in Prague
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——Batch Norm (BN)
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— Group Norm (GN)
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crror (%)

)
—BN, 32 ims/gpu
S5 + —BN, 16 ims/gpu
— BN, 8 ims/gpu
SO — BN, 4 ims/gpu
— BN, 2 ims/gpu
45
3
40 - =
£
5+ e
) ~~———
—_—
25 ‘—_E—“JE__h—_"“——~—f—
23 ~
20 | 1 1 J
U 10 20 a0 40 S0 ) 70 B0 S0 100
epochs

Group Normalization - conclusions

 GN is insensitive to mini-batch size.
e For smaller mini-batches GN outperforms BN significantly

Batch Norm (BN)

60

55

50

as

40

35t

30 F

20

Group Norm (GN)

—GN,
—GN,
—GN,
—GN,
—GN,

1

32 ims/gpu
6 ims/gpu
8 ims/gpu
4 ims/gpu
2 ims/gpu

30 40 M

epnch<

U LU 20 b 70

Czech Technical University in Prague
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Group normalization [Wu, He, 2018]}
https://arxiv.org/pdi/1803.08494 . pdf

Group normalization performs well for style transter (GANS)
and RNN but does not outperform BN for image classification

Batch Norm Layer Norm Instance Norm
/<§5\§§ Q\Q > /(% >
< S \% S
— TN . ST o PN 1 1A |
= N = |+ = N L= =
ol DN b . /'// I' K N /'// j |
: \\ \\\ I == //,/ \\ //,/ | 1
L R —1T | 4+ N [ = =1
BN A Sl P L
U L N i // 5 =1 // |~
Y e h ///’
C TN C N
Classification RNN Style transfer
%,\%%‘8 Czech Technical University in Prague
45 . . ! . 91
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Batch-Instance normalization
https://arxiv.org/pdf/1805.07925.pdf

BN good for classification, IN good for style transfer
* |dea s to combine both.

Batch Norm Instance Norm

S >
/~\/§\§§ _< >
N\ N
S 3 N ,>
~ —~ - -~ |
5 \\ 5 \\ »///
-~ N - N r/
: ~ I ~ L~ |
N N |+ [
: N BEges
‘ ‘ | L~
/-,
N

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Batch-Instance normalization
https://arxiv.org/pdf/1805.07925.pdf

y=(p- &PV 4+ (1= p)-20N) oy 45
* BIN is learnable combination of BN a IN
* [hree trainable parameters
e Suitable for both style transter and classification
Classification results: ResNet-101 on CIFAR-100

80
£ 601
>
U
o
-
M
—  BIN
— BN
BN+IN
— |N
:%_L\‘;%:?lg 30 1 I 1 1 1 T 1
PREHES 0 20 40 ©0 80 100 120 140 160

J e o] epochs
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Batch-Instance normalization
https://arxiv.org/pdf/1805.07925.pdf

y=(p- &PV 4+ (1= p)-20N) oy 45
e BIN is learnable combination of BN a IN

* [hree trainable parameters
e Suitable for both style transter and classification

Style trasfer results: ResNet-101 on CIFAR-100

Rain Princess Candy Udnie
52 ‘\ \ —— 4.00 — 2.20 “ —

\ \\’\m —— BN W — BN | A —— BN
A v — il Wiy — aem | 2oss h‘#’ e
E 4.4 g 350 ‘ g 190 Ww
S 5 K"\*\‘\ s vl W“W

4.0 1 w\ 3.25 1 M . 1.75 1 »’
A A .\* I ”
mw ::um' A ¥ r
. W« . m”&wwmm o Al
"o 50000 1ocooo } 15coco 2000 o 50000 100000 150000 200000 ¢ 50000 wcoco 1soocn 20
%@i}g Czech Technical University in Prague o
/ NS Faculty of Electrical Engineering, Department of Cybernetics
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Batch-Instance normalization
https://arxiv.org/pdf/1805.07925.pdf

y=(p- &PV 4+ (1= p)-20N) oy 45
e BIN is learnable combination of BN a IN

* [hree trainable parameters
e Suitable for both style transter and classification

Classification results: ResNet-101 on CIFAR-100

total
—— |ower layers
0.8 | .
- middle layers
o —e— upper layers
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é 0.6 A
O
=
)
€ 0.4 -
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g T TR
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Normalization layers - Summary

 BN: works for classification, sufters from small mini-batch.

* LN: works for recurrent nets

* IN/GN: works for style transfer nets and are littlebit weaker
on classification than BN (with large minibatch).

* BIN: sufficiently flexible to work best for both: classitication

and style transfer nets, but it has more parameters to
learn.

i . . . .
iv” Czech Technical University in Prague
J RS es] Faculty of Electrical Engineering, Department of Cybernetics
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Outline

 SGD vs deterministic gradient
* what makes learning to fall
* |ayers:
* activation function (i.e. non-linearities)
* pbatch normalization layer
* max-pooling layer
* |oss-layers
e summary of the learning procedure
* train, test, val data,
* nyper-parameters,
* regularizations

@ EHhao . . . .
RUA Czech Technical University in Prague
] Wiy Faculty of Electrical Engineering, Department of Cybernetics
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Max-pooling

02 |1
114 10
max ( 3| 2X2 ) =
012 |1
112 10
image output
(5x5) (? x ?)

Czech Technical University in Prague

/%g Faculty of Electrical Engineering, Department of Cybernetics

98



max (

b{!_;?j :

Max-pooling

N|—= O |—

image output
(5x5) (? x ?)

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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max (

Max-pooling

1 34

(2) Cox2) = LBIS

1

0
image output
(5x5) (? x ?)

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Max-pooling teed-tforward

1
0 _ [3]4]
5| 2X2 ) = HS:
1
0

max (

NN [N N

Max-pooling Backprop
upstream gradient

max( - ,2X2): -]O

,ﬁ%ﬁ?ﬁﬁ Czech Technical University in Prague
A\
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Max-pooling teed-tforward

1
0 _ [3]4]
5| 2X2 ) = HS:
1
0

max (

NN [N N

Max-pooling Backprop
upstream gradient

215 |
max ( : . 2x2) =

,ﬁ%ﬁ?ﬁﬁ Czech Technical University in Prague
bﬁg Faculty of Electrical Engineering, Department of Cybernetics

oo
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Max-pooling teed-tforward

I

21011 (4 |C - 3[4
max ( 03130 2X2 ) = 313

11310 (2 |1

210(1(2 |0

Max-pooling Backprop

upstream gradient
2
215
e e

oo

,ﬁ%ﬁ?ﬁﬁ Czech Technical University in Prague
A\
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20 Czech Technical University in Prague
3 Faculty of Electrical Engineering, Department of Cybernetics

Max-pooling summary

Forward pass

e similar to convolution but takes maximum over kernel

* |t has no parameters to be learnt!

Backprop

* propagate gradient only to active connections

Main purpose is to reduce dimensionality and overtitting

It seems that max pooling layers will disappear in future

* should be avoided in generative models (GAN, VAE)

* they can be replaced by conv-layers with larger stride
INn discriminative models
https://arxiv.org/abs/1412.6806

e (Geoffrey Hinton: “The pooling operation used in
convolutional neural networks is a big mistake and the
fact that it works so well is a disaster.” (Reddit AMA)

104
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Outline

 SGD vs deterministic gradient
* what makes learning to fall
* |ayers:
* activation function (i.e. non-linearities)
* patch normalization layer
* max-pooling layer
* |oss-layers
* regularizations
e summary of the learning procedure
* train, test, val data,
* hyper-parameters,

T o har . . . .
RUA Czech Technical University in Prague
] Wiy Faculty of Electrical Engineering, Department of Cybernetics
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Loss functions
* Regression:
e | 2l0Sss
e | 1loss
» Classification:
* cross entropy loss (N-output classifier f(x,w) )
e logistic loss (single output dichotomy classifier f(x, w) )

Z (%, w YzHQ PyTorch: nn.MSELoss()
— Z f(x;, W) — yil PyTorch: nn.LlLoss()

L (W) Zz 0.5]|f(x;, w) _YiH%v if [f(xi, w) —yil <1.
W p—

Lsmooth > |f(x;,w) —y;| + 0.5, otherwise.

Pylorch: nn.SmoothLlLoss/( )

RSTR Czech Technical University in Prague 106
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| oss functions

* Regression:
e | 2loss
e |.1loss
» Classification:
* cross entropy loss (N-output classifier f(x,w) )
e logistic loss (single output dichotomy classifier f(x, w) )

(1) convert output to probability (softmax function)
]
exXp X, W
s(f(x,w)) = 2: / Zexp(fk(x, w))
' k=1
N eXp(fN(Xv W)) _

(2) compute cross entropy torch.nn.CrossEntropyLoss

H(w) =) —logsy, (f(x;,w))

@ Hho ) . . . .
R ¢ Czech Technical University in Prague

[ Yl 'TC' . . . . 1 7
] ] Faculty of Electrical Engineering, Department of Cybernetics 0



| oss functions

* Regression:
e | 2loss
e |.1loss
» Classification:
* cross entropy loss (N-output classifier f(x,w) )
e logistic loss (single output dichotomy classifier f(x, w) )

PyTQrch; nn.BCEWithLogitsLoss ()

Derivative can be found here;:
hitps://deepnotes.io/softmax-crossentropy

%‘*& Czech Technical University in Prague

AT . . . . 108
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| oss functions

Regression:

e | 2loss

e |.1loss

Classification:

* cross entropy loss (N-output classifier f(x,w) )

e |ogistic loss (single output dichotomy classifier f(x, w) )
o Kulback-Leibler loss

Lgr(w Z yi - log (yi — f(xi, w))

PyTorch: torch.nn.NLLLoss ()

Czech Technical University in Prague 109



| oss functions

* Regression:
e | 2loss
e |.1loss
» Classification:
* cross entropy loss (N-output classifier f(x,w) )
* |ogistic loss (single output dichotomy classifier f(x, w) )
o Kulback-Leibler loss
* Ranking:
 Ranking loss

, W) — f(%5,W)) + €}

|
=
Qo
o~
—~—
\’O
|
S
<
=~
ke

Lrank (W)

PyTOI’ChZ torch.nn.MarginRankingLoss ()

s Czech Technical University in Prague
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Regularization & overfitting
* Best regularization is using the right structure of the network

image

,f%é?&ﬁ Czech Technical University in Prague "
A
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Regularization & overfitting
* Best regularization is using the right structure of the network

image

N

\@nvxw >

- \

%&%@ Czech Technical University in Prague 1
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Regularization & overfitting
* Best regularization is using the right structure of the network

image
image
grid_sample
“?ﬁ Czech Technical University in Prague 1
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Regularization & overfitting
* Best regularization is using the right structure of the network

Lk+1
image Yk+1
q q
%ﬁ’@ Czech Technical University in Prague (14
NS Faculty of Electrical Engineering, Department of Cybernetics



Regularization & overfitting
* Best regularization is using the right structure of the network

image v, 0
h —'
> k+1 k
Yk+1 = Yk T vsin @
‘?‘G}j : Czech Technical University in Prague 15

] Wiy Faculty of Electrical Engineering, Department of Cybernetics



Regularization & overfitting
* Best regularization is using the right structure of the network

e L2, L1 norms on weights
e avoids overfitting and exploding gradient
* Implemented via weight_decay parameter in Pylorch

optimizer = torch.optim.Adam(model.parameters(),
Llr=1e-3, weight_decay=1e-4)

(€ -L_:Eé;::j}j I . . . .
ﬁ%é Czech Technical University in Prague 116
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Regularization & overfitting

* Training set augmentation (jittering, mirroring, occlusions,

brig
_ear

ntness/contrast/color variations)
N augmentation policy (AutoAugment, PBA), which

Orov

iIdes good generalization
https://arxiv.org/pdf/1905.05393.pdf

1 Op (30%)

TranslatcY,0.5.4 ShearyY,0.6.1 Color,0.4,7 Translat»\
?,: l
'.2»
[
Brightness,0.2 3 Color.0.9,0 AutoContrast,0.8.9 AutoContrast,1.0.9
Invert,0.3,3 TranslateY.0.5.3 AutoContrast,0.5.0 Color,0.94

Czech Technical University in Prague
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Regularization & overfitting

* Training set augmentation (jittering, mirroring, occlusions,
brightness/contrast/color variations)

* Lear

N augmentation policy (AutoAugment, PBA), which

orovides good generalization
https://arxiv.org/pdf/1905.05393.pdf
B Baseline W AutoAugment Population Based Augmentation
4
3
g 2
o
@ 1
l—
0
WRN-28-10 S-S (26 S-S (26 S-S (26 PyramidNet
2x96D) 2x96D) 2x112D)

s

Czech Technical University in Prague
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Regularization & overfitting

e Batch norm is regularization
e each iteration it provides ditferent brightness/contrast

perturbation

* Ensemble:
* |earn multiple networks=> average of outputs is

more stable and allow to predict contidence

* Drop-out layer:
e suppress layer outputs at random
e force random subnetworks to work well
m = nn.Dropout(p=0.2)
e avold combination with batch norm !

* [raining on pre-trained network
* Weak-supervision and meta-learning (lecture by Patrik)

@ EHhao . . . :
s Czech Technical University in Prague
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