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Outline

* Fully connected neural network

* Avoid overtitting by search for the NN model suitable for
image processing [Hubel and Wiesel 1960].

e Feedforward and Backprop in ConvNets.
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Fully connected neural network
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he Tungsten Electrode [Hubel-Science-1957]

http://braintour.harvard.edu/archves/potfolio-items/hubel—and—wiesel

* Device capable to record signal from a single neuron
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http://braintour.harvard.edu/archives/portfolio-items/hubel-and-wiesel

[Hubel and Wiesel 1959]  gectrical signal
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[Hubel and Wiesel 1960}

https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
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[Hubel and Wiesel 1960}
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https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
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e

Hubel and Wiesel experiments in 1950s and 1960s

* Nobel Prize In Physmlogy and Medicine in 1981
 Dr. Hubel: “There has been a myth that the brain cannot
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nderstand itself. It is compared to a man trying to lift
mself by his own bootstraps. We feel that is nonsense.

ne brain can be studied just as the kidney can.”

htigs .//knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
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1. Nearby neurons process information from nearby visual
fields (topographical map).

CwixD—

image

* Processing of visual information in cortex is not fully

_connected.
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1. Nearby neurons process information from nearby visual
fields (topographical map).

image
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 What is dimensionality reduction for N-pixel image and
& n-dimensional spatial neighbourhood?
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2. Neurons with similar function organized into columns
(translation invariance)

. @wj@ .

> T >
@WQ @\ should do
the same thing

There are neurons which detect an edge on the left and there
are different neurons which detect the same edge on the right.
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2. Neurons with similar function organized into columns
(translation invariance)
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pixel4

It corresponds to convolution of image x with kernel w
followed by activation function
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|pixel4

It corresponds to convolution of image x with kernel w
followed by activation function
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Convolution forward pass y = conv(x, w)

kernel/filter

W11 | W12 |
Wa1 | Woo filter response/
output map
L11 | 412 | 213
RN Y11 | Y12
L21 L29 L9233 > CODV(X,&
Y21 | Y22
L31 | 432 | 433
image
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Convolution forward pass y = conv(x, w)

11 | 12 | L13
Y11 | Y12 w11 | W12
- CONnv L21 | L22 | L23
Y21 | Y22 ) | W1 | W22
L31 | £32 | £33
Y11 = W11T11 + W12T12 + W21T21 + W22T29
Y12 = W11L12 + W12T13 + W21TL22 + W22 23
Y21 = W11T21 + W12T22 + W21T31 + W22T32

Yoo = W11TL22 + W12T23 + W21L32 + W22T33
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Convolution forward pass y = conv(x, w)

Y12
Y21 | Y22

Y12 = W11T12 + W12T13 + W21T22 + W22T23

Y21 = W11T21 + W12T22 + W21T31 + W22T32

Yoo = W11T22 + W12T23 + W21TL32 + W22T33
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Convolution forward pass y = conv(x, w)

Y11
Y21 | Y22

— COonv (

Y11 = W11T11 + W12T12 + W21T21 + W22T29

Y21 = W11T21 + W12T22 + W21T31 + W22T32

Yoo = W11T22 + W12T23 + W21TL32 + W22T33
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Convolution forward pass y = conv(x, w)

Y11 | Y12
Y22

Y11 = W11T11 + W12T12 + W21T21 + W22T29

Y12 = W11T12 + W12T13 + W21T22 + W22T23

Yoo = W11T22 + W12T23 + W21TL32 + W22T33
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Convolution forward pass y = conv(x, w)

Y11 | Y12 — conv(
Y21

Y11 = W11T11 + W12T12 + W21T21 + W22T29
Y12 = W11L12 + W12T13 + W21TL22 + W22 23

Y21

W11T21 + W12T22 + W21TL31 + W22T32
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Feature maps

'J Convolutional kernel 1

——

Image Feature map 1
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Feature maps

Feature map 2

Image Feature map 1
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Convolution layer properties - output size

image kernel output
(5%5) (2%2) (? x ?)
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Convolution layer properties - output size

COoIv

(B =

image kernel output
(5x5) (2x2) (? x ?)
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Convolution layer properties - output size

R T

image kernel output
(5x5) (2x2) (? x ?)
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Convolution layer properties - output size

(L g 7T

image kernel output
(5x5) (2x2) (? x ?)
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conyv (

Convolution layer properties - output size

image kernel output
(5x5) (2X2) (4x4)
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Convolution layer properties - output size

M=N-K+ 1

image kernel output
(NXN) (KXK) (MxM)
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conv

Convolution layer properties - stride

stride = 1

kernel moves by 1 pixel

sl

image kernel output

(5%5) (2%2) (4x4)
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Convolution layer properties - stride

stride = 3

kernel moves by 3 pixels

sl

w(

image kernel output
(5x5) (2x2) (? x?)
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conv

Convolution layer properties - stride

stride = 3

kernel moves by 3 pixels

—>
(HH @) =0
image kernel output

(5%5) (2%2) (? x ?)
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Convolution layer properties - stride

stride = 3

kernel moves by 3 pixels

sl

]

w(

image kernel output
(5x5) (2x2) (? x?)
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conyv (
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Convolution layer properties - stride

stride = 3

kernel moves by 3 pixels

—>
Seascol=zl

image kernel

(5%5) (2x2)
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Convolution layer properties - stride

stride = 3

kernel moves by 3 pixels
—>

o ( un)
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image kernel output
(5x5) (2x2) (2%2)
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conv
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Convolution layer properties - stride

M = floor( (N-K) / stride + 1)

stride
—_

(0

=5

image kernel output
(NxN) (KxK) (MxM)

e.g.M=(52)/3+1=2

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

34



Convolution layer properties - pad

pad = 1
0TolTololololo added border of size 1
0 L]
O 0
0 0
0 0
0(0]0]0(0|0|0
image kernel output
(5x5) (2x2) (6%6)
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Convolution layer properties - pad

M = floor( (N+2*pad-K) / stride + 1)

added border of size

0/0]0]0|0
; ]
( 0 0
conv 0 0 ,D) —
0 0
0 0
0/0/0/0(0|0|0
image kernel output
(N+2*pad)X(N+2*pad) (KxK) (MxM)
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COoIv

Convolution layer

Dilatation rate = 1

(B ) -

image kernel output
(5%5) (2x2) (? x ?)
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Atrous convolution layer

Dilatation rate = 2

L]

o ( [ =

image kernel output
(5x5) (2x2) (? x ?)
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Show python code
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Multi-channel convolution

RGB image kernel output
(5x5%3) (2x2%3) (4x4x1)
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COoIv (

Multi-channel convolution

RGB image kernel output
(5x5%3) (2x2%3) (4x4x71)
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COoIv (

Multi-channel convolution

i | T

RGB image kernel output
(5x5%3) (2x2%3) (4x4x71)
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COoIv (

Multi-channel convolution

] | ]

RGB image kernel output
(5x5%3) (2x2%3) (4x4x71)
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Multi-channel convolution

oo G ) -

RGB image kernel output
(5x5%3) (2x2%3) (4x4x71)
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L W1 Convolutional layer

| Y1
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w1 Convolutional layer

Y1

conv(x, vD—»

W29

Y2
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conv(x, v@—»
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L W1 Convolutional layer

Y1

conv (X, vD—»

W29

Y2

conv(x, v@—»

Y3

conv(x, v@—»
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Convolutional network (ConvNet)

_: Y1 IIllllll _Illzlllll
M
5x5x3 Ax4Ax3 Ax4x3 f 3x3x4
M
B D
feature feature featurel oo feature
map map map | " map
layer:
layer: conv' sigmoid layer: conv2
SR Czech Technical University in Prague
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2D convolution forward pass

X W1
| | | | |
I I I I | y

)
!

H5x5x3 Ax4x2

# initialise
import torch.nn as nn
# define 2D convolutional laxer

first layer = nn.Conv2d(in channels=3, out channels=2,
kernel size=2, stride=1,
padding=1)

} T‘?ﬁﬂ Czech Technical University in Prague
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2D convolution forward pass

X ﬁwl
T T T 1
I N y

)
!

H5x5x3 Ax4x2

also number

# initialise of kernels
import torch.nn as nn

# define 2D convolutional laxer

first layer = nn.Conv2d(in channels=3, out channels=3,

kernel size=2, stride=1,
padding=1)
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2D convolution forward pass

X

HX5X3
also number
# initialise of kernels
import torch.nn as nn
# define 2D convolutional laxer
first layer = nn.Conv2d(in channels=3, out channels=2,

kernel size=2, stride=1,
padding=1)

Czech Technical University in Prague
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3. Neurons are sensitive to edges and its orientation

Inputs which maximized output of layer 1

[Zeiler and Fergus, ECCV, 2014]
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3. Neurons are sensitive to edges and its orientation

Inputs which maximized output of layer 2

[Zeiler and Fergus, ECCV, 2014]
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3. Neurons are sensitive to edges and its orientation

Inputs which maximized output of layer 3

[Zeiller and Fergus, ECCV, 2014]
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3. Neurons are sensitive to edges and its orientation

Inputs which maximized output of layer 4

[Zeiler and Fergus, ECCV, 2014]
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3. Neurons are sensitive to edges and its orientation

Inputs which maximized output of layer 5

[Zeiler and Fergus, ECCV, 2014]
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Convolution backward pass

Learning of convolutional neuron => backpropagation

w11 | W12
W21 | W22
L11 | L12 | 2413 \
L21 L9229 X923 #@V(}Q@
L31 | £32 | 33 Y11 | Y12
Y21 | Y22
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op Op
ow11 Ow12

Op Op
Owa1 Owa2

Convolution backward pass

L21 | £22 | X23 *@V(X’@

31 | 32 | I33 Yi1 | Y12
Y21 | Y22
f ﬂl‘gﬁg Czech Technical University in Prague
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Convolution backward pass

Op
w12 2
Op Op N
8w21 8w22

P(wll) — P(yn(wll), ylz(wn), y21(w11), y22(w11))

w12
W22
L11 | L12 | 213
L21 L929 L23 |—» COHV(X? @ p(Y)
%%8 Czech Technical University in Prague
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Convolution backward pass

Op Op
0y11 0Y12 upstream
Op Op gradient
Y21 0Yya2
11 | L12 | L13
To1 | To2 | T23 |— COHV(X?@ p(y) g
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Convolution backward pass

Op Op 0y

_ Op 0Oyo2
Ow1 1 Oy11 Owi

Oya2 Ow1q

Op 0y21
Oya1 Qw11

Op 0yi2
0y12 Qw11

p(wn) — P(y11(w11), y12(w11), y21(w11), y22(w11))

w11 W19 Op Op
” ” 0y11 0Y12 upstream
2l | ee op | _op gradient
Oy21 OY22

L11 | L12 | L13
L21 L29 L3 #@V(}Q@ p(y)

31 32 | I33 Y11 Y12 P
Y21 | Y22
%L‘EI; X Czech Technical University in Prague
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Convolution backward pass

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

dp  OJp - Op Oy12 ~ Op Oyar . Op Oy22
Ow11 0Y11 O0y12 Owiq Oya1 Owiq Oya2 Ow1q
0,
Y11 _ 5
81011 ]
op Op
0y11 0Y12 upstream
Op Op gradient
0Y21 OY22
L11 | L12 | L13 \
L21 L9229 r9o3 |—» COHV(X7@ p(Y) >
L31 | £32 | L33 -
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Convolution backward pass

| Jp Oyiz | Op Oy21 | Op Oy22
Oy Owir - Oyz Owir

Op  Op
Ow11 0Y11

Oya2 Ow1q

N\

0Y11 O(wi1T11 + Wi2T12 + Wa1T21 + Wa2Too)

— I11
81011 8w11

Op Op
0y11 0Y12 upstream
Op Op gradient
0y21 OY22
11 | L12 | L13
To1 | To2 | T23 |— COHV(X?@ p(y)
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Convolution backward pass

Op Op
dy11 | Oyis upstream
Op Op gradient
Oy21 Oy22
L11 | 12 | L13
To1 | To2 | T23 |— COHV(X?@ p(y) g
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Convolution backward pass

o = op T11 L T12 L T21 o T22
— | | |
Ow11 3911 3?/12 3921 3?/22
Op _ 4
821)12
Op Op
0y11 0Y12 upstream
Op Op gradient
0Y21 OY22
11 | 12 | L13
L21 L9292 r9o3 |—» COHV(X7@ p(y) >
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Convolution backward pass
Op Op Op op Op

= 11 12 To1
Ow11 0Y11 0Y12 0Y21

L9292

0Y22

op Op
dy11 | Oyiz upstream
Op Op gradient
0y21 Jy22
L11 | 12 | L13
To1 | To2 | T23 |— COHV(X?@ p(y) g
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Convolution backward pass

op op ., 9 . Op . Op
— 11 12 21 22
Ow1q 0y11 0Y12 0Y21 0Y22
dp Op op ., 9 . O
— 12 1 13 1 22 23
Ow12 0y11 0Y12 0Y21 0Y22

op Op
8y11 33/12
op Op
8y21 33/22

11 | 12 | L13

To1 | T2 | T2z |— COHV(X?@

L31 | £32 | L33
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Convolution backward pass

Op  Op e op e op e op N
Ow1q Y11 o Y12 o Y21 o Y22 -
Op  Op e op e op e op N
Own 2 Y11 e Y12 a Y21 = 0Y22 *
op op e op ] op e op .
aw21 — P 21 P 22 1 B 31 5 32

op Op
8y11 33/12
op Op
8y21 8y22

11 | 12 | L13

To1 | T2 | T2z |— COHV(X?@

L31 | £32 | L33
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Convolution backward pass

op _9p . O Op To - Op oo
— 11 12 |
Own 1 0y11 0Y12 0Y21 0Y22
dp  Op e Op y op T - Op ro
— 12 13 |
Ow12 011 0Y12 0Y21 0Y22
op _9p . O Op rar Op o
— 21 22 |
Owa1 011 0Y12 0Y21 022
op _9p . O Op Ean Op ras
— 22 23 |
Owas 011 0Y12 Y21 0Y22
w11 | W12 Op Op
” ” 0y11 0Y12 upstream
2l | ee op_ | Op gradient
Y21 Y22
11 | L12 | L13 \
L21 L29 X923 #@V(}Q@ p(Y)
31 X392 X33 Y11 Y12 D
Y21 | Y22
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Convolution backward pass

dp  Op N
Ow12 0y11 -
Op  Op .
Owaq 011 2!
dp  Op N
Owaz 0y11 22

Op
Ow12

Op Op
Owa1 Owa2

Op

0yY12

L13
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Convolution backward pass
Op Op Op op Op

0Y22

T11 T12

0yY12

To1

L9292

Ow11 B 3?/11 3921

L _ 90 o1 z T29 z r31 z 392
Owaq 3911 8y12 3y21 8y22
op op op op Op

= 29 23 T32 33
Owoo 3?/11 3912 3921 3?/22

— CONnv (

Op Op
8w21 8w22
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Convolution backward pass

Op op op op op
— T11 19 T21 L22
3?011 3?/11 3912 3921 3?/22
Op op op op op
— L19 I 13 I L9229 I L923
(U () () () ()1

Op P o 9P - Op - Op

=
N
&

Owao B 3?/11

Op Op
Ow11 Ow12
Op
8w22
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Convolution backward pass

Op Op Op Op Op

— T11 19 T21 L22
Ow11 3?/11 3912 3921 3?/22
Op Op Op Op Op

— L19 I 13 I L9229 I L923
Ow12 0y11 0y12 a?J21 3?/22
Op Op Op Op Op

— T21 T2 T31 32
81021 9, 11 0 12 0 21 0 22

— CONnv (
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Convolution backward pass wrt weights

* Backpropagation in convolutional layer wrt weights Is:
“‘convolution of input feature map with upstream gradient’

op Op 11 | 12 | T13 aﬁp aap
Y11 Y12
Owir | Wiz | — copy ( o1 | To2 | T23 )
Op Op ) Op Op
Bwaq Dwag L31 | £32 | £33 Oy21 Oy22
w11 | W12 Op Op
0y11 0Y12 upstream
W21 | W22 5 9 -
p p gradient
0y21 Oy22
L11 | L12 | 213
L21 | X22 | X23 A@V(Xv@ >
31 32 | I33 Y11 Y12 P
Y21 | Y22
Sk Czech Technical University in Prague
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Convolution backward pass wrt input feature map

Backpropagation in convolutional layer Is:
“‘convolution of padded upstream gradient with mirrored

weights”
dp Jp dp 0 0 0 0
0x11 Ox12 Ox13 op op
os | os | De —conv( il ol Bl M > leb
L21] L22 r23 |— op op
dp Jp Jp 0 I D1 0 |3 Wi2 w11
83331 35632 8:833 O O O O
Wi | W12 Op Op
0y11 0Y12 upstream
Yy Y
W21 | W22 .
Op Ip gradient
0y21 Oy22
L11 | L12 | 413
To1 | T22 | T23 *@V(Xv@ O >
31 32 | L33 Y11 Y12 P
Y21 | Y22
‘%;\:S Czech Technical University in Prague
/) ;E’J
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_: Y1 IIllllll _Illzlllll
M
5x5x3 Ax4Ax3 Ax4x3 f 3x3x4
M
B D
feature feature featurel oo feature
map map map | " map
layer:
layer: conv' sigmoid layer: conv2
SR Czech Technical University in Prague
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_: Y1 IIllllll _Illzlllll
M
5x5%3 AX4X3 4X4x3 | {7 3x3x4
M
- D
feature feature featurel oo feature
map map map | " map
layer:
layer: conv' sigmoid layer: conv2
5\ Czech Technical University in Prague
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5x5%3 AX4X3 4X4x3 | {7 3x3x4
M
E— D
feature feature featurel oo feature
map map map | " map
layer:
layer: conv' sigmoid layer: conv2
SR Czech Technical University in Prague
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i 4% > CoD=p
5x5%3 AX4X3 4X4x3 | {7 3x3x4
M
E— D
feature feature featurel oo feature
map map map | " map
layer:
layer: conv' sigmoid layer: conv2
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Convolutional net

* Convolutional network (ConvNet) is concatenation of
convolutional layers

 Backprop in ConvNet is convolution of feature maps or

Kernels or feature-maps with the upstream gradient.

* Feed-forward and backprop are convolutions =>
efficient implementation on GPU

K Czech Technical University in Prague
] Wiy Faculty of Electrical Engineering, Department of Cybernetics



LeCun’s letter recognition 1998 (over 13k citations !!1)

C3:1. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT 6@28x28
I r C5:1 ayer FB Iayer OUTPUT

32x32 S2: f. maps
120

r

FuII conrkectuon Gaussnan connections
Convolutions Subsampling Convolutions Su bsampllng Full connection

_eCun et al, Gradient based learning applied to document
recognition, IEEE, 1998

nttp://vann.lecun.com/exdb/publis/pdt/lecun-01a.pdf
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http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
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AlexNet on ImageNet 2012 (over 27k citations !!!)
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Alex Krizhevsky et al, Imagenet classification with deep
convolutional neural networks, NIPS, 2012

hitps://papers.nips.cc/paper/4824-imagenet-classification-

with-deep-convolutional-neural-networks.pdt
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IMAGENET

Classification results
http://image-net.org/challenges/LSVRC/2017/index

Steel drum

Output:
Scale
T-shirt

Drumstick
Mud turtle

Steel drum

1

Error = 100,000

100,000
Images

v

Output:
Scale
T-shirt
Giant panda
Drumstick
Mud turtle

z 1[incorrect on image i]
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IMJAGENET

Classification results
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Classification Error
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mean Average Precision (mAP)

A
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Pascal VOC object detection challenge
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Before the successful application of ConvNets [
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Demo

e convnet demo from Karpathy:
https://cs.stanford.edu/people/karpathy/convnetjs/demo/
cifar10.html
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Next lecture

* gradient learning (what make it tough)
e other layers:

e activation function,

* pbatch normalization,

e drop out,

* |oss layers

'z
i \
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