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FSM Learning FSM Learning Overview

Finite State Machine

A finite-state machine is a sextuple (S,Σ,Γ, s0, δ, λ), where

S is a finite nonempty set of states,

Σ is an input alphabet (a finite nonempty set of symbols),

Γ is an output alphabet (a finite nonempty set of symbols),

s0 is an initial state, s0 ∈ S,

δ is a state-transition function: δ : S × Σ→ S,

λ is an output function: λ : S × Σε → Γε.

Additional designations:

Σ∗ is the set of all strings (words) over the input alphabet,

Γ∗ is the set of all strings (words) over the output alphabet,

Alphabet X∗ always contains ε and ∀x ∈ X∗ : ε · x = x = x · ε.
Thus X∗ is always nonempty and it is also countable because X is
countable.
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FSM Learning FSM Learning Overview

Goal

A system trying to figure out the effects its actions have on its
environment...

It performs actions.
It gets observations.
It tries to make an internal model of what is happening.

Let’s model the world as a DFA.

Applications

Communication protocol learning,

Hidden process learning,

WWW application learning,

Black box proprietary behavior identification,

Software implementation identification.
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FSM Learning FSM Learning Overview

Learning a Language

Inferring finite automata is analogous to learning a language

There is no way to distinguish between two automata that recognize
the same language, without examining the state structure.

We focus on finding the minimum equivalent automata.

It has been shown that the only classes of languages that can be
learned from positive data only are classes which include no infinite
language.
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FSM Learning FSM Learning Overview

Active Learning [Hon13]

Passive learning - a set X is given and we cannot modify it.

NP problem

Active learning - a set X can be selected and it can be modified
during a learning process.

P problem
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FSM Learning Angluin’s Algorithm

Teacher [Hon13]

The teacher has to be able to answer two kinds of queries

Membership query - Yes/No.

In a membership query the learner selects a word w ∈ Σ∗ and
the teacher gives the answer whether or not w ∈ L.

Equivalence query (counterexamples) - Yes/a counterexample
string.

In an equivalence query the learner selects a hypothesis automaton H,
and the teacher answers whether or not L is the language of H.
If yes, then the algorithm terminates.
If no, then the teacher gives a counterexample,
i.e., a word in which L differs from the language of H.

An issue of whether or not we have a reset button.
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FSM Learning Angluin’s Algorithm

Active Learning with a Teacher [Hon13]

Teacher Learner

Environment

A learning architecture with a minimally adequate teacher.

LearnerTeacherEnvironment

An architecture with a degraded teacher working as an interface.
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FSM Learning Angluin’s Algorithm

Angluin’s Algorithm - Top Level View

Iteratively, the algorithm builds a DFA using membership queries,
then presents the teacher with the DFA as a solution.

If the DFA is accepted, the algorithm is finished. Otherwise, the
teacher responds with a counter-example, a string that the DFA
presented would either accept or reject incorrectly.

The algorithm uses the counter-example to refine the DFA, going
back to the first step.
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FSM Learning Angluin’s Algorithm

Angluin’s Algorithm - Control Structures

States and Experiments

The algorithm uses two sets,

S for states,

S . . . access sequences to states
S •A . . . sequences to exercise all transitions

E for experiments (distinguishing sequences), and

one observation table, T , where

elements of S ∪ S •A form rows, and
elements of E form columns – the values of each cell is the outcome of
a membership test for the concatenation of the row and column strings.
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FSM Learning Angluin’s Algorithm

Observation Table [Ang86, Sha08, Hon13]

Definition 1.1

Let E = (A, accept) be an accepting
environment.
Observation table of environment E is an
ordered triple OT = (S,E,T), where

S ⊆ A∗, S 6= ∅, S finite, S is prefix closed.

E ⊆ A∗, E 6= ∅, E finite, E is suffix closed.

T is a function (S ∪ S •A)× E → {0, 1}.

The set S is called input set.

E is a distinguishing set.

E
ε a

S
ε 0 1
a 1 0
b 0 0

S •A

aa 0 0
ab 0 1
ba 0 1
bb 1 0
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FSM Learning Angluin’s Algorithm

Initial Observation Table [Hon13]

L∗ algorithm initialization:

Init the observation table OT = (S,E,T), where S = {ε}, E = {ε}.
Create a queue of membership queries: all pairs s · e, where
s ∈ S ∪ S ·A and e ∈ E.

Get the answers from the set of {0, 1} provided by the teacher, if s · e
belongs to the learned language. Insert the answer value to the place
T(s, e) in the observation table.

Different rows in the section S of the table define states of the a
possible automaton.

E
ε

S ε 1

S ·A a 0
b 0
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FSM Learning Angluin’s Algorithm

Observation Table - Closeness, Consistency [Hon13]

(s1, s2 ∈ S)

(s1
E∼ s2) ⇐⇒ (∀e ∈ E)(λ(s1, e) = λ(s2, e))

Definition 1.2

An observation table OT = (S,E,T) is

closed, if (∀t ∈ S ·A)(∃s ∈ S)(s
E∼ t).

The table is consistent, if

(∀s, t ∈ S, s E∼ t) =⇒ (∀a ∈ A)(s · a E∼ t · a).

The closeness and consistency checking is
performed when the queue of queries
becomes empty.

E
ε a

S
ε 0 1
a 1 0
b 0 0

S •A

aa 0 0
ab 0 1
ba 0 1
bb 1 0
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FSM Learning Angluin’s Algorithm

Observation Table - Modifications [Hon13]

If OT = (S,E,T) is not closed, then

1 Search for t ∈ S ·A, so that s 6E∼ t for all s ∈ S.
2 This t is added to the set S and the queue of membership queries is

extended with t · a · e for all a ∈ A and e ∈ E.

If OT is not consistent,

1 Search for s, t ∈ S, e ∈ E and a ∈ A, so that s
E∼ t, but

T (s · a, e) 6= T (t · a, e).
2 The word a · e is added to the distiguishing set E.
3 The queue of membership queries is extended with s′ · e for all
s′ ∈ S ∪ S ·A.

4 It is obvious that s
E∼ t is not satisfied in the new observation table.
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FSM Learning Angluin’s Algorithm

L∗ algorithm [Ang86, Sha08, Hon13]

1 Init the observation table OT = (S,E,T).

2 Fill the observation table using the membership query queue.
3 Check if OT is closed and consistent:

1 If OT is not closed, extend the set S with t ∈ S ·A, so that s 6E∼ t for
all s ∈ S. Extend the queue of membership queries and continue to 2.

2 If OT is not consistent, extend the set E with the word a · e, e ∈ E,

and a ∈ A so that there are s, t ∈ S, that s
E∼ t, but

T(s · a, e) 6= T(t · a, e). Extend the queue of membership queries and
continue to 2.

4 Make the conjecture A and ask the teacher for its correctness.
5 If the teacher returns a counterexample c ∈ A+,

delete the conjecture A,
add all elements of the set pref(c) to the set S,
extend the queue of membership queries and continue to 2.

6 Accept the conjecture A as the automaton
modeling the environment E .
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FSM Learning Angluin’s Algorithm

FSM Conjecture Example [Ang86, Ang87]

An acceptor M(S,E, T )

over the alphabet A,
with state set Q,
initial state q0,
accepting states F , and
transition function δ:

Q = {row(s) : s ∈ S}, (1)

q0 = row(ε), (2)

F = {row(s) : s ∈ S
and T (s) = T (s • ε) = 1}, (3)

δ(row(s), a) = row(s • a). (4)

S = {ε, a, b, bb}, E = {ε, a}

T4
E

ε a

S

ε 1 0
a 0 1
b 0 0
bb 1 0

S •A

aa 1 0
ab 0 0
ba 0 0
bba 0 1
bbb 0 0

M2/δ a b

q0 q1 q2
q1 q0 q2
q2 q2 q0
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FSM Learning Example

L∗ Algorithm - Example I [Ang87]

Example 1

The unknown regular automaton accepts the set of all strings over {a, b}
with an even number of a’s and an even number of b’s.

The initial observation table, S = E = {ε}

T1
E
ε

S ε 1

S ·A a 0
b 0

The observation table T1 is consistent, but not closed,
since row(a) is distinct from row(ε).

L∗ chooses to move the string a to the set S and then queries the
strings aa and ab to construct the observation table T2.
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FSM Learning Example

L∗ Algorithm - Example II [Ang87]

Example 2

The unknown regular automaton accepts the set of all strings over {a, b}
with an even number of a’s and an even number of b’s.

S = {ε, a}, E = {ε}

T2
E
ε

S
ε 1
a 0

S •A
b 0
aa 1
ab 0

M1/δ a b

q0 q1 q1
q1 q0 q1

The observation table T2 is consistent and closed.

L∗ makes a conjecture of the acceptor M1.

The initial state of M1 is q0 and the final state is also q0.

The teacher selects a counterexample bb (rejected by M1).
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FSM Learning Example

L∗ Algorithm - Example III [Ang87]

S = {ε, a, b, bb}, E = {ε}

T3
E
ε

S

ε 1
a 0
b 0
bb 1

S •A

aa 1
ab 0
ba 0
bba 0
bbb 0

The observation table T3 is closed, but not consistent,
since row(a) = row(b) but row(aa) 6= row(ba).

L∗ adds the string a to E and queries the strings aaa, aba, baa,
bbaa, and bbba to construct the table T4.
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FSM Learning Example

L∗ Algorithm - Example IV [Ang87]

S = {ε, a, b, bb}, E = {ε, a}

T4
E

ε a

S

ε 1 0
a 0 1
b 0 0
bb 1 0

S •A

aa 1 0
ab 0 0
ba 0 0
bba 0 1
bbb 0 0

M2/δ a b

q0 q1 q2
q1 q0 q2
q2 q2 q0

The observation table T2 is consistent and closed.

L∗ makes a conjecture of the acceptor M2.

The initial state of M2 is q0 and the final state is also q0.

The teacher selects a counterexample abb (accepted by M1, but not
in U).
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FSM Learning Example

L∗ Algorithm - Example V [Ang87]

T5
E

ε a

S

ε 1 0
a 0 1
b 0 0
bb 1 0
ab 0 0
abb 0 1

S •A

aa 1 0
ba 0 0
bba 0 1
bbb 0 0
aba 0 0
abba 1 0
abbb 0 0

S = {ε, a, b, bb, ab, abb}
E = {ε, a}

The observation table T5 is closed but
not consistent since row(b) = row(ab)
but row(bb) 6= row(abb).

L∗ adds the string b to E and queries
the strings aab, bab, bbab, bbbb, abab,
abbab, and abbbb to construct the table
T6.
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FSM Learning Example

L∗ Algorithm - Example VI [Ang87]

T6
E

ε a b

S

ε 1 0 0
a 0 1 0
b 0 0 1
bb 1 0 0
ab 0 0 0
abb 0 1 0

S •A

aa 1 0 0
ba 0 0 0
bba 0 1 0
bbb 0 0 1
aba 0 0 1
abba 1 0 0
abbb 0 0 0

S = {ε, a, b, bb, ab, abb}
E = {ε, a, b}

M3/δ a b

q0 q1 q2
q1 q0 q3
q2 q3 q0
q3 q2 q1

The observation table T2 is consistent and
closed.

L∗ makes a conjecture of the acceptor M2.

The initial state of M3 is q0 and the final
state is also q0.

The teacher replies to this conjecture with
yes.

M3 is a correct acceptor for the language
U .
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FSM Learning Example

L∗ Algorithm Performance

The example:

# MQ: 25
# EQ: 3

Real protocols
Protocol States Letters MQ EQ

Abp-lossy 3 3 22 2

Buff3 9 3 202 5

Dekker-2 2 3 7 1

Sched2 13 6 691 7

VMnew 11 4 513 7

Synthetic data
States Letters MQ EQ

100 25 40000 15

At present up to 1000 states.
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Hidden Markov Model A Brief Overview

Hidden Markov Model (HMM) - Overview

1 Many observation sequences → FSM model learning
Iterative Baum-Welch algorithm [BP66] - Expectation-Maximization (EM)

2 FSM Model + an observation sequence
→ the probability of the state sequence

The Viterbi algorithm
3 FSM Model + a sequence part → the most probable states
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Markov Decision Process Introduction

Sequential Decisions [RN10]

Achieving agent’s objectives often requires multiple steps.

A rational agent does not make a multi-step decision and carry it out
without considering revising it based on future information.

Subsequent actions can depend on what is observed
What is observed depends on previous actions

Agent wants to maximize reward accumulated along its course of
action

What should the agent do if environment is non-deterministic?

Classical planning will not work
Focus on state sequences instead of action sequences
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Markov Decision Process Introduction

Sequential Decision Problems [Jak10]

Search

Planning

Decision-theoretic

planning

Markov decision

problems (MDPs)

Partially observable

MDPs (POMDPs)

explicit actions

and subgoals

uncertainty

and utility

uncertainty

and utility
explicit actions

and subgoals uncertain

sensing

(belief

states)
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Markov Decision Process Introduction

Markov Decision Process [PM10]

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2
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Markov Decision Process Introduction

Markov Decision Process [PM10]

Definition (Markov Decision Process)

A Markov Decision Process (MDP) is a 5-tuple 〈S,A, T,R, s0〉 where

S is a set of states

A is a set of actions

T (S,A, S′) is the transition model

R(S) is the reward function

s0 is the initial state

Transitions are Markovian

P (Sn|A,Sn−1) = P (Sn|A,Sn−1, Sn−2, . . . , S0) = T (Sn−1, A, Sn)
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Markov Decision Process Introduction

Example: Simple Grid World [RN10]

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

Simple 4x3 environment

States S = {(i, j)|1 ≤ i ≤ 4 ∧ 1 ≤ j ≤ 3}
Actions A = {up, down, left, rigth}
Reward function

R(s) =

{
−0.04 (small penalty) for nonterminal states
±1 for terminal states

Transition model T ((i, j), a, (i′, j′)) given by (b)
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Markov Decision Process Utility Function, Policy

Utility Function [RN10, Jak10]

Utility function captures agent’s preferences

In sequential decison-making, utility is a function over sequences of
states

Utility function accumulates rewards:

Additive rewards (special case):

Uh([s0, s1, s2, . . . ]) = R(s0) +R(s1) +R(s2) + . . .

Discounted rewards

Uh([s0, s1, s2, . . . ]) = R(s0) + γR(s1) + γ2R(s2) + . . .

where γ ∈ [0, 1] is the discount factor

Discounted rewards for γ < 1 finite even for infinite horizons
(see next slide)

No other way of assigning utilities to state sequences is possible
assuming stationary preferences between state sequences
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Markov Decision Process Utility Function, Policy

Policy [RN10, Jak10]

A stationary policy is a function

π : S → A

Optimal policy is a function maximizing expected utility

π? = arg max
π

E[U([s0, s1, s2, . . . ])|π]

For an MDP with stationary dynamics and rewards with infinite
horizon, there always exists an optimal stationary policy

no benefit to randomize even if environment is random
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Markov Decision Process Utility Function, Policy

Example: Optimal Policies in the Grid World [RN10, Jak10]

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)

– 0.0221 < R(s) < 0 

–1

+1

–1

+1

–1

+1

R(s) > 0 

– 0.4278 < R(s) < – 0.0850

(a) Optimal policy for state penalty R(s) = −0.04

(b) Dependence on penalty
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Markov Decision Process Utility Function, Policy

Decision-making Horizon [RN10, Jak10]

A finite horizon means that there is a finite deadline N after which
nothing matters (the game is over)

∀k ≥ 1 Uh([s0, s1, . . . , sN+k]) = Uh([s0, s1, . . . , sN ])
The optimal policy is non-stationary, i.e., it could change over time as
the deadline approaches.

An infinite horizon means that there is no deadline

The optimal policy is stationary ⇐ there is no reason to behave
differently in the same state at different times
Easier than the finite horizon case

terminate / absorbing states – agents stay there forever receiving zero
reward at each step
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Markov Decision Process Value Iteration

Solving MDPs [RN10, Jak10]

How do we find the optimum policy π∗?

Two basic techniques:
1 value iteration – compute utility U(s) for each state and use is for

selecting best action
2 policy iteration – represent policy explicitly and update it in parallel to

the utility function
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Markov Decision Process Value Iteration

Utility of State [RN10, Jak10]

Utility of a state under a given policy π:

Uπ(s) = E

[ ∞∑
t=0

γtR(st)|π, s0 = s

]
True utility U(s) of a state is the utility assuming optimum policy π∗

U(s) := Uπ
∗
(s)

Reward R(s) is “short-term” reward for being in s;
utility U(s) is a “long-term” total reward from s onwards

Selecting the optimum action according to
the MEU (Maximum Expected Utility) principle

π∗(s) = arg max
a

∑
s′

T (s, a, s′)U(s′)
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Markov Decision Process Value Iteration

Bellman Equation [RN10, Jak10]

Definition of utility of states leads to a simple relationship among
utilities of neighboring states

The utility of a state is the immediate reward for the state plus the
expected discounted utility of the next state, assuming the agent
chooses the optimal action

Definition (Bellman equation (1957))

U(s) = R(s) + γmax
a

∑
s′

T (s, a, s′)U(s′) ∀s ∈ S

One equation per state ⇒ n non-linear equations for n unknowns

The solution is unique
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Markov Decision Process Value Iteration

Iterative Solution [RN10, Jak10]

Analytical solution is not possible ⇒ iterative approach

Definition (Bellman update)

Ui+1(s) = R(s) + γmax
a

∑
s′

T (s, a, s′)Ui(s
′) ∀s ∈ S

Dynamic programming: given an estimate of the k-step lookahead
value function, determine the k + 1-step lookahead utility function.

If applied infinitely often, guaranteed to reach an equilibrium and the
final utility values are the solutions to the Bellman equations

Value iteration propagates information through the state space by
means of local updates.
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Markov Decision Process Value Iteration

Value Iteration Algorithm [RN10, Jak10]

Input: mdp, a MDP with states S, transition model T , reward
function R, discount γ

Input: ε, the maximum error allowed in the utility of a state
Local variables: U , U ′, vectors of utilities for states in S, initially zero
Local variables: δ, the maximum change in the utility of any state in

an iteration
repeat

U ← U ′; δ ← 0 ;
foreach state s ∈ S do

U ′[s]← R[s] + γmaxa
∑

S′ T (s, a, s′)U [s′] ;
if |U ′[s]− U [s]| > δ then

δ ← |U ′[s]− U [s]|;
end

end

until δ < ε(1− γ)/γ;
return U
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Markov Decision Process Value Iteration

Value Iteration Example [RN10, PM10, Jak10]

(a) γ = 0.6 (b) γ = 0.9 (c) γ = 0.99

4 movement actions; 0.7 chance of moving in the desired direction,
0.1 in the others

R = −1 for bumping into walls; four special rewarding states

+10 (at position (9,8); 9 across and 8 down),
one worth +3 (at position (8,3)),
one worth -5 (at position (4,5)) and
one -10 (at position (4,8))
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Markov Decision Process Policy Iteration

Policy Iteration [RN10, Jak10]

Search for optimal policy and utility values simultaneously

Alternates between two steps:
1 policy evaluation – recalculates values of states Ui = Uπi given the

current policy πi
2 policy improvement/iteration – calculates a new MEU policy πi+1

using one-step look-ahead based on Ui

Terminates when the policy improvement step yields no change in the
utilities.
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Markov Decision Process Policy Iteration

Policy Iteration Algorithm [RN10, Jak10]

Input: mdp, a MDP with states S, transition model T
Local variables: U , a vector of utilities for states in S, initially zero
Local variables: π, a policy vector indexed by state, initially random
repeat

U ← Policy-Evaluation(π, U,mdp) ;
unchanged?← true;
foreach state s ∈ S do

if maxa
∑

S′ T (s, a, s′)U [s′] >
∑

S′ T (s, π(s), s′)U [s′] then
π(s)← arg maxa

∑
S′ T (s, a, s′)U [s′];

unchanged?← false;

end

end

until unchanged?;
return π
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Markov Decision Process Policy Iteration

Policy Evaluation [RN10, Jak10]

Simplified Bellman equations:

Ui(s) = R(s) + γ
∑
S′

T (s, πi(s), s
′)Ui(s

′) ∀s ∈ S

The equations are now linear ⇒ can be solved in O(n3)
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Markov Decision Process Policy Iteration

Modified Policy Iteration [RN10, Jak10]

Policy iteration often converges in few iterations but each iteration is
expensive

⇐ has to solve large systems of linear equations

Main idea: use iterative approximate policy evaluation

Simplified Bellman update:

Ui+1(s)← R(s) + γ
∑
S′

T (s, πi(s), s
′)Ui(s

′) ∀s ∈ S

Use a few steps of value iteration (with π fixed)
Start from the value function produced in the last iteration

Often converges much faster than pure value iteration or policy
iteration (combines the strength of both approaches)

Enables much more general asynchronous algorithms

e.g. Prioritized sweeping
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Markov Decision Process Policy Iteration

Choosing the Right Technique [RN10, Jak10]

Many actions?⇒ policy iteration

Already got a fair policy? ⇒ policy iteration

Few actions, acyclic? ⇒ value iteration

Modified policy iteration typically the best
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Markov Decision Process Conclusions

Conclusions [RN10, Jak10]

MDPs generalize deterministic state space search to stochastic
environments

At the expense of computational complexity

An optimum policy associates an optimal action with every state

Iterative techniques used to calculate optimum policies

basic: value iteration and policy iteration
improved: modified policy iteration, asynchronous policy iteration

Further issues

large state spaces – use state space approximation
partial observability (POMDPs) – need to consider information
gathering; can be mapped to MDPs over continous belief space
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