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Graph Matrices Linear Algebra Reminder

Algebra

δij is the Kronecker delta, which is 1 if i = j and 0 otherwise.

A field (CZ pole, komutativńı těleso)is a set on which are defined
addition, subtraction, multiplication, and division satisfying the field
axioms (commutativity, associativity, a unit).

1 is the vector (1, 1, 1, . . . ).

The complex conjugate (CZ komplexně sdružené č́ıslo) of the
complex number z = x+ iy is defined to by z̄ = z∗ = x− iy.
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Graph Matrices Linear Algebra Reminder

Matrix [Lay12, GL13]

[. . . ]ij denotes (i, j) element of a matrix

The conjugate of a matrix A = (aij) ∈ Cn×m is the matrix
Ā = (āij) ∈ Cn×m.

The trace of an n× n (“n by n”) square matrix A is

Tr(A) =

n∑
i=1

aii = a11 + a22 + · · ·+ ann (1)

Tr(A + B) = Tr(A) + Tr(B) (2)

Tr(cA) = cTr(A) (3)

Tr(A) = Tr(AT ) (4)

Tr(AB) = Tr(BA) (5)
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Graph Matrices Linear Algebra Reminder

Matrix Transposition [Wat02, Lay12, GL13]

The transpose of a matrix A ∈ Rn×m (Rn×m → Rm×n):
[AT ]ij = [A]ji.

Let A and B denote matrices whose sizes are appropriate for the
following sums and products, let r denote any scalar, then

(AT )T = A
(A + B)T = AT + BT

(rA)T = rAT

(AB)T = BTAT

The conjugate transpose of a matrix A ∈ Cn×m: [A∗]ij = [Ā]ji.

The square matrix A is Hermitian if A∗ = A = AH and
skew-Hermitian if A∗ = −A.
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Graph Matrices Linear Algebra Reminder

Orthogonality [Wat02, GL13]

A set of vectors {x1, . . . , xp} in Rn is orthogonal if xTi xj = 0
whenever i 6= j and orthonormal if xTi xj = δij .

A matrix A ∈ Rn×n is said to be orthogonal if ATA = I.

A matrix A ∈ Cn×n is said to be unitary if A∗A = I.
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Graph Matrices Linear Algebra Reminder

Matrix Inversion [GL13]

If A and X are in Rn×n and satisfy AX = I,
then X is the inverse of A and is denoted by A−1.

(AB)−1 = B−1A−1

(A−1)T = (AT )−1 ≡ A−T
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Graph Matrices Linear Algebra Reminder

Matrix Eigenvalues [GL13]

The eigenvalues of A ∈ Cn×n are zeros of
the characteristic polynomial p(x) = det(A− xI).
Every n× n matrix has n eigenvalues.
We denote the set of A’s eigenvalues by

λ(A) = {x : det(A− xI) = 0}
λmax(A) = max(λ(A)) λmin(A) = min(λ(A))

The eigenvalue equation expressed as the matrix multiplication

Av = λv

Applying the matrix A to the eigenvector v only scales the eigenvector
by the scalar value λ.

Symmetry of a matrix A guarantees that all of its eigenvalues are real
and that there is an orthonormal basis of eigenvectors.
Let A ∈ Rn×n with eigenvalues λ and eigenvectors v. Then Ak has
eigenvalues λk and eigenvectors v for any positive integer k.
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Graph Matrices Linear Algebra Reminder

Schur Decomposition [GL13]

Theorem 1 (Symmetric Schur Decomposition, Theorem 8.1.1 [GL13],
p.440)

If A ∈ Rn×n is symmetric, then there exists a real orthogonal Q such that

QTAQ = Λ = diag(λ1, . . . , λn).

Moreover, for k = 1 : n, AQ(:, k) = λkQ(:, k).

Theorem 2 (Schur Decomposition, Theorem 7.1.3 [GL13], p.351)

If A ∈ Cn×n, then there exists a unitary Q ∈ Cn×n such that

QHAQ = T = Λ + N

where Λ = diag(λ1, . . . , λn) and N ∈ Cn×n is strictly upper triangular.
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Graph Matrices Network Matrices

Adjacency Matrix [New10, EK10]

The adjacency matrix A of a simple graph is the N ×N matrix
with element Aij such that

Aij =

{
1 if there is an edge between vertices j and i,
0 otherwise

The adjacency matrix of a directed network has matrix elements

Aij =

{
1 if there is an edge from j to i,
0 otherwise
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Graph Matrices Network Matrices

Cocitation Matrix [New10]

Convenient to turn a directed network into an undirected one for the
purposes of analysis
The cocitation of two vertices i and j in a directed network is the
number of vertices that have outgoing edges pointing to both i and j.

The cocitation of two papers is the number of other papers that cite
both.
AikAjk = 1 if i and j are both cited by k and zero otherwise.

The cocitations Cij of i and j is

Cij =
N∑
k=1

AikAjk =

N∑
k=1

AikA
T
kj

The cocitation matrix C is the N ×N matrix with elements Cij , i.e.

C = AAT

C is a symmetric matrix: CT = (AAT )T = AAT = C
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Graph Matrices Network Matrices

Bibliographic Coupling [New10]

The bibliographic coupling of two vertices in a directed networkis
the number of other vertices to which both point.

For instance in a citation network: the bibliographic coupling of two
papers i and j is the number of other papers that are cited by both i
and j.
AkiAkj = 1 if i and j both cite k and zero otherwise.

The bibliographic coupling Bij of i and j is

Bij =

N∑
k=1

AkiAkj =

N∑
k=1

AT
ikAkj

The bibliographic coupling matrix B is the n× n matrix with
elements Bij , i.e.

B = ATA

B is a symmetric matrix: BT = (ATA)T = ATA = B
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Graph Matrices Network Matrices

Bi-adjacency Matrix [New10, BJP17]

Bipartite networks

also called two-mode networks in SNA [New10]

V = V1 ∪ V2, V1 ∩ V2 = ∅
movies × actors

articles × authors

timestamps × active Wifi access points (AP)

people × groups

Let N1 = |V1| and N2 = |V2|,
then the bi-adjacency matrix B [BJP17] is N1 ×N2 matrix having
elements

Bij =

{
1 if there is an edge between vertices ni ∈ V1 and nj ∈ V2,
0 otherwise

Also called incidence matrix [New10], bipartite adjacency matrix [BM08]
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Graph Matrices Network Matrices

Adjacency and Bi-adjacency Matrix [New10, BJP17]

A =

(
∅|V1| B

BT ∅|V2|

)

Bipartite network and its bi-adjacency Matrix

TODO
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Graph Matrices Network Matrices

Incidence Matrix [Die05, New10]

The incidence matrix B by [Die05] of a simple undirected graph
G(V,E) with N vertices V = {v1, . . . , vN} and M edges
E = {e1, . . . , eM} over the 2-element field F2 = {0, 1} is defined as
the N ×M matrix with elements Bij such that

Bij =

{
1 if vi ∈ ej
0 otherwise

The edge incidence matrix by Newman [New10] of a simple undirected
graph G(V,E) with N vertices and M edges is an M ×N matrix B
with elements Bij

Bij =


+1 if end 1 of edge i is attached to vertex j,
−1 if end 2 of edge i is attached to vertex j,
0 otherwise

Each edge has two arbitrarily designated ends, end 1 and end 2.
Each row of the matrix has exactly one +1 and one −1 element.
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Graph Matrices Network Matrices

Projection [New10, BJP17]

A possible way how to analyze bipartite graphs using simple graph
methods.

Significant information on the given network might be lost.

Definition 1 (Based on Definition 3 [BJP17], p.3)

Let G(V1, V2, E) be a bipartite graph. The one-mode projection of the
bipartite graph G for the vertex Vi with respect to the vertex set Vj ,
i, j ∈ {1, 2}, i 6= j is the unipartite (one-mode) network G′(Vi, E

′) where
V (G′) = U and uv ∈ E(G′) if N(u) ∩N(v) 6= ∅.

Projection of a bipartite network - items and groups

TODO
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Graph Matrices Network Matrices

Projection Properties I [New10]

Let B be a bi-adjacency matrix of G(V1, V2, E), then the total

number P
(1)
ij of vertexes v ∈ V2 to which both i, j ∈ V1 belong is

P
(1)
ij =

|V2|∑
k=1

BikBjk =

|V2|∑
k=1

BikB
T
kj

The product BikBjk will be 1 if and only if i and j are both linked to
the same vertex k from the other vertex set

Example: relations of items and their groups

In matrix form
P(1) = BBT
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Graph Matrices Network Matrices

Projection Properties II [New10]

P
(1)
ii is the number of vertexes j ∈ V2 to which i ∈ V1 is linked

P
(1)
ij =

|V2|∑
k=1

B2
ik =

|V2|∑
k=1

Bik

assuming Bik ∈ {0, 1}
The other one-mode projection onto V2

P(2) = BTB
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Graph Matrices Network Matrices

Undirected Graph - Node Degree [New10]

The degree of a vertex in a undirected graph

ki =

N∑
j=1

Aij

The number of ends of edges

2M =

N∑
i=1

ki

The number of edges

M =
1

2

N∑
i=1

ki =
1

2

∑
ij

Aij
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Graph Matrices Network Matrices

Undirected Graph - Density [New10]

The mean degree c of a vertex in a undirected graph

c =
1

N

N∑
i=1

ki =
2M

N

The maximum possible number of edges in a simple graph(
N

2

)
=

1

2
N(N − 1)

The connectance or density ρ of a graph is the fraction of edges
that are actually present (0 ≤ ρ ≤ 1).

ρ =
1(
N
2

) =
2M

N(N − 1)
=

c

N − 1
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Graph Matrices Network Matrices

Directed Graph - Vertex Degree [New10]

The in-degree kin
i and out-degree kout

j of a vertex in a undirected
graph

kin
i =

N∑
j=1

Aij , kout
j =

N∑
i=1

Aij

The number of edges

M =

N∑
i=1

kin
i =

N∑
j=1

kout
j =

∑
ij

Aij

The mean in-degree cin and the mean out-degree cout of a vertex
in a undirected graph are equal:

cin =
1

N

N∑
i=1

kin
i =

1

N

N∑
j=1

kout
j = cout = c =

M

N
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Graph Matrices Network Matrices

Paths in Simple Graph [New10]

The element Aij is 1 if there is an edge from i to j, and 0 otherwise
in simple graphs.

The product AikAkj is 1 if there is a path of length 2 from j to i via
k, and 0 otherwise.

The total number N
(2)
ij of paths of length two from j to i via any

other vertex is

N
(2)
ij =

N∑
k=1

AikAkj = [A2]ij

Paths of length three from j to i via l and k in that order

N
(3)
ij =

N∑
k=1

AikAk`A`j = [A3]ij

Paths of an arbitrary length r

N
(r)
ij = [Ar]ij
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Graph Matrices Network Matrices

Cycles in Simple Graph [New10]

The number of paths of length r that start and end at the same
vertex i is [Ar]ii.

The total number Lr of cycles (“loops”) of length r anywhere in a
network is (the sum over all possible starting vertexes i)

Lr =

N∑
i=1

[Ar]ii = TrAr.

The loop 1→ 2→ 3→ 1 is considered different from the loop
2→ 3→ 1→ 2.

The loops 1→ 2→ 3→ 1 and 1→ 3→ 2→ 1 traversed in opposite
directions are distinct, too.
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Graph Matrices Network Matrices

Cycles in Simple Graph and Eigenvalues [New10]

Undirected graph
The adjacency matrix A is symmetric, i.e. A = QKQT ,
where Q is the orthogonal matrix of eigenvectors and
K is the diagonal matrix of eigenvalues κi of A.
Ar = (QKQT )r = QKrQT

Lr = TrAr = Tr(QKrQT ) = Tr(QTQKr) = TrKr =
∑

i κ
r
i

Directed networks
Every real matrix can be written in the form A = QTQT ,
where Q is an orthogonal matrix and
T is an upper triangular matrix using the Schur decomposition.
Since T is triangular, its diagonal elements are its eigenvalues.
The eigenvalues are the same as the eigenvalues of A.

Ax = QTQTx = κx · · · ×QT (6)

TQTx = κQTx (7)

(8)

Lr = TrAr = Tr(QTrQT ) = Tr(QTQTr) = TrTr =
∑

i κ
r
i
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Centrality Measures Path Based Centralities

Centrality Measures / Ranking [BE06, Weh13]

Measuring the importance/prominence of a node within the network

Degree Centrality (Node Activity)

Betweenness Centrality (Intermediate Position)

Closeness Centrality (Distance to other nodes)

Eigenvector Centrality (Important nodes have important friends)

Power Centrality (Close to hubs)

Page Rank

Evaluation of the location actors in the network

Insight into various roles and groupings in a network

Connectors, mavens, leaders, bridges, isolates, broker, hubs

Where are the clusters and who is in them,

Who is in the core of the network? Who is on the periphery?

What is a single point of failure?

Radek Mǎŕık (radek.marik@fel.cvut.cz) Network Properties October 17, 2017 28 / 51



Centrality Measures Path Based Centralities

Degree Centrality [Fre79, BE06, Weh13]

What is the degree of an actor? How active is an actor?

Degree centrality

is a count of the number of edges incident upon a given vertex.

Degree centrality for actor i

cdi =
∑
j

aij = A1

where A is the adjacency matrix

1 is a vector of 1 with size N .

Normalized degree centrality for actor i

c′
d
i =

∑
j aij

N − 1
=

A1

N − 1
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Centrality Measures Path Based Centralities

Closeness centrality [Fre79, Dod09]

Idea: Nodes are more central if they can reach other nodes ‘easily.’

Measures average shortest path from a node to all other nodes.

Closeness Centrality for node i as

cci =
N − 1∑

j,j 6=i(distance from i to j)

Range is 0 (no friends) to 1 (a single hub).

Meaning

Unclear what the exact values of this measure tells us because of its
ad-hocness.

General problem with simple centrality measures: what do they
exactly mean?

Perhaps, at least, we obtain an ordering of nodes in terms of
‘importance.’
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Centrality Measures Path Based Centralities

Examples of degree centrality [Weh13]

Examples for degree centrality ci and normalized degree centrality c′i:

Star

cd1 = 4 c′d1 = 1

cd2 = 1 c′d2 = 0.25

cd3 = 1 c′d3 = 0.25

cd4 = 1 c′d4 = 0.25

cd5 = 1 c′d5 = 0.25

Line

cd1 = 2 c′d1 = 0.5

cd2 = 2 c′d2 = 0.5

cd3 = 2 c′d3 = 0.5

cd4 = 1 c′d4 = 0.25

cd5 = 1 c′d5 = 0.25

Circle

cd1 = 2 c′d1 = 0.5

cd2 = 2 c′d2 = 0.5

cd3 = 2 c′d3 = 0.5

cd4 = 2 c′d4 = 0.5

cd5 = 2 c′d5 = 0.5
(all actors identical)
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Centrality Measures Path Based Centralities

Betweenness centrality [Dod09]

Betweenness centrality is based on shortest paths in a network.

Idea: If the quickest way between any two nodes on a network
disproportionately involves certain nodes, then they are ‘important’ in
terms of global cohesion.

For each node i, count, over all pairs of nodes x and y, how
many shortest paths pass through i.

Call frequency of shortest paths passing through node i the
betweenness of i, Bi .

Note: Exclude shortest paths between i and other nodes.

Note: works for weighted and unweighted networks.

Role played by shortest paths justified by small-world phenomenon
(Milgram’s experiment).
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Centrality Measures Path Based Centralities

Betweenness Centrality - Complexity [Dod09]

Consider a network with N nodes and m edges (possibly weighted).
Computational goal: Find

(
N
2

)
shortest paths between all pairs of

nodes.
Traditionally Floyd-Warshall algorithm used.
Computation time grows as O(N3).
See also:

1 Dijkstra’s algorithm for finding the shortest path between two specific
nodes, and

2 Johnson’s algorithm which outperforms Floyd-Warshall for sparse
networks:

O(MN +N2logN)

.

Newman (2001) and Brandes (2001) independently derived much
faster algorithms.
Computation times grow as:

1 O(MN) for unweighted graphs, and
2 O(MN +N2logN) for weighted graphs.
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Centrality Measures Path Based Centralities

Shortest path between node i and all others [Dod09]

Consider unweighted networks.
Use breadth-first search:

1 Start at node i, giving it a distance d = 0 from itself.
2 Create a list of all of i’s neighbors and label them being at a distance
d = 1.

3 Go through list of most recently visited nodes and find all of their
neighbors.

4 Exclude any nodes already assigned a distance.
5 Increment distance d by 1.
6 Label newly reached nodes as being at distance d.
7 Repeat steps 3 through 6 until all nodes are visited.

Record which nodes link to which nodes moving out from i (former
are ‘predecessors’ with respect to i’s shortest path structure).

Runs in O(M) time and gives N shortest paths.

Find all shortest paths in O(MN) time

Much, much better than naive estimate of O(MN2).
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Centrality Measures Path Based Centralities

Newman’s Betweenness algorithm [New01, Dod09]

1 Set all nodes to have a value cij = 0, j = 1, . . . , N (c for count).

2 Select one node i.

3 Find shortest paths to all other N − 1 nodes using breadth-first
search.

4 Record # equal shortest paths reaching each node.

5 Move through nodes according to their distance from i, starting with
the furthest.

6 Travel back towards i from each starting node j, along shortest
path(s), adding 1 to every value of cik at each node k along the way.

7 Whenever more than one possibility exists, a portion according to
total number of short paths coming through predecessors.

8 Exclude starting node j and i from increment.

9 Repeat steps 2-8 for every node i and obtain betweenness as
Bj =

∑N
i=1 cij

Radek Mǎŕık (radek.marik@fel.cvut.cz) Network Properties October 17, 2017 35 / 51



Centrality Measures Path Based Centralities

Newman’s Betweenness - notes [New01, Dod09]

For a pure tree network, cij is the number of nodes beyond j from i’s
vantage point.

For edge betweenness, use exact same algorithm but now
1 j indexes edges, and
2 we add one to each edge as we traverse it.

For both algorithms, computation time grows as O(MN) and space
for O(N +M) integers (N nodes, M arcs).

Both bounds infeasible for large networks,
where typically N ≈ 109 and M ≈ 1011.

For sparse networks with relatively small average degree, we have a
fairly digestible time growth of O(N2).
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Centrality Measures Path Based Centralities

Newman’s Betweenness - examples [New01, Dod09]
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Centrality Measures Spectral Centralities

Important nodes have important friends [Dod09]

Define xi as the ”importance” of node i.

Idea: xi depends (somehow) on xj if j is a neighbor of i.

Recursive: importance is transmitted through a network.

Simplest possibility is a linear combination:

xi ∝
∑
j

ajixj

Assume further that constant of proportionality, c, is independent of i.

Above gives x̃ = cAT x̃ or AT x̃ = c−1x̃ = λx̃ .
Eigenvalue equation based on adjacency matrix:

The greatest eigenvalue and its related eigenvector fulfills only the
additional requirement that all the entries in the eigenvector be positive
(Perron-Frobenius theorem).

Eigenvalue centrality of the vertex v in the network
. . . The vth component of the related eigenvector
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Centrality Measures Spectral Centralities

Eigenvalue Centrality - Iterative Approach [New10]

An initial guess about the centrality xi of each vertex i.
e.g. xi = 1 for all i

One step to calculate a better estimate x′i

x′i =
∑
j

Aijxj i.e. x′ = Ax

Repeat t times: x(t) = Atx(0)

Express x(0) as a linear combination of the eigenvectors vi of A:
x(0) =

∑
i civi.

x(t) = At
∑
i

civi =
∑
i

ciA
tvi =

∑
i

ciκ
t
ivi = κt1

∑
i

ci[
κi
κ1

]tvi

κi are the eigenvalues of A, κ1 is the largest of them.

Since κi/κ1 < 1 for all i 6= 1, all terms in the sum other then the first
decay exponentially as t becomes large: x(t)→ c1κ1v1 as t→∞.
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Centrality Measures Spectral Centralities

Eigenvalue Centrality - Properties [New10]

Eigenvalue centrality by Bonacich in 1987 [Bon87]

Ax = κ1x xi = κ−11

∑
j

Aijxj

The centrality xi of vertex i is proportional to the sum of the
centralities of i’s neighbors:

a vertex has many neighbors,
a vertex has importnant neighbors.

The eigenvector centralities of all vertices are non-negative.
If xi(0) ≥ 0 and Aij ≥ 0 then xi(t) ≥ 0.

Eigenvector centrality works well for undirected networks.
Issues with directed networks

Asymmetric adjacency matrix has two sets of eigenvectors,
left and right, i.e hence two leading eigenvectors.
In most cases the right eigenvector should be used

to prefer the case in which centralities are driven by vertices pointing to
a given vertex (and not to which vertices the given vertex points to)

Zero xi are propagated as zero =⇒ strong components taken only.
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Centrality Measures Spectral Centralities

Katz Centrality [Kat53]

To resolve the issue with zero eigenvalue centralities xi

Katz Centrality

Proposed by Katz in 1953

CKatz = αA + α2A2 + · · ·+ αkAk + . . . (9)

CKatz(i) =

∞∑
k=1

N∑
j=1

αk[Ak]ij (10)

CKatz(i) denotes Katz centrality of a node i.

The attenuation factor α . . . discounted paths (walks)

A link in the distance k is attenuated by αk.

If α < 1/|κ1|, where κ1 is the largest eigenvalue of A, then

~cKatz = ((I− αAT )−1 − I)1
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Centrality Measures Spectral Centralities

Alpha Centrality [BL01, New10]

Proposed by Bonacich in 2001 [BL01]

A generalization of Katz centrality

xi = α
∑
j

Aijxj + β x = αAx + β1

where α and β are positive constants.

Each vertex has a non-zero positive centrality because of small β > 0

Rearranging for x

x = β(I− αA)−1 · 1 = (I− αA)−1 · 1

using β = 1 to care about relative values of centralities only.
CAlpha = α0A0 + CKatz = I + CKatz

Choice of a value of α
If α→ 0, then all xi → β = 1
If α→ 1/κ1, then a divergence . . . det(A− α−1I) = 0
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Centrality Measures - Importance of Nodes [Roc12]

A B

C D

E F

Low → middle → high values

A Degree centrality,

Node Activity

B Closeness centrality,

Distance to other nodes

C Betweenness centrality,

Intermediate Position

D Eigenvector centrality,

Important nodes have important
friends

E Katz centrality,

The relative influence of a node
within a network

F Alpha centrality

Important nodes have important
friends for asymmetric relations
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Centrality Measures Spectral Centralities

PageRank [?, BP12, New10]

In some case, a high-centrality vertex should not distribute its
centrality to other vertexes fully,

e.g. Yahoo! referencing a personal page.

The centrality of a given vertex is distributed to its neighbors as an
amount proportional to its centrality divided by its out-degree.

xi = α
∑
j

Aij
xj
kout
j

+ β x = αAD−1x + β1

If kout
j = 0, then Aij = 0 for all i.

In such cases, we set artificially kout
j = 1 to avoid the problem with the

term when zero is divided by zero. The result is a zero centrality
contribution.
D is the diagonal matrix with elements Dii = max(kout

j , 1)

By rearranging and setting β = 1, and α < 1/|κ1|, κ1 = λmax(A)

x = β(I− αAD−1)−1 · 1 = D(D− αA)−1 · 1
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Egypt Data - Family Formation [?]

Ny-wcr-Ra 0.647

2a-mrr-nbty 0.424

Nwb-ib-nbty 0.351

Canx-wi-PtH 0.290

Ra-xw.f I 0.180

Ra-nfr.f 0.139

Axty-Htp III 0.139

PtH-Spcc 0.082

PH-r-nfr III 0.048

5rt-nbty I 0.048

People with
the top 10 highest betweenness 0 5 10 15 20 25 30 35 40

Family Size

100

101

102

103

C
ou

n
t

Extended family size distribution
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Summary

Linear algebra remainder

Network matrices

Centrality Measures

Path based centralities
Spectral centralities
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Competencies

Define adjacency matrix, cocitation matrix, and bibliographic coupling

Define bi-adjacency matrix, incidence matrxi, edge incidence matrix

Define one-mode projection and its relation to bi-adjacency matrix.

Show how to compute degree of vertex, the number of edges, the
mean degree, and graph density based on the adjacency matrix for
undirected and directed graphs.

Show how to compute number of paths and cycles based on the
adjacency matrix.

Define degree centrality.

Define closenes centrality.

Define betweenness centrality.

Describe an algorithm for betweenness centrality computation.

Define eigenvalue centrality.

Define Katz centrality.

Define PageRank index.
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