
Text Search

Automata Examples

Automata Reperesenting Operations on Regular Languages

Operations on Regular Languages

Hamming and Levenshtein Distance

Approximate Text Search

Automaton Bit Arrays Simulation

B

u

j

~

u

n

e @#Nk
!

q

f

Marko Berezovský
Radek Mařík
PAL 2012

A R

"!"

4
] {

u

@#?
wtf?

g

Finite Automata Easy Examples 1

0 1 3
0 0 1 1

0

2 4
1

C1

Automaton C1 accepts union of sets
L1 = {00, 0011, 001100, 00110011, 0011001100, ...}

 {11, 1100, 110011, 11001100, 1100110011, ...}.

Automaton C2 accepts language L2 over  = {0, 1}, in each word of L2 :
-- there is at least one symbol 1,
-- each symbol 1 is followed by exactly two or three symbols 0.

0 1 2

0

1 0 0 0
1

1

3 4

C2

Finite Automata Easy Examples 2

Automaton C3 accepts all binary nonnegative integers divisible by 3,
any number of leading zeros may be included.

Automaton C4 accepts all binary positive integers divisible by 3,
no leading zeros are allowed.

1

0
01

1

1

0 20

C3

2

0 01

1

1

1 30

C4

0

1

Language operations Overview 3

Let L1 and L2 be any languages. Then
L1  L2 is union of L1 and L2. It is a set of all words which are in L1 or L2.
L1  L2 is intersection of L1 and L2. It is a set of all words

which are simultaneously in L1 and L2.
L1.L2 is concatenation of L1 and L2. It is a set of all words w for which holds

w = w1w2 (concatenation of words w1 and w2), where w1 L1 and w2  L2.
L1

* is Kleene star or Kleene closure or iteration of language L1.
It is a set of all words which are concatenations of any number (incl. zero)
of any words of L1 in any order.

Closure
Whenever L1 and L2 are regular languages
then L1  L2, L1  L2, L1.L2 , L1

* are regular languages too.

Operations on regular languages revisited

When L1 is regular language accepted by automaton A1 and
L2 is regular language accepted by automaton A2
then there also are automata A3, A4, A5, A6,
which accept L1  L2, L1  L2, L1.L2 , L1

*, respectively.

Automata support

.

Automaton A3 accepting union of two regular languages L1 , L2
accpted by automata A1, A2 respectively.

Language operations Union 4

Automaton A3 is constructed using A1 and A2:

Do not change A1 and A2.
Create new aditional start state S0, add  - transitions from S0 to start
states S1 and S2 of A1 and A2 respectively.
Define set of final states of A3 as union of final states of A1 and A2.

S1 S2S0 A1
A2

A3



Scheme

Union automaton Example 5

0 1 30 0 1 1
0

2 4
1

C1

1

0
01

1

1

0 20

C3

0 1 30 0 1 1
0

2 4
1

1

0
01

1

1

0 20

B3


0



Automaton B3 accepts any word from sets
{00, 0011, 001100, 00110011, 0011001100, ...}
{11, 1100, 110011, 11001100, 1100110011, ...}
and also any binary nonnegative integer divisible by 3
with any number of leading zeros

.

Automaton A5 accepting concatenation of two regular languages L1 , L2
accepted by automata A1, A2 respectively.

Language operations Concatenation 6

Automaton A5 is constructed using A1 and A2:

Do not change A1 and A2.
Add  - transitions from each final state Fk of A1 to the start state S2 of A2.
Define start state of A5 to be equal to the start state of A1.
Define set of final states of A5 to be equal to the set of final states of A2.

S2S1
A1 A2

A5 
F1

F2


Scheme

Concatenation automaton Example 7

Automaton B5 accepts any word over {0, 1} which can be split into two
consecutive words w1 and w2, where
word w1 is described by regular expression 0*(100+1000)(100+1000)* ,
word w2 represents binary positive integer divisible by 3 w/o leading 0's.

2

0 01

1

1

1 30

C4

0

1

0 1 2

0

1 0 0 0
1

1

3 4

C2

2

0 01

1

1

1 300

1


0 1 2

0

1 0 0 0
1

1B5


3 4

.

Automaton A6 accepting iteration of language L1
accepted by automaton A1.

Language operations Iteration 8

Automaton A6 is constructed using A1:

Do not change A1.
Create new aditional start state S0 and add  - transition from S0 to start

state S1 of A1
Add  - transitions from all final states Fk of A1 to state S1.
Define start state of A6 to be S0.
Define set of final states of A6 as union of final states Fk and S0.

A1

A6


Scheme

F2

F1



S1S0



Iteration automaton Example 9



Automaton B6 accepts any word created by concatenation and repetition
of any words accepted by C2 including empty word.

0 1 2

0

1 0 0 0
1

1

3 4

C2

1 2

0

1 0 0 0
1

1

4

B6

0 3s0





Maybe you can find some more telling
informal description of the corresponding language?

Automaton A4 accepting intersection of two regular languages L1 , L2
accepted by automata A1, A2 respectively.

Language operations Intersection 10

Automaton A4 is constructed using A1 and A2:

Create Cartesian product Q1  Q2 , where Q1, Q2 are sets of states of A1, A2.

Each state of A4 will be an ordered pair of states of A1, A2.

State (S1, S2) will be start state of A4, where S1,S2 are start states of A1, A2.

Final states of A4 will be just those pairs (F, G),
where F is a final state of A1 and G is a final state of A2.

Create transition from state (p1, p2) to (q1, q2) in A4 labeled by symbol x
if and only if

there is a transition p1  q1 labeled by x in A1 and also
there is a transition p2  q2 labeled by x in A2.

Language operations Intersection automaton 11

Scheme of an
automaton A4
accepting the
intersection
of two regular
languages L1, L2
accepted by
automata A1, A2
respectively.

S1
x

S2

a

a

A4

A1

A2

S2S1

wx

zy

wy

S2x S2

y

w

z

y

y

S1

a

ww

zzzx

x

x

S2yS2

S1

wS1

zS1

Language operations intersection automaton 12

0 1 2

0

1 0 0 0
1 1

3 4

A1

2

0

0

1 1

1

1

3

0

A2

0
1

00 10 20 30 40

11 21

12 22 32 42

13 23

0

1

00

1

1 1

0
0

0

0

1

0 0

11

0 0

0

0

1 1

02

03

31 41

43

01

A4

Automaton A4
accepting
binary integers
divisible by 3 (C4)
in which
each symbol 1
is followed by
exactly two
or three
symbols 0 (C2).

1
1

1

33

Hamming distance

Hamming distance of two strings is equal to k (k  0),
whenever k is the minimal number of rewrite operations which when
applied on one of the strings produce the other string.
Rewrite operation rewrites one symbol of the alphabet
by some other symbol of the alphabet.
Symbols cannot be deleted or inserted.
Hamming distance is defined only for pairs of strings of equal length.

Informally: Align the strings and count the number of mismatches of
corresponding symbols.

l o k o m o t i v a
v y k o l e j i l a distance = 6

m a l é _ p i v o
v e l k ý _ v ů z distance = 8

Pokročilá Algoritmizace, A4M33PAL, ZS 2009/2010, FEL ČVUT, 7/12

Hamming distance Definition 13

Learn some Czech

Automaton A1 for aproximate pattern matching. It detects all occurences
of substrings whose Hamming distance form the pattern p1p2p3p4
is less or equal to 3.

A1

Hamming distance search automaton 14

  

  

 



0
p1 1

p2 2
p3 3

p4 4

5
p2 6

p3 7
p4 8

9
p3 10

p4

12
p4

11

13

Automaton A2 for aproximate pattern matching. It detects all occurences
of substrings whose Hamming distance form the pattern 'rose'
is less or equal to 3.

Automaton A2 detects
among others also
the words:

rose (distance = 0)
dose (distance = 1)
rest (distance = 2)
list (distance = 3)
and more...

A2

Hamming distance search automaton 15

  

  

 

0 r 1 o 2 s 3 e 4

5 o 6 s 7 e 8

9 s 10 e

12 e

11

13



NFA accepting any word with subsequence p1p2p3p4 anywhere in it.

NFA accepting any word with subsequence p1p2p3p4 anywhere in it,
one symbol in the sequence may be altered.

Alternatively: NFA accepting any word containing a subsequence Q
whose Hamming distance from p1p2p3p4 is at most 1.

p1 p2 p3 p4

p2 p3 p4

4

8

Example

Example

Power of indeterminsm Examples 16

   

0
p1 p2 p3 p4 41 2 3

  

    

0 1 2 3

5 6 7

r o s e

o s e

Hamming distance from
the pattern P = "rose" to
the found pattern Q
corresponds exactly
to the end state.

r o s e 4

o s e 8

9 s 10 e 11

0 r 1 o 2 s 3 e 4

5 o 6 s 7 e 8

9 s 10 e 11

Hamming distance of the
found pattern Q from
pattern P = "rose"
cannot be deduced from
the particular end state.
E.g.: "rope":
r - 1 - o - 2 - p - 7 - e - 8.
r - 5 - o - 6 - p - 10 - e - 11.

Notation: x =  ─ {x}
means: Complement of x in .

Improvement

Hamming distance Clever labeling 17

  

 

0 1 2 3

5 6 7





Levenshtein distance

Levenshtein distance of two strings A and B
is such minimal k (k ≥ 0), that we can change A to o B or B to A
by applying exactly k edit operations on one of A or B.
The edit operations are Remove, Insert or Rewrite any symbol of the alphabet
anywhere in the string. (Rewrite is also called Substitution.)

Levenshtein distance is defined for any two strings over a given alphabet.

B R U X E L L E S Delete X.
B E T E L G E U S E Rewrite R->E, U->T, L->G.

Insert U, E.
Distance = 6

Although the distance is defined unambiguously (prove!), the particular
edit operations transforming one string to another may vary (find an example).

Note

Levenshtein distance Definition 18

Dist(A, B) = |m ─ n| if n = 0 or m = 0

Dist(A, B) = 1+ min (Dist(A[1..n ─ 1], B[1..m]), if n > 0 and m > 0
Dist(A[1..n], B[1..m ─ 1]), and A[n] ≠ B[m]
Dist(A[1..n ─ 1], B[1..m ─ 1]))

Dist(A, B) = Dist(A[1..n ─ 1], B[1..m ─ 1]) if n > 0 and m > 0
and A[n] = B[m]

Calculation corresponds to ... Operation

1+ Dist(A[1..n ─1], B[1..m]), ... Insert(A, n ─1, B[m]) or Delete(B, m)
1+ Dist(A[1..n], B[1..m ─1]), ... Insert(B, m ─1, A[n]) or Delete(A, n)
1+ Dist(A[1..n ─1], B[1..m ─1]) ... Rewrite(A, n, B[m]) or Rewrite(B, m, A[n])

Calculating Levenshtein distance

Apply a simple Dynamic Programming approach.

Let A = a[1].a[2].a[n] = A[1..n], B = b[1].b[2].b[m] = b[1..m], n, m ≥ 0.

Levenshtein distance Calculation 19

Dist("BETELGEUSE","BRUXELLES") = 6

B E T E L G E U S E
0 1 2 3 4 5 6 7 8 9 10

B 1 0 1 2 3 4 5 6 7 8 9
R 2 1 1 2 3 4 5 6 7 8 9
U 3 2 2 2 3 4 5 6 6 7 8
X 4 3 3 3 3 4 5 6 7 7 8
E 5 4 3 4 3 4 5 5 6 7 7
L 6 5 4 4 4 3 4 5 6 7 8
L 7 6 5 5 5 4 4 5 6 7 8
E 8 7 6 6 5 5 5 4 5 6 7
S 9 8 7 7 6 6 6 5 5 5 6

Levenshtein distance Example 20

D[0][j] = j; D[i][0] = i; // i = 0..n, j = 0..m
// supposing A.length = n+1, B.length = m+1

for(i = 1; i <= n; i++)
for(j = 1; j <= m; j++)

if(A[i] == B[j])
D[i][j] = D[i-1][j-1];

else D[i][j] = 1+ min(D[i-1][j-1], D[i-1][j], D[i][j-1]);

r s eo
r, e,s,o,

o s e
s eo

s e

e

o, e,s,

e,s,

s e

e

0 1 2

9 10

12

3

5 6 7

NFA searches in a text for a string within Levenshtein distance 3
from the pattern "rose".

More transitions than in
Hamming distance NFA

vertical ... Insert operation
epsilon ... Delete operation

Label vertical transitions by  (whole alphabet).
How will it change the functionality of this NFA?

Self-check question

Levenshtein distance Search automaton 21

Note the transitions.








11

13

4

8

a b z
0 0,1 0 0
1 2
2 3
3 F

Bit representation of NFA
Size of transition table T is |Q|  | | and each its element T[i,k] corresponds to
state qi  Q and symbol ak  . T[i,k] is vector of length |Q| and it holds:
T[i,k][j] == 1  qj  (qi, ak).
For bit vector F of final states holds F[j] == 1  qj  FA



0
a

1
b

2
a

3

z    {a, b}

i=0

i=1

i=2

i=3

T

Automaton A detects
pattern aba in a text.

Bit
representation
of automaton A.

Example

0 0 0 1

F

Text Search Bits 22

A

a b z
1 1 1
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0
1
2
3

- a c c a b c a a b a

1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 1 0 0 1 1 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

{0} {0,1} {0} {0} {0,1} {0,2} {0} {0,1} {0,1} {0,2} {0,1,3}sets of states

sets of states
represented by
bit arrays
during computation

i=0

i=1

i=2

i=3 0 0 0 1

F

T

text symbols:
timestarting configuration

Automaton is in states {0,1}, it reads symbol b
example

1
0
0
0

0
0
1
0

OR

1
0
1
0

=

Bit RepresentationText Search 23

A

a b z
1 1 1
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0

S[0] = [100..0]; i = 1; // init
while((i <= t.length) && (S[i-1]!=[000...0])) {

for(j=0; j < Q.size; j++)
if((S[i][j] == 1) && (F[j] == 1))

print(q[j].final_state_info);
S[i] = [000...0];
for(j=0; j < Q.size; j++)

if(S[i-1][j]==1)
S[i] = S[i] | T[j][t[i]]; // "|"

i++;
}

Simulation of work of a NFA without transitions
Basic method, implemented with bit vectors.

Input: Bit table T of transitions, bit vector F of final states,
number of states Q.size, text in array t (indexed from 1).

Output: Simulated run and output of the automaton.
(notation in format [0101...00] denotes characteristic vector of set of states)

Bit Representation Simulation 24

