. Marko Berezovsky

= o e

[(Automata Examples] [0 .
-n @ p

B (Operations on Regular Languages) B- B .

n
] n B [Automata Reperesenting Operations on Regular Languages)
. u
B B (Hamming and Levenshtein Distance J. ﬁ
. u

. B s [Approxmate Text Search]. -

O (Automaton Bit Arrays Simulation]l B 0 I

Finite Automata

Easy Examples

Automaton C, accepts union of sets
L,= {00, 0011, 001100, 00110011, 0011001100, ...}
v {11, 1100, 110011, 11001100, 1100110011, ...}.

Automaton C, accepts language L, over 2 = {0, 1}, in each word of L,:
-- there is at least one symbol 1,
-- each symbol 1 is followed by exactly two or three symbols 0.

Finite Automata

Easy Examples

Automaton C; accepts all binary nonnegative integers divisible by 3,
any number of leading zeros may be included.

Automaton C, accepts all binary positive integers divisible by 3,
no leading zeros are allowed.

B Language operations | Overview

3

~ Operations on regular languages revisited }

Let L, and L, be any languages. Then
L, u L, is union of L, and L,. It is a set of all words which are in L, or L,.
L, N L, is intersection of L, and L,. It is a set of all words
which are simultaneously in L, and L,.
L,.L, is concatenation of L, and L,. It is a set of all words w for which holds
W = w,W, (concatenation of words w, and w,), where w,e L, and w, € L..
L," is Kleene star or Kleene closure or iteration of language L,.
It is a set of all words which are concatenations of any number (incl. zero)
of any words of L, in any order.
Closure
Whenever L, and L, are regular languages
thenL, UL, L,nL, L,.L,, L, are regular languages too.

.

) Automata support]

J

When L, is regular language accepted by automaton A, and
L, is regular language accepted by automaton A,

then there also are automata A;, Ay, As, Ag,

which acceptL, U L,, L, nL,, L,.L,, L, respectively.

B Language operations | union

Automaton A, accepting union of two regular languages L, , L,
accpted by automata A,, A, respectively.

4)

Automaton A, is constructed using A, and A,:

Do not change A, and A,.

Create new aditional start state S, add ¢ - transitions from S to start
states S, and S, of A, and A, respectively.

Define set of final states of A; as union of final states of A, and A,.

Union automaton | Example R 5
=
~

0 0)

_/
4)
Automaton B; accepts any word from sets
{00, 0011, 001100, 00110011, 0011001100, ...}
{11, 1100, 110011, 11001100, 1100110011, ...}

and also any binary nonnegative integer divisible by 3
with any number of leading zeros

Language operations

Automaton A; accepting concatenation of two regular languages L, , L,
accepted by automata A,, A, respectively.

(

Automaton Az is constructed using A, and A,:

Do not change A, and A,.

Add ¢ - transitions from each final state F, of A, to the start state S, of A..
Define start state of A; to be equal to the start state of A,.
Define set of final states of A; to be equal to the set of final states of A,.

B Concatenation automaton | Example R 7

4)
C 0 1 0
e
1
CRINGENERS S
_ J
4 N
Automaton B, accepts any word over {0, 1} which can be split into two
consecutive words w1 and w2, where
word w1 is described by regular expression 0*(100+1000)(100+1000)* ,
word w2 represents binary positive integer divisible by 3 w/o leading O's.
_ J
~ A

B Language operations | Iteration

Automaton A, accepting iteration of language L,
accepted by automaton A,.

4 N
Automaton A is constructed using A;:

Do not change A,.

Create new aditional start state S;and add ¢ - transition from S, to start
state S, of A,

Add ¢ - transitions from all final states F, of A, to state S,.

Define start state of A; to be S,,.

&Define set of final states of Ag as union of final states F, and S,,.

n Iteration automaton | Example R 9
4)
1
(O—(O—2—0
_ _/
4)
Automaton B accepts any word created by concatenation and repetition
of any words accepted by C, including empty word.
G J
4)
_

Maybe you can find some more telling
informal description of the corresponding language?

SR

J

Language operations

Automaton A, accepting intersection of two regular languages L, , L,
accepted by automata A,, A, respectively.

‘A

utomaton A, is constructed using A, and A,:)
Create Cartesian product Q,; x Q, where Q,, Q, are sets of states of A;, A,.
Each state of A, will be an ordered pair of states of A,, A,.

State (S,, S,) will be start state of A,, where S,,S, are start states of A, A,.

Final states of A, will be just those pairs (F, G),
where F is a final state of A, and G is a final state of A,.

Create transition from state (p4, p,) to (q,, q,) in A, labeled by symbol x
if and only if
there is a transition p, — q, labeled by x in A; and also
there is a transition p, — q, labeled by x in A,.

_ /

Language operations

-

Scheme of an
automaton A,
accepting the
intersection

of two regular
languages L,, L,
accepted by
automata A,, A,
respectively.

-

Language operations

=
4)
4)
Automaton A,
accepting

binary integers
divisible by 3 (C,)
in which

each symbol 1

is followed by
exactly two

or three

symbols 0 (C,).

Hamming distance

Hamming distance

Hamming distance of two strings is equal to k (k < 0),

whenever k is the minimal number of rewrite operations which when
applied on one of the strings produce the other string.

Rewrite operation rewrites one symbol of the alphabet

by some other symbol of the alphabet.

Symbols cannot be deleted or inserted.

Hamming distance is defined only for pairs of strings of equal length.

Informally: Align the strings and count the number of mismatches of
corresponding symbols.

~N

B, i some Czech

l ok omotivwva

vykolejila distance = 6
malé pivo
velky v iz distance = 8

Pokrogila Algoritmizace, A4M33PAL, ZS 2009/2010, FEL CVUT, 7/12

Hamming distance

4 N

Automaton A, for aproximate pattern matching. It detects all occurences
of substrings whose Hamming distance form the pattern p,p,psp,
is less or equal to 3.

_ J

Hamming distance

-

e

Automaton A, for aproximate pattern matching. It detects all occurences
of substrings whose Hamming distance form the pattern 'rose'

is less or equal to 3.
_

4 N [
Automaton A, detects

among others also
the words:

rose (distance = 0)
dose (distance = 1)
rest (distance = 2)
list (distance = 3)
and more...

_ J

n Power of indeterminsm . Examples R16

Example
FLNFA accepting any word with subsequence p,p,p;p, anywhere in it. L
2 P 2 P
[Example
NFA accepting any word with subsequence p,p,p;p, anywhere in it,
one symbol in the sequence may be altered.

2 2 2

P P P P
112234

Z aN\Z sN\& s \Z s

()
8%@% IO4

Alternatively: NFA accepting any word containing a subsequence Q
whose Hamming distance from p,p,p;p, is at most 1.

Hamming distance

4)

Hamming distance of the
found pattern Q from
pattern P = "rose"

cannot be deduced from
the particular end state.
E.g.: "rope":
r-1-o0-2-p-7-e-8.
r-5-o0-6-p-10-e-11.

_ /
N
_[Notation: X =2—{x}
means: Complement of x in 2.
_ _J
4)

Hamming distance from
the pattern P = "rose" to
the found pattern Q
corresponds exactly

to the end state.
_ Y,

Levenshtein distance

-

Levenshtein distance

Levenshtein distance of two strings A and B

is such minimal k (k =2 0), that we can change AtooB orBto A

by applying exactly k edit operations on one of A or B.

The edit operations are Remove, Insert or Rewrite any symbol of the alphabet
anywhere in the string. (Rewrite is also called Substitution.)

Levenshtein distance is defined for any two strings over a given alphabet.

BRUXETULTVLES Delete X.

BETEILGEUSE Rewrite R->E, U->T, L->G.
Insert U, E.

Distance = 6)

Note

Although the distance is defined unambiguously (prove!), the particular
edit operations transforming one string to another may vary (find an example).

J

Levenshtein distance

4 A
Calculating Levenshtein distance
Apply a simple Dynamic Programming approach.
\LetA= a[1].a[2].a[n] = A[1..n], B = b[1].b[2].b[m] = b[1..m], n, m = 0.)
4)
Dist(A, B) = |m —n| if n=0orm=0
Dist(A, B) = 1+ min (Dist(A[1..n—1], B[1..m]), if n>0andm>0
Dist(A[1..n], B[1..m — 1]), and A[n] # B[m]
Dist(A[1..n—1], B[1.m—1]))
Dist(A, B) = Dist(A[1..n—1], B[1..m — 1]) if n>0andm>0
and A[n] = B[m]
_ J
S
Calculation correspondsto ... Operation
1+ Dist(A[1..n —1], B[1..m]), ... Insert(A, n—1, B[m]) or Delete(B, m)
1+ Dist(A[1..n], B[1..m —1]), ... Insert(B, m —1, A[n]) or Delete(A, n)

_

1+ Dist(A[1..n —1], B[1..m —1]) ... Rewrite(A, n, B[m]) or Rewrite(B, m, A[n]))

Levenshtein distance

N
(=

=
Dist("BETELGEUSE","BRUXELLES") =6

i B E T E L G E U S E)

O 1 2 3 4 5 6 7 8 910

B|1 0 1 2 3 4 5 6 7 8 9

R[22 1 1 2 3 4 5 6 7 8 9

uf3 2 2 2 3 4 5 6 6 7 8

X(4 3 3 3 3 4 5 6 7 7T 8

E|5 4 3 4 3 4 5 5 6 7 1

L|6 5 4 4 4 3 4 5 6 7 8

L|7 6 5 5 5 4 4 5 6 7 8

E|8 7 6 6 5 5 5 4 5 6 7
. s[9 8 7 7 6 6 6 5 5 5 6)

DIO1[3] = j; DIAI[0] = d; // i =0..n, j = 0O_.n
// supposing A.length = n+l1l, B.length = m+1
for(i =1; i <= n; i++)
for(jJ =1; j <=m; j++)
if(A[i] == B[]])
D[i] []] D[i-1][3-1];
else D[i][]] 1+ min(D[i-1][3j-1], D[i-1][3], DI[i][3-1]);

Levenshtein distance

Search automaton

N
NFA searches in a text for a string within Levenshtein distance 3
from the pattern "rose".
P
- | Note the g—transitions; <

/
More transitions than in
Hamming distance NFA

vertical ... Insert operation

epsilon ... Delete operation
_ J

Self-check question l

Label vertical transitions by 2 (whole alphabet).
How will it change the functionality of this NFA?

) -

[TextSearch ooy s 22

Bit representation of NFA
4)
Size of transition table T is |Q| x |2'| and each its element T[i,k] corresponds to

state q; €e Qand symbol a, € 2. T[i,k] is vector of length |Q| and it holds:
T[i,k]1[]] == 1 & q; € d(q;, a).
For bit vector F of final states holds F[j] == 1 & q; € F,

\——
= Example S q

2 ~ ™
\»Q—»Q—»Q—»C""ba

Bit
representation
a b z
0,1 _0

of automaton A
_ J
15 i=1

3 et [

— F\

OICO|m |-

W NN =0

(zeZ—{a b} |

Automaton A detects
pattern aba in a text.

OI0C|ICIC|C|C|C|C|O|=|OC|C0|C|IC|IO|=| T
CI0ICICICICICICICICICICICIC|IO|=| N
o
o
—

cooo—xcoc)oco

w Bit Representation ﬂ
) (e ——___________________=™

B | starting configuration time
textsymbols: - a ¢ ¢ a b ¢ a a b a
f

sets of states L I L B L L 1

A represented by 2 10 1 jojop 1ty 04011710 1

bit arrays 2|0l 0 (0f0O]| O 1 10 0| O | 1 0

during computation _3|0o|0|o|0|jO0O]| O |O[O]|]O]|O 1

sets of states {0}({0,1}{{0}|{0}{{0,1}] {0,2} |{0}{{0,1}|{0,1} £0,2}| {0,1,3}

T

y BN

example

Automaton is in states {0,1}, it reads symbol b]

Y

O|IO|=|| T

1ol
ojoloke[dlolo

i=1

\
OR

& 0[0l0[1
2

c—\c—f_[

|l |OC |-
(=2 B = =]

O|O(C|CO|=|OC|C|C|C|C|IC|IC|IC|IC|=|=| D

(==} =]{=] =) =} =]{=]
(=)=} =]{=] =] =) =]{=]

n Bit Representation | Simulation |R24

(h

Simulation of work of a NFA without e-transitions
Basic method, implemented with bit vectors.

\

(Input: Bit table T of transitions, bit vector F of final states, h
number of states Q.size, text in array t (indexed from 1).
Output: Simulated run and output of the automaton.
L (notation in format [0101...00] denotes characteristic vector of set of states) y

N\

S[0] = [100..0]; i =1; // init
while((i <= t.length) && (S[i-1]!'=[000...0]7)) {
for(j=0; j < Q.size; Jj++)
if((S[i]1[3] == 1) && (F[3j] == 1))
print(gq[j].final state info);
S[i] = [000...0];
for(j=0; j < Q.size; Jj++)
if (S[i-1][j]==1)
S[i] = s[i] | TIj1([t[i11; // "I"
i++;

