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Finite Automata Easy Examples 1
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Automaton C1 accepts union of sets 
L1 =      {00, 0011, 001100, 00110011, 0011001100, ...}

 {11, 1100, 110011, 11001100, 1100110011, ...}.

Automaton C2 accepts language L2 over  = {0, 1}, in each word of  L2 : 
-- there is at least one symbol 1,
-- each symbol 1 is followed by exactly two or three symbols 0.
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Finite Automata Easy Examples 2

Automaton C3 accepts all binary nonnegative integers divisible by 3,
any number of leading zeros may be included. 

Automaton C4 accepts all binary positive integers divisible by 3,
no leading zeros are allowed. 
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Language operations Overview 3

Let L1 and L2 be any languages. Then 
L1  L2 is union of L1 and L2. It is a set of all words which are in L1 or L2. 
L1  L2 is intersection of L1 and L2. It is a set of all words 

which are simultaneously in L1 and L2. 
L1.L2 is concatenation of L1 and L2. It is a set of all words w for which holds

w = w1w2 (concatenation of words w1 and w2), where  w1 L1 and w2  L2.
L1

* is Kleene star or Kleene closure or iteration of language L1. 
It is a set of all words which are concatenations of any number (incl. zero) 
of any words of L1 in any order.

Closure
Whenever L1 and L2 are regular languages 
then L1  L2, L1  L2, L1.L2 , L1

* are  regular languages too.

Operations on regular languages revisited 

When L1 is regular language accepted by automaton A1 and 
L2 is regular language accepted by automaton A2
then there also are automata A3, A4, A5, A6, 
which accept L1  L2, L1  L2, L1.L2 , L1

*, respectively.

Automata support 
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Automaton A3 accepting union of two regular languages L1 , L2
accpted by automata A1, A2 respectively.

Language operations Union 4

Automaton A3 is constructed using A1 and A2: 

Do not change A1 and A2.
Create new aditional start state S0, add  - transitions from S0 to start 
states  S1 and S2 of A1 and A2 respectively.
Define set of final states of  A3 as union of final states of A1 and A2. 

S1 S2S0 A1
A2

A3



Scheme



Union automaton Example 5
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Automaton B3 accepts any word from sets 
{00, 0011, 001100, 00110011, 0011001100, ...}
{11, 1100, 110011, 11001100, 1100110011, ...}
and also any binary nonnegative integer divisible by 3 
with any number of leading zeros 
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Automaton A5 accepting concatenation of two regular languages L1 , L2
accepted by automata A1, A2 respectively.

Language operations Concatenation 6

Automaton A5 is constructed using A1 and A2: 

Do not change A1 and A2.
Add  - transitions from each final state Fk of A1 to the start  state S2 of  A2.
Define start state of A5 to be equal to the start state of A1.
Define set of final states of  A5 to be equal to the set of final states of  A2. 

S2S1
A1 A2

A5 
F1

F2


Scheme



Concatenation automaton Example 7

Automaton B5 accepts any word over {0, 1} which can be split into two
consecutive words w1 and w2, where
word w1 is described by regular expression 0*(100+1000)(100+1000)* ,
word w2 represents binary positive integer divisible by 3 w/o leading 0's.
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Automaton A6 accepting iteration of language L1
accepted by automaton A1.

Language operations Iteration 8

Automaton A6 is constructed using A1: 

Do not change A1.
Create new aditional start state S0 and add  - transition from S0 to start

state  S1 of  A1
Add  - transitions from all final states Fk of A1 to state S1.
Define start state of A6 to be S0.
Define set of final states of  A6 as union of final states Fk and S0. 

A1

A6


Scheme

F2

F1



S1S0





Iteration automaton Example 9



Automaton B6 accepts any word created by concatenation and repetition 
of any words accepted by C2 including empty word.
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Maybe you can find some more telling 
informal description of the corresponding language?



Automaton A4 accepting intersection of two regular languages L1 , L2
accepted by automata A1, A2 respectively.

Language operations Intersection 10

Automaton A4 is constructed using A1 and A2: 

Create Cartesian product Q1  Q2  , where Q1, Q2 are sets of states of A1, A2.

Each state of A4 will be an ordered pair of states of A1, A2.

State (S1, S2) will be start state of A4, where S1,S2 are start states of A1, A2.

Final states of A4 will be just those pairs (F, G), 
where F is a final state of A1 and G is a final state of A2.

Create transition from state (p1, p2) to (q1, q2) in A4 labeled by symbol x
if and only if 

there is a transition p1  q1 labeled by x in A1   and also  
there is a transition p2  q2 labeled by x in A2.



Language operations Intersection automaton 11

Scheme of  an 
automaton A4
accepting the
intersection 
of two regular 
languages L1, L2
accepted by 
automata A1, A2
respectively.
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Language operations intersection automaton 12
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Automaton A4
accepting 
binary integers
divisible by 3 (C4)
in which 
each symbol 1
is followed by
exactly two
or three
symbols 0 (C2).
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Hamming distance

Hamming distance of two strings is equal to k (k  0), 
whenever k is the minimal number of rewrite operations which when
applied on one of the strings produce the other string.
Rewrite operation rewrites one symbol of the alphabet 
by some other symbol of the alphabet.
Symbols cannot be deleted or inserted.
Hamming distance is defined only for pairs of strings of equal length.

Informally: Align the strings and count the number of mismatches of
corresponding symbols.

l o k o m o t i v a     
v y k o l e j i l a   distance = 6

m a l é _ p i v o
v e l k ý _ v ů z     distance = 8

Pokročilá Algoritmizace, A4M33PAL, ZS 2009/2010, FEL ČVUT,  7/12

Hamming distance Definition 13

Learn some Czech



Automaton A1 for aproximate pattern matching. It detects  all occurences 
of substrings whose Hamming distance form the pattern  p1p2p3p4
is less or equal to 3. 

A1

Hamming distance search automaton 14
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Automaton A2 for aproximate pattern matching. It detects  all occurences 
of substrings whose Hamming distance form the pattern 'rose'
is less or equal to 3. 

Automaton A2 detects
among others also
the words:

rose (distance = 0)
dose (distance = 1)
rest (distance = 2)
list (distance = 3)
and more...

A2

Hamming distance search automaton 15
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NFA accepting any word with subsequence p1p2p3p4 anywhere in it.

NFA accepting any word with subsequence p1p2p3p4 anywhere in it,
one symbol in the sequence may be altered.

Alternatively: NFA accepting any word containing a subsequence Q
whose Hamming distance from p1p2p3p4 is at most 1.

p1 p2 p3 p4

p2 p3 p4

4

8

Example

Example

Power of indeterminsm Examples 16
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o s e

Hamming distance from 
the pattern P = "rose" to
the found pattern Q  
corresponds exactly 
to the end state.

r o s e 4

o s e 8

9 s 10 e 11

0 r 1 o 2 s 3 e 4

5 o 6 s 7 e 8

9 s 10 e 11

Hamming distance of the
found pattern Q from 
pattern P = "rose"
cannot be deduced from
the particular end state.
E.g.: "rope":
r - 1 - o - 2 - p - 7 - e - 8.
r - 5 - o - 6 - p - 10 - e - 11.

Notation:   x  =  ─ {x}
means:  Complement of x in . 

Improvement

Hamming distance Clever labeling 17
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Levenshtein distance

Levenshtein distance of two strings A and B 
is such minimal k (k ≥ 0 ), that we can change A to o B or B to A 
by applying exactly k edit operations on one of A or B. 
The edit operations are Remove, Insert or Rewrite any symbol of the alphabet 
anywhere in the string. (Rewrite is also called Substitution.)

Levenshtein distance is defined for any two strings over a given alphabet.

B R U X E L L E S Delete X.      
B E T E L G E U S E Rewrite R->E, U->T, L->G.      

Insert U, E.
Distance = 6

Although the distance is defined unambiguously (prove!), the particular 
edit operations transforming one string to another may vary (find an example). 

Note

Levenshtein distance Definition 18



Dist(A, B) =   |m ─ n|                                                       if  n = 0 or m = 0

Dist(A, B) =   1+ min (  Dist(A[1..n ─ 1], B[1..m]),            if  n > 0 and m > 0
Dist(A[1..n], B[1..m ─ 1]),          and A[n] ≠ B[m]
Dist(A[1..n ─ 1], B[1..m ─ 1]) )             

Dist(A, B) =   Dist(A[1..n ─ 1], B[1..m ─ 1])                       if  n > 0 and m > 0 
and A[n] = B[m]

Calculation     corresponds to  ...   Operation

1+ Dist(A[1..n ─1], B[1..m]),       ...   Insert(A, n ─1, B[m])  or Delete(B, m)             
1+ Dist(A[1..n], B[1..m ─1]),      ...   Insert(B, m ─1, A[n])  or Delete(A, n)  
1+ Dist(A[1..n ─1], B[1..m ─1]) ...   Rewrite(A, n, B[m])    or Rewrite(B, m, A[n])       

Calculating Levenshtein distance

Apply a simple Dynamic Programming approach. 

Let A = a[1].a[2]. ... .a[n] = A[1..n], B = b[1].b[2]. ... .b[m] = b[1..m], n, m ≥ 0. 

Levenshtein distance Calculation 19



Dist("BETELGEUSE","BRUXELLES") = 6

B  E  T  E  L  G  E  U  S  E
0  1  2  3  4  5  6  7  8  9 10

B  1  0  1  2  3  4  5  6  7  8  9
R  2  1  1  2  3  4  5  6  7  8  9
U  3  2  2  2  3  4  5  6  6  7  8
X  4  3  3  3  3  4  5  6  7  7  8
E  5  4  3  4  3  4  5  5  6  7  7
L  6  5  4  4  4  3  4  5  6  7  8
L  7  6  5  5  5  4  4  5  6  7  8
E  8  7  6  6  5  5  5  4  5  6  7
S  9  8  7  7  6  6  6  5  5  5  6

Levenshtein distance Example 20

D[0][j] = j; D[i][0] = i;  // i = 0..n, j = 0..m
// supposing A.length = n+1, B.length = m+1

for( i = 1; i <= n; i++ )  
for( j = 1; j <= m; j++ )

if( A[i] == B[j] ) 
D[i][j] = D[i-1][j-1];

else D[i][j] = 1+ min(D[i-1][j-1], D[i-1][j], D[i][j-1]);
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NFA searches in a text for a string within Levenshtein distance 3
from the pattern "rose".   

More transitions than in
Hamming distance NFA

vertical ...   Insert operation
epsilon ...   Delete operation   

Label vertical transitions by  (whole alphabet).
How will it change the functionality of this NFA?

Self-check question

Levenshtein distance Search automaton 21

Note the transitions.







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a b z
0 0,1 0 0
1 2
2 3
3 F

Bit representation of NFA
Size of transition table T is |Q|  | | and each its element T[i,k] corresponds to
state qi  Q and symbol ak  .    T[i,k] is vector of length |Q| and it holds:
T[i,k][j] == 1  qj  (qi, ak). 
For bit vector F of final states holds F[j] == 1  qj  FA



0
a

1
b

2
a

3

z    {a, b}

i=0

i=1

i=2

i=3

T

Automaton A detects
pattern aba in a text.

Bit 
representation
of automaton A.

Example

0 0 0 1

F

Text Search Bits 22

A

a b z
1 1 1
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
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3

- a c c a b c a a b a

1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 1 0 0 1 1 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

{0} {0,1} {0} {0} {0,1} {0,2} {0} {0,1} {0,1} {0,2} {0,1,3}sets of states

sets of states
represented by 
bit arrays
during computation

i=0

i=1

i=2

i=3 0 0 0 1

F

T

text symbols:
timestarting configuration

Automaton is in states {0,1}, it reads symbol b 
example

1
0
0
0

0
0
1
0

OR

1
0
1
0

=

Bit RepresentationText Search 23
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0 0 0
0 0 0



S[0] = [100..0]; i = 1;  // init
while( (i <= t.length) && (S[i-1]!=[000...0]) ) {

for( j=0; j < Q.size; j++ )   
if( (S[i][j] == 1) && (F[j] == 1) ) 

print( q[j].final_state_info );  
S[i] = [000...0];   
for( j=0; j < Q.size; j++ )

if( S[i-1][j]==1 )
S[i] = S[i] | T[j][t[i]]; // "|"

i++; 
}

Simulation of work of a NFA without transitions
Basic method, implemented with bit vectors.

Input:   Bit table T of transitions, bit vector F of final states, 
number of states Q.size, text in array t (indexed from 1). 

Output: Simulated run and output of the automaton.  
(notation in format [0101...00] denotes characteristic vector of set of states)

Bit Representation Simulation 24


