

Language ... set of words (=strings)

Language (not necessarily finite, can be empty) $\mid ㄴ ㅣ ~ . . . ~ c a r d i n a l i t y ~ o f ~ l a n g u a g e ~ L ~$
(1) Language specification
-- List of all words in the language (only for finite language!)

$$
\begin{aligned}
& \text { Examples: } A_{1}=\left\{‘ A^{\prime}, ‘ D ', ‘ G ', ' O ’, ' U ’\right\} \\
& L_{1}=\{A D A, D O G, G O U D A, D, G A G\},\left|L_{1}\right|=5 \\
& A_{2}=\{0,1\} \\
& L_{2}=\{0,1,00,01,10,11\},\left|L_{2}\right|=6 \\
& A_{3}=\{O, \square, \Delta\} \\
& L_{3}=\{\Delta \Delta, O \square O, \square \square \Delta O\},\left|L_{2}\right|=3
\end{aligned}
$$

(2) Language specification -- Informal (but unambiguous) description in natural human language (usually for infinite language)

Examples: $\quad A_{1}=\left\{' A ', ' D\right.$ ', ' G ', ' O^{\prime} ', 'U' $\}$
L_{1} : Set of all words over A_{1}, which begin with DA, end with G a and do not contain subsequence AA.
$L_{1}=\{D A G$, DADG, DAGG, DAOG, DAUG, DADAG, DADDG... \}
$\left|L_{1}\right|=\infty$
$A_{2}=\{0,1\}$
L_{2} : Set of all words over A_{2}, which contain more 1s than 0 s and where each 0 is followed by at least two 1 s .
$L_{2}=\{1,11,011,0111,1011,1111, \ldots, 011011,011111, \ldots\}$
$\left|L_{2}\right|=\infty$

(3) Language specification -- By finite automaton

Finite automaton
is a five-tuple $\left(A, Q, \sigma, S_{0}, Q_{F}\right)$, where:

A ... alphabet ... finite set of symbols
$|A|$... size of alphabet
Q ... set of states (often numbered) (what is „a state" ?)
$\sigma \quad$... transition function $. . . \sigma: Q \times A \rightarrow Q$
$S_{0} \ldots$ start state $S_{0} \in Q$
$\mathbf{Q}_{\mathbf{F}} \ldots$ unempty set of final states $\varnothing \neq \mathbf{Q}_{\mathbf{F}} \subseteq \mathbf{Q}$

Automaton FA1:

A \ldots alphabet $\ldots\{0,1\}, \quad|A|=2$
Q ... set of states $\{\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
$\boldsymbol{\sigma} \quad .$. transition function $\ldots \boldsymbol{\sigma}: \mathbf{Q} \times \mathbf{A} \rightarrow \mathbf{Q}:\{$

$$
\begin{array}{llll}
\sigma(S, 0)=S, & \sigma(A, 0)=B, & \sigma(B, 0)=C, & \sigma(C, 0)=C, \\
\sigma(S, 1)=A, & \sigma(A, 1)=D, & \sigma(B, 1)=D, & \sigma(C, 1)=A, \\
\sigma(D, 1)=D,
\end{array}
$$

$S_{0} \quad \cdots$ start state $S \in Q$
$Q_{F} \ldots$ unempty set of final states $\varnothing \neq\{C\} \subseteq \mathbf{Q}$

Transition diagram of the automaton FA1

Finite Automata

FA1
0

FA1

Finite Automata

When the last word symbol is read automaton FA1 is in final state
\Longrightarrow
Word 01000100 is accepted by automaton FA1

Finite Automata

When the last word symbol is read automaton FA1 is in a state which is not final \bigcirc
\Rightarrow
Word 1001 is not accepted by automaton FA1

Finite Automata

Finite Automata

No word starting with	$11 \ldots$	is accepted by automaton FA1
No word containing	... 11 ...	is accepted by automaton FA1
No word containing	$\ldots 101 \ldots$	is accepted by automaton FA1

Automaton FA1 accepts only words -- containing at least one 1
-- containing at least two 0s after each 1

Language accepted by automaton $X=$ set of all words accepted by X

Automaton A activity:
At the begining, A is in the start state.
Next, A reads the input word symbol by symbol and transits to other states according to its transition function.

When the word is read completely A is again in some state.
If A is in a final state, we say that A accepts the word,
if A is not in a final state, we say that A does not accept the word.
All words accepted by A represent
a language accepted (or recognized) by A.

Language over alphabet $\{0,1\}$:
If a word starts with 0 , it ends with 1 , If a word starts with 1 , it ends with 0 .

Example of analysis of different words by FA2:

$$
01010: \quad(S), 0 \rightarrow(A), 1 \rightarrow(B), 0 \rightarrow(A), 1 \rightarrow(B), 0 \rightarrow(A)
$$

(A) is not a final state, word 01010 is rejected by FA2.
$10110: \quad(S), 1 \rightarrow(C), 0 \rightarrow(D), 1 \rightarrow(C), 1 \rightarrow(C), 0 \rightarrow(D)$
(D) is a final state, word 10110 is accepted by FA2.

Example of analysis of different words by FA3:
$01010: \quad(S), 0 \rightarrow(A), 1 \rightarrow(B), 0 \rightarrow(C), 1 \rightarrow(D), 0 \rightarrow(D)$
(D) is not a final state, word 01010 is rejected by FA3.
$01110: \quad(S), 0 \rightarrow(A), 1 \rightarrow(B), 1 \rightarrow(B), 1 \rightarrow(B), 0 \rightarrow(C)$
(C) is a final state, word 01110 is accepted by FA3.

Automaton FA4 accepts each word over the alphabet $\{0,1\}$ which contains subsequence ... 010 ...

Example of analysis of different words by FA4:
$00101: \quad(S), 0 \rightarrow(A), 0 \rightarrow(A), 1 \rightarrow(B), 0 \rightarrow(C), 1 \rightarrow(C)$
(C) is a final state, word 00101 is accepted by FA4.
$01110:(S), 0 \rightarrow(A), 1 \rightarrow(B), 1 \rightarrow(S), 1 \rightarrow(S), 0 \rightarrow(A)$
(A) is not a final state, word 01110 is rejected by FA4.

Language over the alphabet $\{+,-, ., 0,1, \ldots, 8,9, \ldots\}$ whose words represent decimal numbers

Example of word analysis
+87.09: $(0),+\rightarrow(1), 8 \rightarrow(2), 7 \rightarrow(2), . \rightarrow(3), 0 \rightarrow(4), 9 \rightarrow(4)$
(4) is a final state, word +87.05 is accepted by FA5.

76+2:
$(0), 7 \rightarrow(2), 6 \rightarrow(2),+\rightarrow(5), 2 \rightarrow(5)$
(5) is not a final state, word $76+2$ is not accepted by FA5.

Code of the finite automaton

(The word which is being read is stored in the array arr[]):

```
int isDecimal(char arr[], int length) {
int i;
\underline{\mathrm{ int state = 0;}}\mathbf{}\mathrm{ s}
for(i = 0; i < length; i++) { // check each symbol
    switch (state) {
```

 ...

case 0:
if $\left(\left(\operatorname{arr}[i]==\quad{ }^{\prime}+\right.\right.$ ') ||(arr[i] == '-')) state = 1 ; else if ((arr[i] >= '0') \&\& (arr[i] <= '9')) state = 2; else state $=5$; break;

case 1:
if ((arr[i] >= '0') \&\& (arr[i] <= '9')) state = 2; else state $=5$; break;


```
case 2:
    if ((arr[i] >= '0') && (arr[i] <= '9')) state = 2;
    else
    if (arr[i] == '.') state = 3;
    else state = 5;
    break;
```


(3) case 3:
if $((\operatorname{arr}[i]>=' 0 ') \& \&(\operatorname{arr}[i]<=' 9 '))$ state $=4$; else state $=5$; break;
(4) case 4:
if $((\operatorname{arr}[i]>=' 0 ') \& \&(\operatorname{arr}[i]<=' 9 '))$ state $=4 ;$ else state $=5$; break;
(5) case 5: break; // no need to react anyhow default : break; \} // end of switch


```
    } // end of for loop -- word has been read
if ((state == 2)|(2)| (state == 4)%)}|/\mathrm{ final states!!
    return 1; // success - decimal OK
else
    return 0; // not a decimal
} // end of function isDecimal()
```

