Dynamic Programming

ACM Seminar in Algorithmics

Marko Genyk-Berezovskyj berezovs@fel.cvut.cz

Tomáš Tunys
tunystom@fel.cvut.cz

CVUT FEL, K13133
February 27, 2013

Problem: Longest Increasing Subsequence

Input: A list of numbers, $a_{1}, a_{2}, \ldots, a_{n}$.
Output: Find the largest k for which there are indices $i_{1}, i_{2}, \ldots, i_{k}$ with $a_{i_{1}}<a_{i_{2}}<\ldots<a_{i_{k}}$.

Exercise: What is the longest increasing subsequence in the following list of numbers?

$$
5,1,6,4,8,3,2,1,5,6,8
$$

Problem: Longest Increasing Subsequence

On the first sight it may seem a bit difficult to come up with a solution but as we will see there is an underlying structure in the problem that allows us to solve it "fast".

If you are faced with the following

can you tell what the underlying structure is and what its properties are?

Problem: Longest Increasing Subsequence

Let $G=(V, E)$ is a directed graph with vertices $v_{1}, v_{2}, \ldots, v_{n}$ which are labelled with the numbers from the list $a_{1}, a_{2}, \ldots, a_{n}$. There is an edge $\left(v_{i}, v_{j}\right) \in E$ iff the corresponding numbers satisfy $a_{i}<a_{j}$.

Two important things to notice:

- The graph G is a directed acyclic graph, so-called DAG.
- There is one-to-one correspondence between paths in the graph G and the increasing subsequences in the list $a_{1}, a_{2}, \ldots, a_{n}$.

Problem: Longest Increasing Subsequence

Solution: Let us denote the length of a longest path ending in the vertex v_{i} as $L(i)$. Then the following algorithm computes $L(i)$ for every $i \in\{1, \ldots, n\}$:
for $j \leftarrow 1$ to n do
$L(j) \leftarrow 1+\max \{L(i) \mid(i, j) \in E(G)\}$
end
return $\max _{i=1}^{n} L(i)$

Example:
$L(3)=1+\max \{L(1), L(2)\}$

Dynamic Programming "Definition"

Dynamic programming is a problem solving technique based upon the following two principles:
(1) Identification of subproblems.
(2) Using the answer to "smaller" subproblems to solve the "bigger" ones.

In the case of the Longest Increasing Subsequence we have according to these principles:
(1) $L(i)$ - the length of the longest increasing subsequence ending with a_{i}.
(2) $L(i) \leftarrow 1+\max _{j<i}\left\{L(j) \mid a_{j}<a_{i}\right\}$.

When Does Dynamic Programming Work?

A problem is solvable with dynamic programming if it has:
(1) Optimal substructure. An optimal solution of the whole problem can be build out of optimal solutions to its subroblems.
(2) Overlapping subproblems.

Remember, when you are faced with a DP problem the DAG is implicit - you are the one to define the vertices (subproblems) and the edges (relations) between them.

How do we find out a given problem is solvable using DP?

When Does Dynamic Programming Work?

A problem is solvable with dynamic programming if it has:
(1) Optimal substructure. An optimal solution of the whole problem can be build out of optimal solutions to its subroblems.
(2) Overlapping subproblems.

Remember, when you are faced with a DP problem the DAG is implicit - you are the one to define the vertices (subproblems) and the edges (relations) between them.

How do we find out a given problem is solvable using DP?
Through Experience!

Problem: Maximum Subarray Problem

Input: An array of numbers, $a_{1}, a_{2}, \ldots, a_{n}$.
Output: Find a continuous subarray within the given array which has the largest sum.

Solution:

Problem: Maximum Subarray Problem

Input: An array of numbers, $a_{1}, a_{2}, \ldots, a_{n}$.
Output: Find a continuous subarray within the given array which has the largest sum.

Solution:
(1) Subproblems: $S[i]$ - the largest sum of a subarray ending at i-th element (inclusive).
(2) Induction: $S[i] \leftarrow a_{i}$ if $S[i-1]<=0$ else $a_{i}+S[i-1]$.

Problem: Longest Common Subsequence

Input: Two strings $a_{1} a_{2} \cdots a_{n}$ and $b_{1} b_{2} \cdots b_{m}$.
Output: The largest k for which there are indices

$$
\begin{gathered}
1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n \\
\text { and } \\
1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq m \\
\text { with } \\
a_{i_{1}} a_{i_{2}} \cdots a_{i_{k}}=b_{j_{1}} b_{j_{2}} \cdots b_{j_{k}} .
\end{gathered}
$$

Solution:

Problem: Longest Common Subsequence

Input: Two strings $a_{1} a_{2} \cdots a_{n}$ and $b_{1} b_{2} \cdots b_{m}$.
Output: The largest k for which there are indices

$$
\begin{gathered}
1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n \\
\text { and } \\
1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq m \\
\text { with } \\
a_{i_{1}} a_{i_{2}} \cdots a_{i_{k}}=b_{j_{1}} b_{j_{2}} \cdots b_{j_{k}} .
\end{gathered}
$$

Solution:
(1) Subproblems: $S[i][j]$ - the longest common subsequence of the prefixes of the two strings $a_{1} a_{2} \cdots a_{i}$ and $b_{1} b_{2} \cdots b_{j}$.
(2) Induction: $(\operatorname{diff}(a, b)$ is 1 if $a=b$ else 0$)$ $S[i][j] \leftarrow \max \left\{S[i-1][j], S[i][j-1], S[i-1][j-1]+\operatorname{diff}\left(a_{i}, b_{j}\right)\right\}$.

Problem: Knapsack Problem

Input: A list of items with their weights $w_{1}, w_{2}, \ldots, w_{n}$ and costs $c_{1}, c_{2}, \ldots, c_{n}$, a total weight W the knapsack can hold (capacity).

Output: A subset of items for which the sum of their costs is maximum and the knapsack can hold them, i.e. $I \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in I} c_{i}$ is maximum and $\sum_{i \in I} w_{i}<=W$.

Solution:

Problem: Knapsack Problem

Input: A list of items with their weights $w_{1}, w_{2}, \ldots, w_{n}$ and costs $c_{1}, c_{2}, \ldots, c_{n}$, a total weight W the knapsack can hold (capacity).

Output: A subset of items for which the sum of their costs is maximum and the knapsack can hold them, i.e. $I \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in I} c_{i}$ is maximum and $\sum_{i \in I} w_{i}<=W$.

Solution:
(1) Subproblems: $C[\widehat{w}][i]$ - the maximum achievable value of the items from a set $\{1,2, \ldots, i\}$ with the knapsack capacity \widehat{w}.
(2) Induction: $C[\widehat{w}][i]=\max \left\{C[\widehat{w}][i-1], C\left[\widehat{w}-w_{i}\right][i-1]+c_{i}\right\}$ if $\widehat{w} \geq w_{i}$ else $C[\widehat{w}][i-1]$.

Top-Down vs. Bottom-up
 Approach

Consider the knapsack problem again. The following solution of it is referred to as the bottom-up approach:

```
for }i\leftarrow0\mathrm{ to }n\mathrm{ do
    C[0][i]}\leftarrow
end
for }\widehat{W}\leftarrow0\mathrm{ to }W\mathrm{ do
    C[\widehat{w}][0]}\leftarrow
end
for }i\leftarrow1\mathrm{ to }n\mathrm{ do
    for }\widehat{W}\leftarrow1\mathrm{ to }W\mathrm{ do
        if \widehat{w}<\mp@subsup{w}{i}{}\mathrm{ then}
                C[\widehat{w}][i]}\leftarrowC[\widehat{w}][i-1
            else
                C[\widehat{w}][i]\leftarrowC[\widehat{w}-\mp@subsup{w}{i}{}][i-1]+\mp@subsup{c}{i}{}
            end
    end
end
return C[W][n]
```


Top-Down vs. Bottom-up
 Approach

Now consider the following which is referred to as the top-down approach:
function solve (\widehat{w}, i)
if $C[\widehat{w}][i]=-1$ then
if $\widehat{w} \geq w_{i}$ then
$C[\widehat{w}][i] \leftarrow \operatorname{solve}\left(\widehat{w}-w_{i}, i-1\right)+c_{i}$
end
$C[\widehat{w}][i] \leftarrow \max \{C[\widehat{w}][i]$, solve $(\widehat{w}, i-1)\}$
end
return $C[\widehat{w}][i]$
end
for $\widehat{W} \leftarrow 0$ to W do
for $i \leftarrow 0$ to n do
$C[\widehat{w}][i] \leftarrow-1$
end
end
return solve (W, n)

Problem: Chain Matrix Multiplication

Input: An expression $A_{1} \times A_{2} \times \cdots \times A_{n}$, where the A_{i} 's are matrices with dimensions $m_{0} \times m_{1}, m_{1} \times m_{2}, \ldots, m_{n-1} \times m_{n}$.

Output: A parenthesization of the expression such that the number of multiplications needed to be done in order to evaluate it is minimum.

Hint:

$$
A_{1} \times\left(\left(A_{2} \times A_{3}\right) \times A_{4}\right)
$$

Problem: Chain Matrix Multiplication

Solution:
(1) Subproblems: $C[i][j]$ - the minimum number of multiplications to evaluate $A_{i} \times A_{i+1} \times \cdots \times A_{j}$.
(2) Induction: $C[i][j] \leftarrow \min _{i \leq k<j}\left\{C[i][k]+C[k][j]+m_{i-1} \cdot m_{k} \cdot m_{j}\right\}$.

DP Problem Complexities

The problems that have been presented are typical representants of the following complexity classes:

$$
\begin{aligned}
& O(n) \text { Maximum Subarray Sum } \\
& O(m n) \text { Longest Common Subsequence } \\
& O\left(n^{3}\right) \text { Chain Matrix Multiplication }
\end{aligned}
$$

