

### CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering Department of Cybernetics

### No Free Lunch.

# Empirical comparisons of stochastic optimization algorithms

Petr Pošík

Substantial part of this material is based on slides provided with the book 'Stochastic Local Search: Foundations and Applications' by Holger H. Hoos and Thomas Stützle (Morgan Kaufmann, 2004)

See www.sls-book.net for further information.



Empirical Comparisons

RTD Analysis

Summary

### **Contents**

- No-Free-Lunch Theorem
- What is so hard about the comparison of stochastic methods?
- Simple statistical comparisons
- Comparisons based on running length distributions





### **No-Free-Lunch Theorem**

"There is no such thing as a free lunch."

#### Motivation

- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### **No-Free-Lunch Theorem**

"There is no such thing as a free lunch."

Refers to the nineteenth century practice in American bars of offering a "free lunch" with drinks.



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### **No-Free-Lunch Theorem**

"There is no such thing as a free lunch."

- Refers to the nineteenth century practice in American bars of offering a "free lunch" with drinks.
- The meaning of the adage: *It is impossible to get something for nothing.*



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### **No-Free-Lunch Theorem**

"There is no such thing as a free lunch."

- Refers to the nineteenth century practice in American bars of offering a "free lunch" with drinks.
- The meaning of the adage: *It is impossible to get something for nothing.*
- If something appears to be free, there is always a cost to the person or to society as a whole even though that *cost may be hidden or distributed*.



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### **No-Free-Lunch Theorem**

"There is no such thing as a free lunch."

- Refers to the nineteenth century practice in American bars of offering a "free lunch" with drinks.
- The meaning of the adage: *It is impossible to get something for nothing.*
- If something appears to be free, there is always a cost to the person or to society as a whole even though that *cost may be hidden or distributed*.

### No-Free-Lunch theorem in search and optimization [WM97]

■ Informally, for discrete spaces: "Any two (non-repeating) algorithms are equivalent when their performance is averaged across all possible problems."



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### **No-Free-Lunch Theorem**

"There is no such thing as a free lunch."

- Refers to the nineteenth century practice in American bars of offering a "free lunch" with drinks.
- The meaning of the adage: *It is impossible to get something for nothing.*
- If something appears to be free, there is always a cost to the person or to society as a whole even though that *cost may be hidden or distributed*.

### No-Free-Lunch theorem in search and optimization [WM97]

- Informally, for discrete spaces: "Any two (non-repeating) algorithms are equivalent when their performance is averaged across all possible problems."
- For a particular problem (or a particular class of problems), different search algorithms may obtain different results.



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### **No-Free-Lunch Theorem**

"There is no such thing as a free lunch."

- Refers to the nineteenth century practice in American bars of offering a "free lunch" with drinks.
- The meaning of the adage: *It is impossible to get something for nothing.*
- If something appears to be free, there is always a cost to the person or to society as a whole even though that *cost may be hidden or distributed*.

### No-Free-Lunch theorem in search and optimization [WM97]

- Informally, for discrete spaces: "Any two (non-repeating) algorithms are equivalent when their performance is averaged across all possible problems."
- For a particular problem (or a particular class of problems), different search algorithms may obtain different results.
- If an algorithm achieves superior results on some problems, it must pay with inferiority on other problems.



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### **No-Free-Lunch Theorem**

"There is no such thing as a free lunch."

- Refers to the nineteenth century practice in American bars of offering a "free lunch" with drinks.
- The meaning of the adage: *It is impossible to get something for nothing.*
- If something appears to be free, there is always a cost to the person or to society as a whole even though that *cost may be hidden or distributed*.

### No-Free-Lunch theorem in search and optimization [WM97]

- Informally, for discrete spaces: "Any two (non-repeating) algorithms are equivalent when their performance is averaged across all possible problems."
- For a particular problem (or a particular class of problems), different search algorithms may obtain different results.
- If an algorithm achieves superior results on some problems, it must pay with inferiority on other problems.

It makes sense to study which algorithms are suitable for which kinds of problems!!!

[WM97] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. *IEEE Trans. on Evolutionary Computation*, 1(1):67–82, 1997.



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### **Runtime Behaviour for Decision Problems**

#### Definitions:

- lacksquare A is an algorithm for a class  $\Pi$  of decision problems.
- $RT_{A,\pi}$  is the runtime of algorithm A when applied to problem instance  $\pi$ ; random variable.
- $P_s(t) = P[RT_{A,\pi} \le t]$  is a probability that A finds a solution for a problem instance  $\pi \in \Pi$  in time less than or equal to t.



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### **Runtime Behaviour for Decision Problems**

#### Definitions:

- lacksquare A is an algorithm for a class  $\Pi$  of decision problems.
- $RT_{A,\pi}$  is the runtime of algorithm A when applied to problem instance  $\pi$ ; random variable.
- $P_s(t) = P[RT_{A,\pi} \le t]$  is a probability that A finds a solution for a problem instance  $\pi \in \Pi$  in time less than or equal to t.

**Complete algorithm** *A* can provably solve any solvable decision problem instance  $\pi \in \Pi$  *after a finite time*, i.e. *A* is complete if and only if

$$\forall \pi \in \Pi, \ \exists t_{\max} : P_s\left(t_{\max}\right) = P[RT_{A,\pi} \le t_{\max}] = 1. \tag{1}$$



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### **Runtime Behaviour for Decision Problems**

#### **Definitions:**

- lacksquare A is an algorithm for a class  $\Pi$  of decision problems.
- $RT_{A,\pi}$  is the runtime of algorithm A when applied to problem instance  $\pi$ ; random variable.
- $P_s(t) = P[RT_{A,\pi} \le t]$  is a probability that A finds a solution for a problem instance  $\pi \in \Pi$  in time less than or equal to t.

**Complete algorithm** *A* can provably solve any solvable decision problem instance  $\pi \in \Pi$  *after a finite time*, i.e. *A* is complete if and only if

$$\forall \pi \in \Pi, \ \exists t_{\max} : P_s\left(t_{\max}\right) = P[RT_{A,\pi} \le t_{\max}] = 1. \tag{1}$$

**Asymptotically complete algorithm** A can solve any solvable problem instance  $\pi \in \Pi$  with arbitrarily high probability *when allowed to run long enough*, i.e. A is asymptotically complete if and only if

$$\forall \pi \in \Pi : \lim_{t \to \infty} P_{S}(t) = \lim_{t \to \infty} P[RT_{A,\pi} \le t] = 1. \tag{2}$$



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### **Runtime Behaviour for Decision Problems**

#### **Definitions:**

- lacksquare A is an algorithm for a class  $\Pi$  of decision problems.
- $RT_{A,\pi}$  is the runtime of algorithm A when applied to problem instance  $\pi$ ; random variable.
- $P_s(t) = P[RT_{A,\pi} \le t]$  is a probability that A finds a solution for a problem instance  $\pi \in \Pi$  in time less than or equal to t.

**Complete algorithm** *A* can provably solve any solvable decision problem instance  $\pi \in \Pi$  *after a finite time*, i.e. *A* is complete if and only if

$$\forall \pi \in \Pi, \ \exists t_{\max} : P_s\left(t_{\max}\right) = P[RT_{A,\pi} \le t_{\max}] = 1. \tag{1}$$

**Asymptotically complete algorithm** A can solve any solvable problem instance  $\pi \in \Pi$  with arbitrarily high probability *when allowed to run long enough*, i.e. A is asymptotically complete if and only if

$$\forall \pi \in \Pi : \lim_{t \to \infty} P_s(t) = \lim_{t \to \infty} P[RT_{A,\pi} \le t] = 1. \tag{2}$$

**Incomplete algorithm** *A* cannot be guaranteed to find the solution even if allowed to run infinitely long, i.e. if it is not asymptotically complete, i.e. *A* is incomplete if and only if

$$\exists \text{ solvable } \pi \in \Pi : \lim_{t \to \infty} P_s(t) = \lim_{t \to \infty} P[RT_{A,\pi} \le t] < 1. \tag{3}$$

Simple generalization based on transforming the optimization problem to related decision problem by setting the solution quality bound to  $q = r \cdot q^*(\pi)$ :

- lacksquare A is an algorithm for a class  $\Pi$  of optimization problems.
- $\blacksquare$   $RT_{A,\pi}$  is the runtime of algorithm A when applied to problem instance  $\pi$ ; random variable.
- $SQ_{A,\pi}$  is the quality of the solution found by algorithm A when applied to problem instance  $\pi$ ; random variable.
- $P_s(t,q) = P[RT_{A,\pi} \le t, SQ_{A,\pi} \le q]$  is the probability that A finds a solution of quality better than or equal to q for a solvable problem instance  $\pi \in \Pi$  in time less than or equal to t.
- $q^*(\pi)$  is the quality of optimal solution to problem  $\pi$ .
- $r \ge 1, q > 0.$

Simple generalization based on transforming the optimization problem to related decision problem by setting the solution quality bound to  $q = r \cdot q^*(\pi)$ :

- lacksquare A is an algorithm for a class  $\Pi$  of optimization problems.
- $\blacksquare$   $RT_{A,\pi}$  is the runtime of algorithm A when applied to problem instance  $\pi$ ; random variable.
- $SQ_{A,\pi}$  is the quality of the solution found by algorithm A when applied to problem instance  $\pi$ ; random variable.
- $P_s(t,q) = P[RT_{A,\pi} \le t, SQ_{A,\pi} \le q]$  is the probability that A finds a solution of quality better than or equal to q for a solvable problem instance  $\pi \in \Pi$  in time less than or equal to t.
- $q^*(\pi)$  is the quality of optimal solution to problem  $\pi$ .
- $r \ge 1, q > 0.$

**Algorithm** *A* **is** *r***-complete** if and only if

$$\forall \pi \in \Pi, \ \exists t_{\max} : P_s\left(t_{\max}, r \cdot q^*(\pi)\right) = P[RT_{A,\pi} \le t_{\max}, SQ_{A,\pi} \le r \cdot q^*(\pi)] = 1. \tag{4}$$

Simple generalization based on transforming the optimization problem to related decision problem by setting the solution quality bound to  $q = r \cdot q^*(\pi)$ :

- lacksquare A is an algorithm for a class  $\Pi$  of optimization problems.
- Arr *RT*<sub>A, $\pi$ </sub> is the runtime of algorithm *A* when applied to problem instance  $\pi$ ; random variable.
- $SQ_{A,\pi}$  is the quality of the solution found by algorithm A when applied to problem instance  $\pi$ ; random variable.
- $P_s(t,q) = P[RT_{A,\pi} \le t, SQ_{A,\pi} \le q]$  is the probability that A finds a solution of quality better than or equal to q for a solvable problem instance  $\pi \in \Pi$  in time less than or equal to t.
- $q^*(\pi)$  is the quality of optimal solution to problem  $\pi$ .
- $r \ge 1, q > 0.$

**Algorithm** *A* **is** *r***-complete** if and only if

$$\forall \pi \in \Pi, \ \exists t_{\max} : P_s\left(t_{\max}, r \cdot q^*(\pi)\right) = P[RT_{A,\pi} \le t_{\max}, SQ_{A,\pi} \le r \cdot q^*(\pi)] = 1. \tag{4}$$

**Algorithm** *A* **is asymptotically** *r***-complete** if and only if

$$\forall \pi \in \Pi: \lim_{t \to \infty} P_s\left(t, r \cdot q^*(\pi)\right) = \lim_{t \to \infty} P[RT_{A, \pi} \le t, SQ_{A, \pi} \le r \cdot q^*(\pi)] = 1. \tag{5}$$

Simple generalization based on transforming the optimization problem to related decision problem by setting the solution quality bound to  $q = r \cdot q^*(\pi)$ :

- lacksquare A is an algorithm for a class  $\Pi$  of optimization problems.
- $\blacksquare$   $RT_{A,\pi}$  is the runtime of algorithm A when applied to problem instance  $\pi$ ; random variable.
- $SQ_{A,\pi}$  is the quality of the solution found by algorithm A when applied to problem instance  $\pi$ ; random variable.
- $P_s(t,q) = P[RT_{A,\pi} \le t, SQ_{A,\pi} \le q]$  is the probability that A finds a solution of quality better than or equal to q for a solvable problem instance  $\pi \in \Pi$  in time less than or equal to t.
- $q^*(\pi)$  is the quality of optimal solution to problem  $\pi$ .
- $r \ge 1, q > 0.$

**Algorithm** *A* **is** *r***-complete** if and only if

$$\forall \pi \in \Pi, \ \exists t_{\max} : P_s\left(t_{\max}, r \cdot q^*(\pi)\right) = P[RT_{A,\pi} \le t_{\max}, SQ_{A,\pi} \le r \cdot q^*(\pi)] = 1. \tag{4}$$

**Algorithm** *A* **is asymptotically** *r***-complete** if and only if

$$\forall \pi \in \Pi : \lim_{t \to \infty} P_s\left(t, r \cdot q^*(\pi)\right) = \lim_{t \to \infty} P[RT_{A, \pi} \le t, SQ_{A, \pi} \le r \cdot q^*(\pi)] = 1. \tag{5}$$

**Algorithm** *A* **is** *r***-incomplete** if and only if

$$\exists \text{ solvable } \pi \in \Pi : \lim_{t \to \infty} P_s\left(t, r \cdot q^*(\pi)\right) = \lim_{t \to \infty} P[RT_{A,\pi} \le t, SQ_{A,\pi} \le r \cdot q^*(\pi)] < 1. \tag{6}$$



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

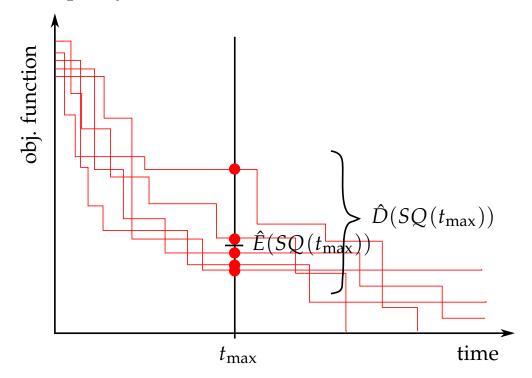
RTD Analysis

Summary

### **Application Scenarios and Evaluation Criteria**

**Type 1:** Hard time limit  $t_{\text{max}}$  for finding solution; solutions found later are useless (real-time environments with strict deadlines, e.g., dynamic task scheduling or on-line robot control).

- $\Rightarrow$  Evaluation criterion:
  - dec. prob.: solution probability at time  $t_{\text{max}}$ ,  $P_s$  ( $RT \le t_{\text{max}}$ )
  - opt. prob.: expected quality of the solution found at time  $t_{max}$ ,  $E(SQ(t_{max}))$



■ Possible problem: What does "The expected solution quality of algorithm *A* is 2 times better than for algorithm *B*" actually mean?



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

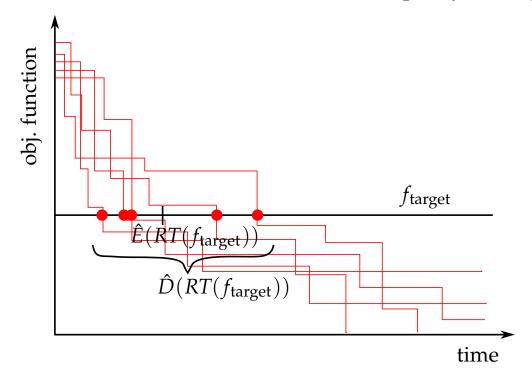
RTD Analysis

Summary

# **Application Scenarios and Evaluation Criteria (cont.)**

**Type 2:** No time limits given, algorithm can be run until a solution is found (off-line computations, non-realtime environments, e.g., configuration of production facility).

- $\Rightarrow$  Evaluation criterion:
  - dec. prob.: expected runtime to solve a problem
  - opt. prob.: expected runtime to reach solution of certain quality,  $E(RT(f_{target}))$



■ Is there any problem with "The expected runtime of algorithm *A* is 2 times larger than for algorithm *B*"?



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

# **Application Scenarios and Evaluation Criteria (cont.)**

**Type 3:** Utility of solutions depends in more complex ways on the time required to find them; characterised by a utility function U:

- dec. prob.:  $U: R^+ \mapsto \langle 0, 1 \rangle$ , where U(t) = utility of solution found at time t
- opt. prob.:  $U: R^+ \times R^+ \mapsto \langle 0, 1 \rangle$ , where U(t, q) = utility of solution with quality q found at time t



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

# **Application Scenarios and Evaluation Criteria (cont.)**

**Type 3:** Utility of solutions depends in more complex ways on the time required to find them; characterised by a utility function *U*:

- dec. prob.:  $U: R^+ \mapsto \langle 0, 1 \rangle$ , where U(t) = utility of solution found at time t
- opt. prob.:  $U: R^+ \times R^+ \mapsto \langle 0, 1 \rangle$ , where U(t, q) = utility of solution with quality q found at time t

Example: The direct benefit of a solution is invariant over time, but the cost of computing time diminishes the final payoff according to  $U(t) = \max\{u_0 - c \cdot t, 0\}$  (constant discounting).



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### **Application Scenarios and Evaluation Criteria (cont.)**

**Type 3:** Utility of solutions depends in more complex ways on the time required to find them; characterised by a utility function U:

- dec. prob.:  $U: R^+ \mapsto \langle 0, 1 \rangle$ , where U(t) = utility of solution found at time t
- opt. prob.:  $U: R^+ \times R^+ \mapsto \langle 0, 1 \rangle$ , where U(t, q) = utility of solution with quality q found at time t

Example: The direct benefit of a solution is invariant over time, but the cost of computing time diminishes the final payoff according to  $U(t) = \max\{u_0 - c \cdot t, 0\}$  (constant discounting).

⇒ Evaluation criterion: utility-weighted solution probability

dec. prob.: 
$$\int_0^\infty U(t) \cdot P_s(t) dt$$
, or

• opt. prob.: 
$$\int_0^\infty \int_{-\infty}^\infty U(t,q) \cdot P_s(t,q) \, dq \, dt$$

requires detailed knowledge of  $P_s(...)$  for arbitrary t (and arbitrary q).



# **Monte Carlo vs. Las Vegas Algorithms**

An EOA may belong to the class of *Monte Carlo* or *Las Vegas algorithms* (LVAs):

#### Motivation

- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

# Monte Carlo vs. Las Vegas Algorithms

An EOA may belong to the class of *Monte Carlo* or *Las Vegas algorithms* (LVAs):

■ Monte Carlo algorithm (MCA): It always stops and provides a solution, but the solution may not be correct. The solution quality is a random variable. (Application scenario 1.)



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

# Monte Carlo vs. Las Vegas Algorithms

An EOA may belong to the class of *Monte Carlo* or *Las Vegas algorithms* (LVAs):

- Monte Carlo algorithm (MCA): It always stops and provides a solution, but the solution may not be correct. The solution quality is a random variable. (Application scenario 1.)
- Las Vegas algorithm (LVA): It always produces a correct solution, but needs a priori unknown time to find it. The running time is a random variable. (Application scenario 2.)



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

# Monte Carlo vs. Las Vegas Algorithms

An EOA may belong to the class of *Monte Carlo* or *Las Vegas algorithms* (LVAs):

- Monte Carlo algorithm (MCA): It always stops and provides a solution, but the solution may not be correct. The solution quality is a random variable. (Application scenario 1.)
- Las Vegas algorithm (LVA): It always produces a correct solution, but needs a priori unknown time to find it. The running time is a random variable. (Application scenario 2.)

How can we turn on type of algorithm into the other?

- LVA can be turned into MCA by bounding the allowed running time.
- MCA can be turned into LVA by restarting the algorithm from randomly chosen states.



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

# Theoretical vs. Empirical Analysis of LVAs

- Practically relevant Las Vegas algorithms are typically difficult to analyse theoretically.
- Cases in which theoretical results are available are often of limited practical relevance, because they
  - rely on idealised assumptions that do not apply to practical situations,



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### Theoretical vs. Empirical Analysis of LVAs

- Practically relevant Las Vegas algorithms are typically difficult to analyse theoretically.
- Cases in which theoretical results are available are often of limited practical relevance, because they
  - rely on idealised assumptions that do not apply to practical situations,
  - apply to worst-case or highly idealised average-case behaviour only, or



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

### Theoretical vs. Empirical Analysis of LVAs

- Practically relevant Las Vegas algorithms are typically difficult to analyse theoretically.
- Cases in which theoretical results are available are often of limited practical relevance, because they
  - rely on idealised assumptions that do not apply to practical situations,
  - apply to worst-case or highly idealised average-case behaviour only, or
  - capture only asymptotic behaviour and do not reflect actual behaviour with sufficient accuracy.



- NFL
- Decision problems
- Optim. problems
- Scenarios
- MC vs LV
- Theory vs practice

Empirical Comparisons

RTD Analysis

Summary

# Theoretical vs. Empirical Analysis of LVAs

- Practically relevant Las Vegas algorithms are typically difficult to analyse theoretically.
- Cases in which theoretical results are available are often of limited practical relevance, because they
  - rely on idealised assumptions that do not apply to practical situations,
  - apply to worst-case or highly idealised average-case behaviour only, or
  - capture only asymptotic behaviour and do not reflect actual behaviour with sufficient accuracy.

Therefore, **analyse the behaviour of LVAs using empirical methodology**, ideally based on the *scientific method*:

- make observations
- formulate hypothesis/hypotheses (model)
- While not satisfied with model (and deadline not exceeded):
  - 1. design computational experiment to test model
  - 2. conduct computational experiment
  - 3. analyse experimental results
  - 4. revise model based on results



# **Empirical Algorithm Comparison**



# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

#### RTD Analysis

Summary

# **CPU Runtime vs Operation Counts**

Remark: Is it better to measure the time in *seconds* or e.g. in *function evaluations*?

- Results of experiments should be **comparable**.
- Results of experiments should be **reproducible**.



# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

#### RTD Analysis

Summary

### **CPU Runtime vs Operation Counts**

Remark: Is it better to measure the time in *seconds* or e.g. in *function evaluations*?

- Results of experiments should be comparable.
- Results of experiments should be reproducible.

#### Wall-clock time

- depends on the machine configuration, computer language, and on the operating system used to run the experiments (the results are neither comparable, nor reproducible);
- produces the (disastrous) incentive to invest a long time into implementation details, because they have a huge effect on this performance measure.



# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

#### RTD Analysis

#### Summary

### **CPU Runtime vs Operation Counts**

Remark: Is it better to measure the time in *seconds* or e.g. in *function evaluations*?

- Results of experiments should be comparable.
- Results of experiments should be reproducible.

#### Wall-clock time

- depends on the machine configuration, computer language, and on the operating system used to run the experiments (the results are neither comparable, nor reproducible);
- produces the (disastrous) incentive to invest a long time into implementation details, because they have a huge effect on this performance measure.

Since the objective function is often the most time-consuming operation in the optimization cycle, many authors use the **number of objective function evaluations** as the primary measure of "time".



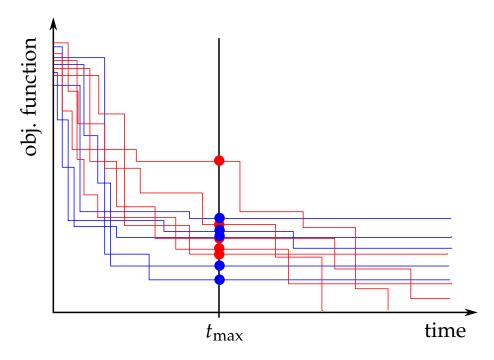
Let them run for certain time  $t_{max}$  and compare the average quality of returned solution, ave(SQ)

### Motivation

# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

#### RTD Analysis





Let them run for certain time  $t_{max}$  and compare the average quality of returned solution, ave(SQ)

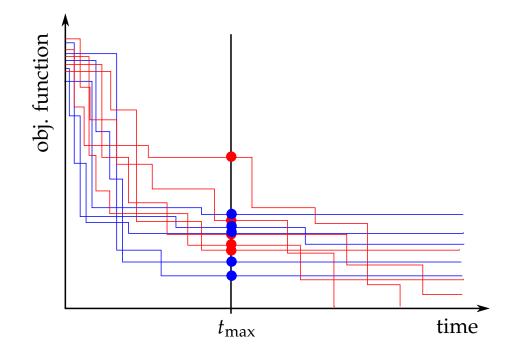
### Motivation

# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

### RTD Analysis

Summary



For  $t_{\text{max},1}$ , blue algorithm is better than red.



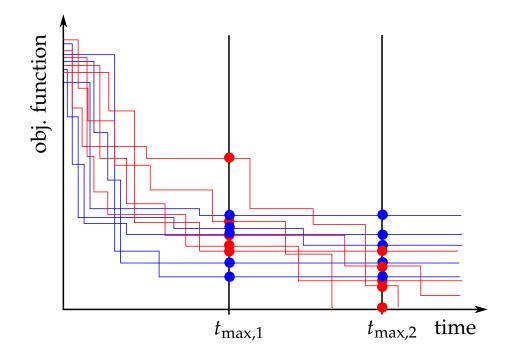
Let them run for certain time  $t_{\max}$  and compare the average quality of returned solution, ave(SQ)

### Motivation

# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

### RTD Analysis



- For  $t_{\text{max},1}$ , blue algorithm is better than red.
- For  $t_{\text{max,2}}$ , blue algorithm is worse than red.
- WARNING! The figure can change when  $t_{max}$  changes!!!



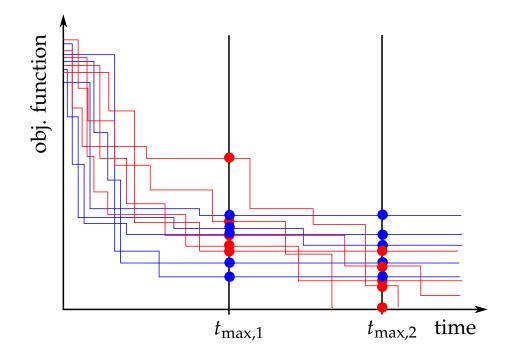
Let them run for certain time  $t_{\max}$  and compare the average quality of returned solution, ave(SQ)

### Motivation

# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

#### RTD Analysis



- For  $t_{\text{max},1}$ , blue algorithm is better than red.
- For  $t_{\text{max},2}$ , blue algorithm is worse than red.
- WARNING! The figure can change when  $t_{max}$  changes!!!
- Can our claims be false? What is the probability that our claims are wrong?



# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

#### RTD Analysis

#### Summary

## Student's t-test

## Independent two-sample t-test:

- Statistical method used to test if the means of 2 normally distributed populations are equal.
- The larger the difference between means, the higher the probability the means are different.
- The lower the variance inside the populations, the higher the probability the means are different.
- For details, see e.g. [Luk09, sec. 11.1.2].
- Implemented in most mathematical and statistical software, e.g. in MATLAB.
- Can be easily implemented in any language.

### **Assumptions:**

- Both populations should have normal distribution.
- Almost never fulfilled with the populations of solution qualities.

Remedy: a non-parametric test!

[Luk09] Sean Luke. Essentials of Metaheuristics. 2009. available at http://cs.gmu.edu/~sean/book/metaheuristics/.



# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

#### RTD Analysis

#### Summary

## **Mann-Whitney U test**

Non-parametric test assessing whether two independent samples of observations have equally large values.

- Virtually identical to:
  - combine both samples (for each observation, remember its original group),
  - sort the values,
  - replace the values by ranks,
  - use the ranks with ordinary parametric two-sample t-test.
- The measurements must be at least ordinal:
  - We must be able to sort them.
  - This allows us to merge results from runs which reached the target level with the results of runs which did not.



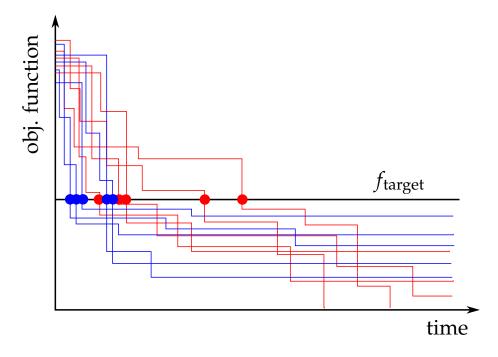
Let them run until they find a solution of certain quality  $f_{\text{target}}$  and compare the average runtime, ave(RT)

### Motivation

# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

RTD Analysis





Let them run until they find a solution of certain quality  $f_{\text{target}}$  and compare the average runtime, ave(RT)

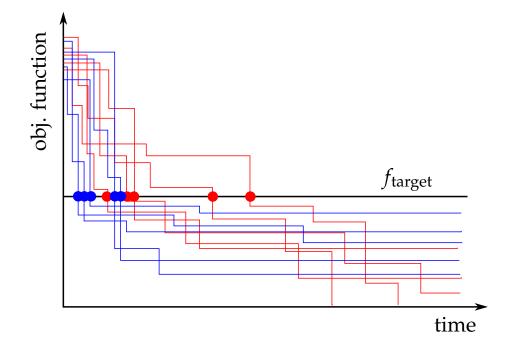
### Motivation

# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

### RTD Analysis

Summary



■ For  $f_{\text{target,1}}$ , blue algorithm is better than red.



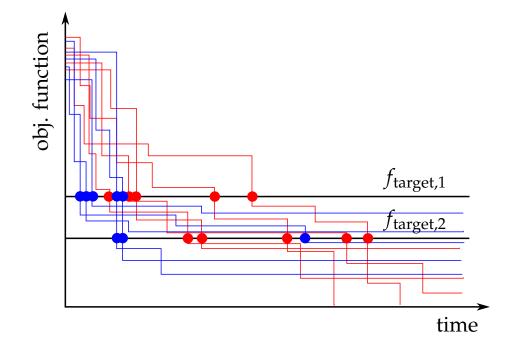
Let them run until they find a solution of certain quality  $f_{\text{target}}$  and compare the average runtime, ave(RT)

### Motivation

# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

#### RTD Analysis



- For  $f_{\text{target},1}$ , blue algorithm is better than red.
- For  $f_{\text{target,2}}$ , blue algorithm still seems to better than red (if it finds the solution, it finds it faster), but 2 blue runs did not reach the target level yet, i.e. (we are much less sure that blue is better).
- WARNING! The figure can change when  $f_{\text{target}}$  changes!!!



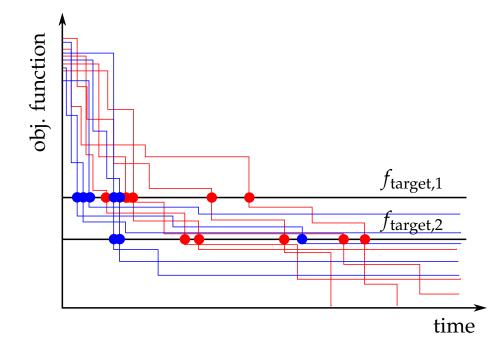
Let them run until they find a solution of certain quality  $f_{\text{target}}$  and compare the average runtime, ave(RT)

### Motivation

# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

#### RTD Analysis



- For  $f_{\text{target},1}$ , blue algorithm is better than red.
- For  $f_{\text{target,2}}$ , blue algorithm still seems to better than red (if it finds the solution, it finds it faster), but 2 blue runs did not reach the target level yet, i.e. (we are much less sure that blue is better).
- WARNING! The figure can change when  $f_{\text{target}}$  changes!!!
- The same statistical tests as for scenario 1 can be used.



## Scenarios 1 and 2 combined

Let them run until they find a solution of certain quality  $f_{\text{target}}$  or until they use all the allowed time  $t_{\text{max}}$ .

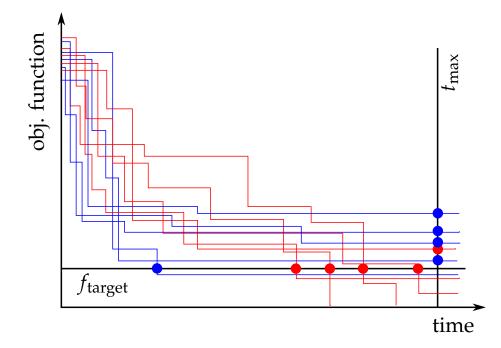
### Motivation

# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

RTD Analysis

Summary



■ *RT* is measured in seconds or function evaluations, *SQ* is measured in something different; now, how can we test if one algorithm is better than the other?



## Scenarios 1 and 2 combined

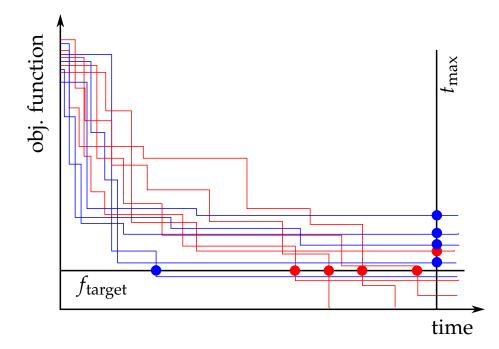
Let them run until they find a solution of certain quality  $f_{\text{target}}$  or until they use all the allowed time  $t_{\text{max}}$ .

### Motivation

# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

RTD Analysis



- RT is measured in seconds or function evaluations, SQ is measured in something different; now, how can we test if one algorithm is better than the other?
- The situation when the algorithm reaches  $f_{\text{target}}$  is better than when it reaches  $t_{\text{max}}$ . We can still sort the values.
- We can use the Mann-Whitney U-test.



## Scenarios 1 and 2 combined

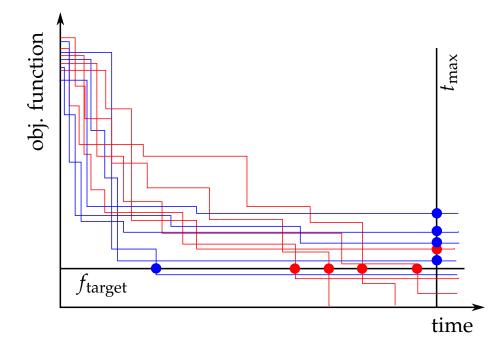
Let them run until they find a solution of certain quality  $f_{\text{target}}$  or until they use all the allowed time  $t_{\text{max}}$ .

## Motivation

# Empirical Comparisons

- Seconds vs counts
- Scenario 1
- Student's t-test
- MWUT
- Scenario 2
- S1 and S2 combined

RTD Analysis



- *RT* is measured in seconds or function evaluations, *SQ* is measured in something different; now, how can we test if one algorithm is better than the other?
- The situation when the algorithm reaches  $f_{\text{target}}$  is better than when it reaches  $t_{\text{max}}$ . We can still sort the values.
- We can use the Mann-Whitney U-test.
- WARNING! Again, if we change  $f_{\text{target}}$  and/or  $t_{\text{max}}$ , the figure can change!!!



# **Analysis based on runtime distribution**



Empirical Comparisons

#### RTD Analysis

- RTD
- RTD defintion
- RTD cross-sections
- Measuring RTD
- RTD comparisons
- Example

Summary

## **Runtime distributions**

LVAs are often designed and evaluated without apriori knowledge of the application scenario:

- Assume the most general scenario type 3 with a utility function (which is often, however, unknown as well).
- Evaluate based on solution probabilities  $P_s(t,q) = P[RT \le t, SQ \le q]$  for arbitrary runtimes t and solution qualities q.

Study distributions of *random variables* characterising runtime and solution quality of an algorithm for the given problem instance.



Empirical Comparisons

### RTD Analysis

- RTD
- RTD defintion
- RTD cross-sections
- Measuring RTD
- RTD comparisons
- Example

Summary

## **RTD** defintion

Given a Las Vegas alg. *A* for optimization problem  $\pi$ :

The *success probability*  $P_s(t,q) = P[RT_{A,\pi} \le t, SQ_{A,\pi} \le q]$  is the probability that A finds a solution for a solvable instance  $\pi \in \Pi$  of quality  $\le q$  in time  $\le t$ .



Empirical Comparisons

### RTD Analysis

- RTD
- RTD defintion
- RTD cross-sections
- Measuring RTD
- RTD comparisons
- Example

Summary

## **RTD** defintion

Given a Las Vegas alg. *A* for optimization problem  $\pi$ :

- The *success probability*  $P_s(t,q) = P[RT_{A,\pi} \le t, SQ_{A,\pi} \le q]$  is the probability that A finds a solution for a solvable instance  $\pi \in \Pi$  of quality  $\le q$  in time  $\le t$ .
- The *run-time distribution* (RTD) of A on  $\pi$  is the probability distribution of the bivariate random variable  $(RT_{A,\pi}, SQ_{A,\pi})$ .



Empirical Comparisons

#### RTD Analysis

- RTD
- RTD defintion
- RTD cross-sections
- Measuring RTD
- RTD comparisons
- Example

Summary

## **RTD** defintion

Given a Las Vegas alg. A for optimization problem  $\pi$ :

- The *success probability*  $P_s(t,q) = P[RT_{A,\pi} \le t, SQ_{A,\pi} \le q]$  is the probability that A finds a solution for a solvable instance  $\pi \in \Pi$  of quality  $\le q$  in time  $\le t$ .
- The *run-time distribution* (RTD) of A on  $\pi$  is the probability distribution of the bivariate random variable  $(RT_{A,\pi}, SQ_{A,\pi})$ .
- The *runtime distribution function rtd* :  $R^+ \times R^+ \rightarrow [0,1]$  is defined as  $rtd(t,q) = P_s(t,q)$ , completely characterises the RTD of A on  $\pi$ .



Empirical Comparisons

#### RTD Analysis

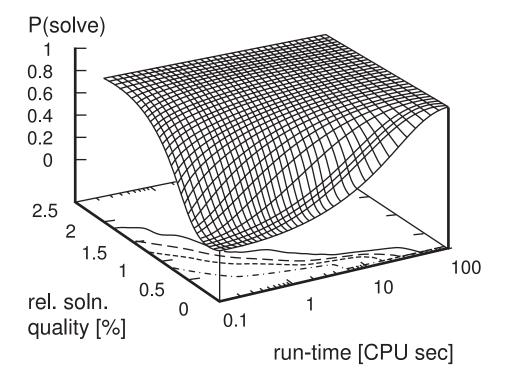
- RTD
- RTD defintion
- RTD cross-sections
- Measuring RTD
- RTD comparisons
- Example

Summary

## **RTD** defintion

Given a Las Vegas alg. *A* for optimization problem  $\pi$ :

- The *success probability*  $P_s(t,q) = P[RT_{A,\pi} \le t, SQ_{A,\pi} \le q]$  is the probability that A finds a solution for a solvable instance  $\pi \in \Pi$  of quality  $\le q$  in time  $\le t$ .
- The *run-time distribution* (RTD) of A on  $\pi$  is the probability distribution of the bivariate random variable  $(RT_{A,\pi}, SQ_{A,\pi})$ .
- The *runtime distribution function rtd* :  $R^+ \times R^+ \rightarrow [0,1]$  is defined as  $rtd(t,q) = P_s(t,q)$ , completely characterises the RTD of A on  $\pi$ .





## **RTD cross-sections**

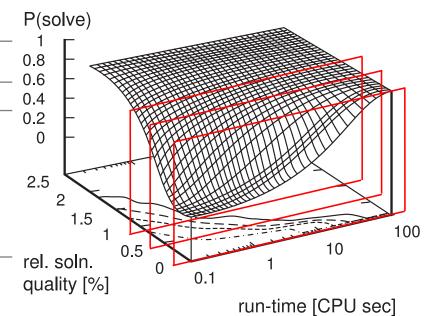
We can study the RTD using cross-sections:

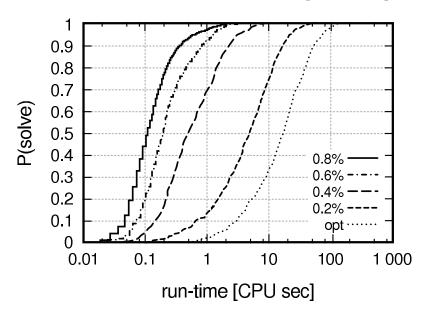
Motivation

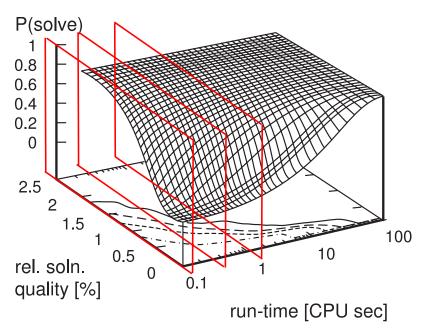
Empirical Comparisons

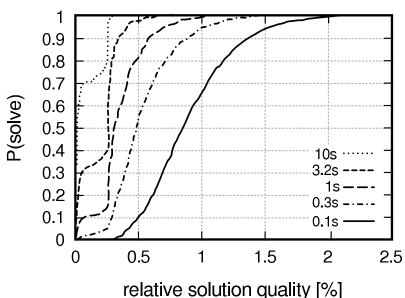
### RTD Analysis

- RTD
- RTD defintion
- RTD cross-sections
- Measuring RTD
- RTD comparisons
- Example











## RTD cross-sections (cont.)

We can study the RTD using cross-sections:

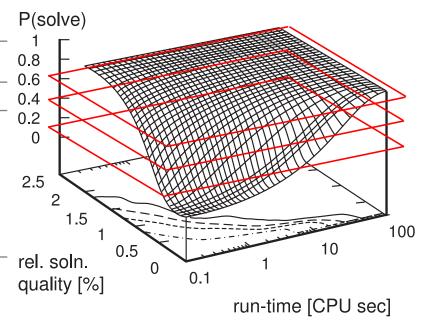
Motivation

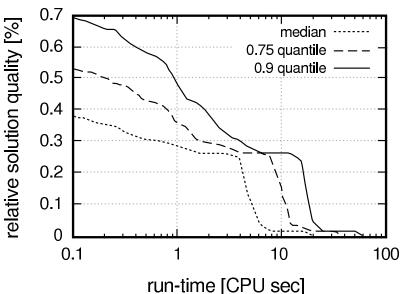
Empirical Comparisons

#### RTD Analysis

- RTD
- RTD defintion
- RTD cross-sections
- Measuring RTD
- RTD comparisons
- Example

Summary





Horizontal cross-sections reveal the dependence of *SQ* on *RT*:

The lines represent various quantiles; e.g. for 75%-quantile we can expect that 75% of runs will return a better combination of *SQ* and *RT*.



Empirical Comparisons

#### RTD Analysis

- RTD
- RTD defintion
- RTD cross-sections
- Measuring RTD
- RTD comparisons
- Example

Summary

## **Empirical measurement of RTDs**

Empirical estimation of  $P[RT \le t, SQ \le q]$ :

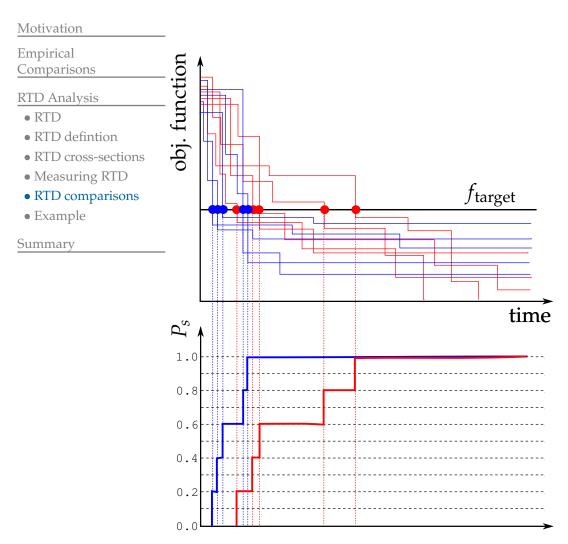
- Perform N independent runs of A on problem  $\pi$ .
- For  $n^{\text{th}}$  run,  $n \in 1, ..., N$ , store the so-called *solution quality trace*, i.e.  $t_{n,i}$  and  $q_{n,i}$  each time the quality is improved.
- $\hat{P}_s(t,q) = \frac{n_S(t,q)}{N}$ , where  $n_S(t,q)$  is the number of runs which provided at least one solution with  $t_i \le t$  and  $q_i \le q$ .

Empirical RTDs are approximations of an algorithm's true RTD:

 $\blacksquare$  The larger the N, the better the approximation.



E.g. type 2 application scenario: set  $f_{\text{target}}$  and compare RTDs of the algorithms





E.g. type 2 application scenario: set  $f_{\text{target}}$  and compare RTDs of the algorithms

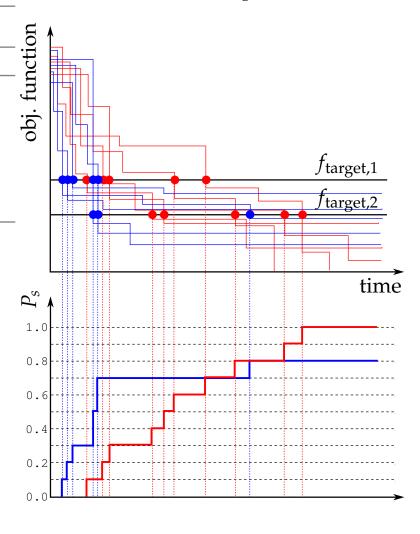
 $\dots$  and add another  $f_{\text{target}}$  level  $\dots$ 

### Empirical Comparisons

Motivation

RTD Analysis

- RTD
- RTD defintion
- RTD cross-sections
- Measuring RTD
- RTD comparisons
- Example





E.g. type 2 application scenario: set  $f_{\text{target}}$  and compare RTDs of the algorithms

 $\dots$  and add another  $f_{\text{target}}$  level  $\dots$ 

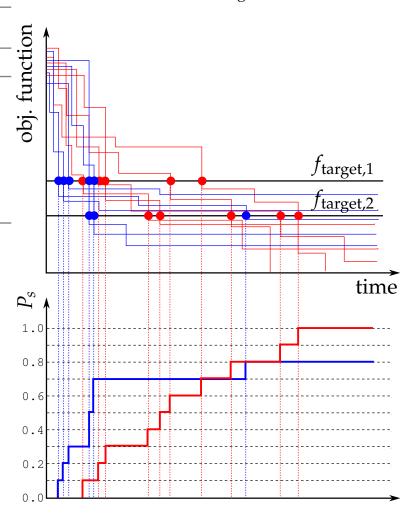
# Motivation Empirical

Comparisons

### RTD Analysis

- RTD
- RTD defintion
- RTD cross-sections
- Measuring RTD
- RTD comparisons
- Example

Summary



This way we can aggregate RTDs of an algorithm *A* not only

• over various  $f_{\text{target}}$  levels, but also



E.g. type 2 application scenario: set  $f_{\text{target}}$  and compare RTDs of the algorithms

 $\dots$  and add another  $f_{\text{target}}$  level  $\dots$ 

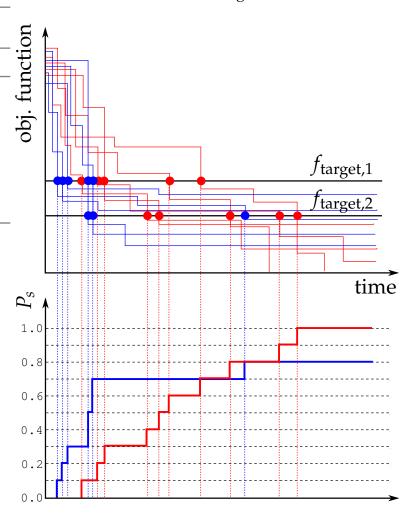
## Motivation

Empirical Comparisons

### RTD Analysis

- RTD
- RTD defintion
- RTD cross-sections
- Measuring RTD
- RTD comparisons
- Example

Summary

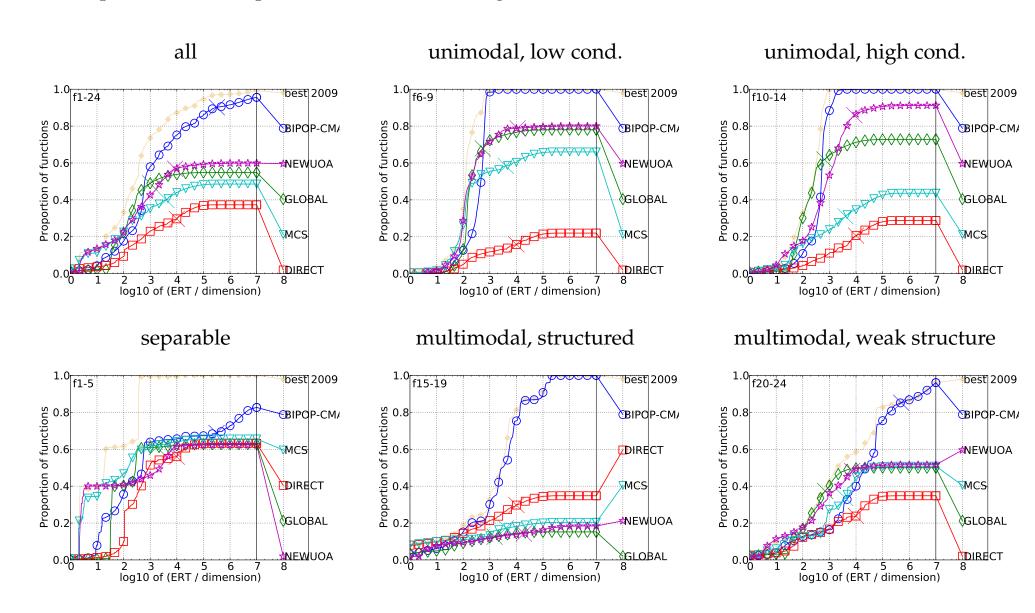


This way we can aggregate RTDs of an algorithm *A* not only

- over various  $f_{\text{target}}$  levels, but also
- over different problems  $\pi \in \Pi$  (!!!), of course with certain loss of information.

## **Example of comparison**

Workshop on black-box optimization benchmarking (BBOB) at GECCO conference:







Empirical Comparisons

RTD Analysis

Summary

• Learning outcomes

## Learning outcomes

After this lecture, a student shall be able to

- explain No Free Lunch Theorem, and its consequences;
- explain the concepts of success probability, runtime distribution, solution quality, and their relationship;
- $\blacksquare$  define *r*-complete, asymptotically *r*-complete, and *r*-incomplete algorithms;
- describe 3 usual scenarios of applying an algorithm to an optimization problem, and explain their differences;
- explain differences between Monte Carlo and Las Vegas algorithms;
- name the advantages and disadvantages of measuring time in seconds vs measuring time in the number of performed operations;
- explain what errorneous conclusions can be drawn from the results of an experiment when comparing algorithms using a single time limit, and/or a single required target level;
- know a few statistical test that can be used to compare 2 algorithms;
- exemplify what kind of characteristics we can get when taking cross-sections of the runtime distribution function;
- explain how the runtime distributions can be aggregated over different target levels, different problem instances and different problems;
- derive valid conclusions when presented with runtime distributions of two or more algorithms.