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No Free Lunch.

Empirical comparisons of stochastic optimization
algorithms

Petr Pošı́k

Substantial part of this material is based on slides provided with the book
’Stochastic Local Search: Foundations and Applications’

by Holger H. Hoos and Thomas Stützle (Morgan Kaufmann, 2004)
See www.sls-book.net for further information.

www.sls-book.net
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n Refers to the nineteenth century practice in American bars of offering a “free lunch”
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n If something appears to be free, there is always a cost to the person or to society as a
whole even though that cost may be hidden or distributed.
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n If something appears to be free, there is always a cost to the person or to society as a
whole even though that cost may be hidden or distributed.

No-Free-Lunch theorem in search and optimization [WM97]

n Informally, for discrete spaces: “Any two (non-repeating) algorithms are equivalent
when their performance is averaged across all possible problems.”
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n For a particular problem (or a particular class of problems), different search
algorithms may obtain different results.
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“There is no such thing as a free lunch.”

n Refers to the nineteenth century practice in American bars of offering a “free lunch”
with drinks.

n The meaning of the adage: It is impossible to get something for nothing.

n If something appears to be free, there is always a cost to the person or to society as a
whole even though that cost may be hidden or distributed.

No-Free-Lunch theorem in search and optimization [WM97]

n Informally, for discrete spaces: “Any two (non-repeating) algorithms are equivalent
when their performance is averaged across all possible problems.”

n For a particular problem (or a particular class of problems), different search
algorithms may obtain different results.

n If an algorithm achieves superior results on some problems, it must pay with
inferiority on other problems.

It makes sense to study which algorithms are suitable for which kinds of problems!!!

[WM97] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Trans. on Evolutionary Computation, 1(1):67–82,
1997.
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Definitions:

n A is an algorithm for a class Π of decision problems.

n RTA,π is the runtime of algorithm A when applied to problem instance π; random
variable.

n Ps (t) = P[RTA,π ≤ t] is a probability that A finds a solution for a problem instance
π ∈ Π in time less than or equal to t.
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Definitions:

n A is an algorithm for a class Π of decision problems.

n RTA,π is the runtime of algorithm A when applied to problem instance π; random
variable.

n Ps (t) = P[RTA,π ≤ t] is a probability that A finds a solution for a problem instance
π ∈ Π in time less than or equal to t.

Complete algorithm A can provably solve any solvable decision problem instance π ∈ Π

after a finite time, i.e. A is complete if and only if

∀π ∈ Π, ∃tmax : Ps (tmax) = P[RTA,π ≤ tmax] = 1. (1)
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Definitions:
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n RTA,π is the runtime of algorithm A when applied to problem instance π; random
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n Ps (t) = P[RTA,π ≤ t] is a probability that A finds a solution for a problem instance
π ∈ Π in time less than or equal to t.

Complete algorithm A can provably solve any solvable decision problem instance π ∈ Π

after a finite time, i.e. A is complete if and only if

∀π ∈ Π, ∃tmax : Ps (tmax) = P[RTA,π ≤ tmax] = 1. (1)

Asymptotically complete algorithm A can solve any solvable problem instance π ∈ Π

with arbitrarily high probability when allowed to run long enough, i.e. A is asymptotically
complete if and only if

∀π ∈ Π : lim
t→∞

Ps (t) = lim
t→∞

P[RTA,π ≤ t] = 1. (2)
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Definitions:

n A is an algorithm for a class Π of decision problems.

n RTA,π is the runtime of algorithm A when applied to problem instance π; random
variable.

n Ps (t) = P[RTA,π ≤ t] is a probability that A finds a solution for a problem instance
π ∈ Π in time less than or equal to t.

Complete algorithm A can provably solve any solvable decision problem instance π ∈ Π

after a finite time, i.e. A is complete if and only if

∀π ∈ Π, ∃tmax : Ps (tmax) = P[RTA,π ≤ tmax] = 1. (1)

Asymptotically complete algorithm A can solve any solvable problem instance π ∈ Π

with arbitrarily high probability when allowed to run long enough, i.e. A is asymptotically
complete if and only if

∀π ∈ Π : lim
t→∞

Ps (t) = lim
t→∞

P[RTA,π ≤ t] = 1. (2)

Incomplete algorithm A cannot be guaranteed to find the solution even if allowed to run
infinitely long, i.e. if it is not asymptotically complete, i.e. A is incomplete if and only if

∃ solvable π ∈ Π : lim
t→∞

Ps (t) = lim
t→∞

P[RTA,π ≤ t] < 1. (3)
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Simple generalization based on transforming the optimization problem to related decision problem by
setting the solution quality bound to q = r · q∗(π):

n A is an algorithm for a class Π of optimization problems.

n RTA,π is the runtime of algorithm A when applied to problem instance π; random variable.

n SQA,π is the quality of the solution found by algorithm A when applied to problem instance π;
random variable.

n Ps (t, q) = P[RTA,π ≤ t, SQA,π ≤ q] is the probability that A finds a solution of quality better than or
equal to q for a solvable problem instance π ∈ Π in time less than or equal to t.

n q∗(π) is the quality of optimal solution to problem π.

n r ≥ 1, q > 0.
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P. Pošı́k c© 2016 A0M33EOA: Evolutionary Optimization Algorithms – 6 / 28

Simple generalization based on transforming the optimization problem to related decision problem by
setting the solution quality bound to q = r · q∗(π):

n A is an algorithm for a class Π of optimization problems.

n RTA,π is the runtime of algorithm A when applied to problem instance π; random variable.

n SQA,π is the quality of the solution found by algorithm A when applied to problem instance π;
random variable.

n Ps (t, q) = P[RTA,π ≤ t, SQA,π ≤ q] is the probability that A finds a solution of quality better than or
equal to q for a solvable problem instance π ∈ Π in time less than or equal to t.

n q∗(π) is the quality of optimal solution to problem π.

n r ≥ 1, q > 0.

Algorithm A is r-complete if and only if

∀π ∈ Π, ∃tmax : Ps (tmax, r · q∗(π)) = P[RTA,π ≤ tmax, SQA,π ≤ r · q∗(π)] = 1. (4)

Algorithm A is asymptotically r-complete if and only if

∀π ∈ Π : lim
t→∞

Ps (t, r · q∗(π)) = lim
t→∞

P[RTA,π ≤ t, SQA,π ≤ r · q∗(π)] = 1. (5)

Algorithm A is r-incomplete if and only if

∃ solvable π ∈ Π : lim
t→∞

Ps (t, r · q∗(π)) = lim
t→∞

P[RTA,π ≤ t, SQA,π ≤ r · q∗(π)] < 1. (6)
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Type 1: Hard time limit tmax for finding solution; solutions found later are useless
(real-time environments with strict deadlines, e.g., dynamic task scheduling or on-line
robot control).

⇒ Evaluation criterion:

n dec. prob.: solution probability at time tmax, Ps (RT ≤ tmax)

n opt. prob.: expected quality of the solution found at time tmax, E(SQ(tmax))

o
b

j.
fu

n
ct

io
n

timetmax

Ê(SQ(tmax))
D̂(SQ(tmax))

n Possible problem: What does “The expected solution quality of algorithm A is 2
times better than for algorithm B” actually mean?



Application Scenarios and Evaluation Criteria (cont.)

Motivation

• NFL

• Decision problems

• Optim. problems

• Scenarios

• MC vs LV

• Theory vs practice

Empirical
Comparisons

RTD Analysis

Summary
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Type 2: No time limits given, algorithm can be run until a solution is found (off-line
computations, non-realtime environments, e.g., configuration of production facility).

⇒ Evaluation criterion:

n dec. prob.: expected runtime to solve a problem

n opt. prob.: expected runtime to reach solution of certain quality, E(RT( ftarget))

o
b

j.
fu

n
ct

io
n

time

ftarget

Ê(RT( ftarget))

D̂(RT( ftarget))

n Is there any problem with “The expected runtime of algorithm A is 2 times larger
than for algorithm B”?
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P. Pošı́k c© 2016 A0M33EOA: Evolutionary Optimization Algorithms – 9 / 28

Type 3: Utility of solutions depends in more complex ways on the time required to find
them; characterised by a utility function U:

n dec. prob.: U : R+ 7→ 〈0, 1〉, where U(t) = utility of solution found at time t

n opt. prob.: U : R+ × R+ 7→ 〈0, 1〉, where U(t, q) = utility of solution with quality q
found at time t
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Type 3: Utility of solutions depends in more complex ways on the time required to find
them; characterised by a utility function U:

n dec. prob.: U : R+ 7→ 〈0, 1〉, where U(t) = utility of solution found at time t

n opt. prob.: U : R+ × R+ 7→ 〈0, 1〉, where U(t, q) = utility of solution with quality q
found at time t

Example: The direct benefit of a solution is invariant over time, but the cost of computing
time diminishes the final payoff according to U(t) = max{u0 − c · t, 0} (constant
discounting).
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Type 3: Utility of solutions depends in more complex ways on the time required to find
them; characterised by a utility function U:

n dec. prob.: U : R+ 7→ 〈0, 1〉, where U(t) = utility of solution found at time t

n opt. prob.: U : R+ × R+ 7→ 〈0, 1〉, where U(t, q) = utility of solution with quality q
found at time t

Example: The direct benefit of a solution is invariant over time, but the cost of computing
time diminishes the final payoff according to U(t) = max{u0 − c · t, 0} (constant
discounting).

⇒ Evaluation criterion: utility-weighted solution probability

n dec. prob.:
∫

∞

0
U(t) · Ps (t) dt, or

n opt. prob.:
∫

∞

0

∫
∞

−∞

U(t, q) · Ps (t, q) dq dt

requires detailed knowledge of Ps (. . .) for arbitrary t (and arbitrary q).
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An EOA may belong to the class of Monte Carlo or Las Vegas algorithms (LVAs):
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An EOA may belong to the class of Monte Carlo or Las Vegas algorithms (LVAs):

n Monte Carlo algorithm (MCA): It always stops and provides a solution, but the
solution may not be correct. The solution quality is a random variable. (Application
scenario 1.)
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An EOA may belong to the class of Monte Carlo or Las Vegas algorithms (LVAs):

n Monte Carlo algorithm (MCA): It always stops and provides a solution, but the
solution may not be correct. The solution quality is a random variable. (Application
scenario 1.)

n Las Vegas algorithm (LVA): It always produces a correct solution, but needs a priori
unknown time to find it. The running time is a random variable. (Application
scenario 2.)
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An EOA may belong to the class of Monte Carlo or Las Vegas algorithms (LVAs):

n Monte Carlo algorithm (MCA): It always stops and provides a solution, but the
solution may not be correct. The solution quality is a random variable. (Application
scenario 1.)

n Las Vegas algorithm (LVA): It always produces a correct solution, but needs a priori
unknown time to find it. The running time is a random variable. (Application
scenario 2.)

How can we turn on type of algorithm into the other?

n LVA can be turned into MCA by bounding the allowed running time.

n MCA can be turned into LVA by restarting the algorithm from randomly chosen
states.
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n Practically relevant Las Vegas algorithms are typically difficult to analyse
theoretically.

n Cases in which theoretical results are available are often of limited practical
relevance, because they

n rely on idealised assumptions that do not apply to practical situations,
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n Cases in which theoretical results are available are often of limited practical
relevance, because they

n rely on idealised assumptions that do not apply to practical situations,

n apply to worst-case or highly idealised average-case behaviour only, or
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n Practically relevant Las Vegas algorithms are typically difficult to analyse
theoretically.

n Cases in which theoretical results are available are often of limited practical
relevance, because they

n rely on idealised assumptions that do not apply to practical situations,

n apply to worst-case or highly idealised average-case behaviour only, or

n capture only asymptotic behaviour and do not reflect actual behaviour with
sufficient accuracy.
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n Practically relevant Las Vegas algorithms are typically difficult to analyse
theoretically.

n Cases in which theoretical results are available are often of limited practical
relevance, because they

n rely on idealised assumptions that do not apply to practical situations,

n apply to worst-case or highly idealised average-case behaviour only, or

n capture only asymptotic behaviour and do not reflect actual behaviour with
sufficient accuracy.

Therefore, analyse the behaviour of LVAs using empirical methodology, ideally based
on the scientific method:

n make observations

n formulate hypothesis/hypotheses (model)

n While not satisfied with model (and deadline not exceeded):

1. design computational experiment to test model

2. conduct computational experiment

3. analyse experimental results

4. revise model based on results
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Remark: Is it better to measure the time in seconds or e.g. in function evaluations?

n Results of experiments should be comparable.

n Results of experiments should be reproducible.
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Remark: Is it better to measure the time in seconds or e.g. in function evaluations?

n Results of experiments should be comparable.

n Results of experiments should be reproducible.

Wall-clock time

n depends on the machine configuration, computer language, and on the operating
system used to run the experiments (the results are neither comparable, nor
reproducible);

n produces the (disastrous) incentive to invest a long time into implementation details,
because they have a huge effect on this performance measure.
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Remark: Is it better to measure the time in seconds or e.g. in function evaluations?

n Results of experiments should be comparable.

n Results of experiments should be reproducible.

Wall-clock time

n depends on the machine configuration, computer language, and on the operating
system used to run the experiments (the results are neither comparable, nor
reproducible);

n produces the (disastrous) incentive to invest a long time into implementation details,
because they have a huge effect on this performance measure.

Since the objective function is often the most time-consuming operation in the
optimization cycle, many authors use the number of objective function evaluations as
the primary measure of “time”.
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n Let them run for certain time tmax and compare the average quality of returned
solution, ave(SQ)
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n Let them run for certain time tmax and compare the average quality of returned
solution, ave(SQ)

o
b

j.
fu

n
ct

io
n

timetmax

n For tmax,1, blue algorithm is better than red.
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P. Pošı́k c© 2016 A0M33EOA: Evolutionary Optimization Algorithms – 14 / 28

n Let them run for certain time tmax and compare the average quality of returned
solution, ave(SQ)
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n For tmax,1, blue algorithm is better than red.

n For tmax,2, blue algorithm is worse than red.

n WARNING! The figure can change when tmax changes!!!
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n Let them run for certain time tmax and compare the average quality of returned
solution, ave(SQ)
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n For tmax,1, blue algorithm is better than red.

n For tmax,2, blue algorithm is worse than red.

n WARNING! The figure can change when tmax changes!!!

n Can our claims be false? What is the probability that our claims are wrong?
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Independent two-sample t-test:

n Statistical method used to test if the means of 2 normally distributed populations are
equal.

n The larger the difference between means, the higher the probability the means are
different.

n The lower the variance inside the populations, the higher the probability the means
are different.

n For details, see e.g. [Luk09, sec. 11.1.2].

n Implemented in most mathematical and statistical software, e.g. in MATLAB.

n Can be easily implemented in any language.

Assumptions:

n Both populations should have normal distribution.

n Almost never fulfilled with the populations of solution qualities.

Remedy: a non-parametric test!

[Luk09] Sean Luke. Essentials of Metaheuristics. 2009. available at http://cs.gmu.edu/∼sean/book/metaheuristics/.
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Non-parametric test assessing whether two independent samples of observations have
equally large values.

n Virtually identical to:

n combine both samples (for each observation, remember its original group),

n sort the values,

n replace the values by ranks,

n use the ranks with ordinary parametric two-sample t-test.

n The measurements must be at least ordinal:

n We must be able to sort them.

n This allows us to merge results from runs which reached the target level with the
results of runs which did not.
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P. Pošı́k c© 2016 A0M33EOA: Evolutionary Optimization Algorithms – 17 / 28

n Let them run until they find a solution of certain quality ftarget and compare the
average runtime, ave(RT)
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n Let them run until they find a solution of certain quality ftarget and compare the
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n For ftarget,1, blue algorithm is better than red.
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n Let them run until they find a solution of certain quality ftarget and compare the
average runtime, ave(RT)
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ftarget,2

n For ftarget,1, blue algorithm is better than red.

n For ftarget,2, blue algorithm still seems to better than red (if it finds the solution, it
finds it faster), but 2 blue runs did not reach the target level yet, i.e. (we are much less
sure that blue is better).

n WARNING! The figure can change when ftarget changes!!!
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n Let them run until they find a solution of certain quality ftarget and compare the
average runtime, ave(RT)
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ftarget,2

n For ftarget,1, blue algorithm is better than red.

n For ftarget,2, blue algorithm still seems to better than red (if it finds the solution, it
finds it faster), but 2 blue runs did not reach the target level yet, i.e. (we are much less
sure that blue is better).

n WARNING! The figure can change when ftarget changes!!!

n The same statistical tests as for scenario 1 can be used.
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n Let them run until they find a solution of certain quality ftarget or until they use all
the allowed time tmax.
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n RT is measured in seconds or function evaluations, SQ is measured in something
different; now, how can we test if one algorithm is better than the other?
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n Let them run until they find a solution of certain quality ftarget or until they use all
the allowed time tmax.
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n RT is measured in seconds or function evaluations, SQ is measured in something
different; now, how can we test if one algorithm is better than the other?

n The situation when the algorithm reaches ftarget is better than when it reaches tmax.
We can still sort the values.

n We can use the Mann-Whitney U-test.
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n Let them run until they find a solution of certain quality ftarget or until they use all
the allowed time tmax.
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n RT is measured in seconds or function evaluations, SQ is measured in something
different; now, how can we test if one algorithm is better than the other?

n The situation when the algorithm reaches ftarget is better than when it reaches tmax.
We can still sort the values.

n We can use the Mann-Whitney U-test.

n WARNING! Again, if we change ftarget and/or tmax, the figure can change!!!
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LVAs are often designed and evaluated without apriori knowledge of the application
scenario:

n Assume the most general scenario — type 3 with a utility function (which is often,
however, unknown as well).

n Evaluate based on solution probabilities Ps (t, q) = P[RT ≤ t, SQ ≤ q] for arbitrary
runtimes t and solution qualities q.

Study distributions of random variables characterising runtime and solution quality of
an algorithm for the given problem instance.
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Given a Las Vegas alg. A for optimization problem π:

n The success probability Ps (t, q) = P[RTA,π ≤ t, SQA,π ≤ q] is the probability that A
finds a solution for a solvable instance π ∈ Π of quality ≤ q in time ≤ t.
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Given a Las Vegas alg. A for optimization problem π:

n The success probability Ps (t, q) = P[RTA,π ≤ t, SQA,π ≤ q] is the probability that A
finds a solution for a solvable instance π ∈ Π of quality ≤ q in time ≤ t.

n The run-time distribution (RTD) of A on π is the probability distribution of the
bivariate random variable (RTA,π , SQA,π).
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Given a Las Vegas alg. A for optimization problem π:

n The success probability Ps (t, q) = P[RTA,π ≤ t, SQA,π ≤ q] is the probability that A
finds a solution for a solvable instance π ∈ Π of quality ≤ q in time ≤ t.

n The run-time distribution (RTD) of A on π is the probability distribution of the
bivariate random variable (RTA,π , SQA,π).

n The runtime distribution function rtd : R+ × R+ → [0, 1] is defined as
rtd(t, q) = Ps (t, q), completely characterises the RTD of A on π.
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Given a Las Vegas alg. A for optimization problem π:

n The success probability Ps (t, q) = P[RTA,π ≤ t, SQA,π ≤ q] is the probability that A
finds a solution for a solvable instance π ∈ Π of quality ≤ q in time ≤ t.

n The run-time distribution (RTD) of A on π is the probability distribution of the
bivariate random variable (RTA,π , SQA,π).

n The runtime distribution function rtd : R+ × R+ → [0, 1] is defined as
rtd(t, q) = Ps (t, q), completely characterises the RTD of A on π.
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We can study the RTD using cross-sections:
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We can study the RTD using cross-sections:

Horizontal cross-sections reveal the
dependence of SQon RT:

n The lines represent various quantiles;
e.g. for 75%-quantile we can expect
that 75% of runs will return a better
combination of SQ and RT.
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Empirical estimation of P[RT ≤ t, SQ ≤ q]:

n Perform N independent runs of A on problem π.

n For nth run, n ∈ 1, . . . , N, store the so-called solution quality trace, i.e. tn,i and qn,i each
time the quality is improved.

n P̂s(t, q) =
nS(t, q)

N
, where nS(t, q) is the number of runs which provided at least one

solution with ti ≤ t and qi ≤ q.

Empirical RTDs are approximations of an algorithm’s true RTD:

n The larger the N, the better the approximation.
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E.g. type 2 application scenario: set ftarget and compare RTDs of the algorithms
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E.g. type 2 application scenario: set ftarget and compare RTDs of the algorithms
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E.g. type 2 application scenario: set ftarget and compare RTDs of the algorithms
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This way we can aggregate RTDs of an
algorithm A not only

n over various ftarget levels, but also
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E.g. type 2 application scenario: set ftarget and compare RTDs of the algorithms

. . . and add another ftarget level . . .

0.0

0.2

0.4

0.6

0.8

1.0

o
b

j.
fu

n
ct

io
n

time

ftarget,1

ftarget,2

P
s

This way we can aggregate RTDs of an
algorithm A not only

n over various ftarget levels, but also

n over different problems π ∈ Π (!!!), of
course with certain loss of
information.
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Workshop on black-box optimization benchmarking (BBOB) at GECCO conference:
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separable multimodal, structured multimodal, weak structure

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

NEWUOA

GLOBAL

DIRECT

MCS

BIPOP-CMA-ES

best 2009f1-5

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

GLOBAL

NEWUOA

MCS

DIRECT

BIPOP-CMA-ES

best 2009f15-19

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

DIRECT

GLOBAL

MCS

NEWUOA

BIPOP-CMA-ES

best 2009f20-24



Summary
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After this lecture, a student shall be able to

n explain No Free Lunch Theorem, and its consequences;

n explain the concepts of success probability, runtime distribution, solution quality, and
their relationship;

n define r-complete, asymptotically r-complete, and r-incomplete algorithms;

n describe 3 usual scenarios of applying an algorithm to an optimizaton problem, and
explain their differences;

n explain differences between Monte Carlo and Las Vegas algorithms;

n name the advantages and disadvantages of measuring time in seconds vs measuring
time in the number of performed operations;

n explain what errorneous conclusions can be drawn from the results of an experiment
when comparing algorithms using a single time limit, and/or a single required target
level;

n know a few statistical test that can be used to compare 2 algorithms;

n exemplify what kind of characteristics we can get when taking cross-sections of the
runtime distribution function;

n explain how the runtime distributions can be aggregated over different target levels,
different problem instances and different problems;

n derive valid conclusions when presented with runtime distributions of two or more
algorithms.
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