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Introduction to Epistasis
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Epistasis

o GA works well...
e GA fails...

e Quiz

e GA works again...
e Epistasis

e LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

GA works well...

Problem fi:
m defined over 40-bit strings
m the quality of the worst solution: f; (x"°'st) = 0.
= the quality of the best solution: f; (x°P') = 40.
m the best solution: x°Pt = (1111...1).
GA: pop. size 160, uniform xover, bit-flip mutation
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GA fails...

Problem f;:

m defined over 40-bit strings

m the quality of the worst solution: f,(x

WOI‘S’C) = 0.

= the quality of the best solution: f,(x°P') = 40.

m the best solution: x°Pt = (1111...1).

GA: pop. size 160, uniform xover, bit-flip mutation
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Quiz

Note: Neither

m the information about the problems f; and f,, nor

Efi;tzsvijorks — m the information about the GA
. SA. fails... allowed us to judge whether GA would work for the problem or not.

e GA works again...
e Epistasis
e LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary
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Quiz

Note: Neither

m the information about the problems f; and f,, nor

Efiétzsvijorks — m the information about the GA
. SA. fails... allowed us to judge whether GA would work for the problem or not.

e GA works again...

e Epistasis

* LI techniques Question: Why do the results of the same GA look so different for f; and f»?
EDAs
How EDAs work? For fi, we correctly tried to maximize the function, while for f, we minimized it by
Discrete EDAs mistake.
Pairwise Interactions B Function f; is specially designed to be extremely hard for GA that it cannot be solved
Multivar. Interactions efficiently, no matter what modifications we make to the GA.

Scalability Analysis

In function f; all bits are independent, while f, contains some interactions among
individual bits. GA is not aware of any interactions, and treats all bits independently.

l I have absolutely no idea.

Summary
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GA works again...

Still solving fo:

m defined over 40-bit strings

Efiétzsvijorks — m the quality of the worst solution: f,(x"°™st) = 0.
o GA fails... m the quality of the best solution: f,(x°P') = 40.
e Quiz

m the best solution: x°Pt = (1111...1).

Instead of the uniform crossover,

e GA works again...
e Epistasis

e LI techniques

EDAs m let us allow the crossover only after each 5th bit.
How EDAs work?
Popsize160 i
Discrete EDAs 45 P ‘ 1 Popsize160
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Problem f, contains some interactions among variables and GA knows about them.
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Epistasis

Epistasis

o GA works well...
e GA fails...

e Quiz

e GA works again...
e Epistasis

e LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Epistasis:
m Effects of one gene are dependent on (influenced, conditioned by) other genes.
m  Other names: dependencies, interdependencies, interactions.

Linkage:

m  Tendency of certain loci or alleles to be inherited together.
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e Quiz
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e Epistasis
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How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Epistasis

Epistasis:

m Effects of one gene are dependent on (influenced, conditioned by) other genes.

m  Other names: dependencies, interdependencies, interactions.

Linkage:

m  Tendency of certain loci or alleles to be inherited together.

When optimizing the following functions, which of the variables are linked together?

f=x1+x2+x3

f =0.1x1 +0.7x2 + 3x3

f = x1x2x3
f=x1+x5+/x3

f =sin(x1) + cos(xp) + €*3
f =sin(xy + xp) + €™

1)
(2)
)
(4)
()
(6)
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Epistasis

o GA works well...
e GA fails...

e Quiz

e GA works again...
e Epistasis

e LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Epistasis

Epistasis:
m Effects of one gene are dependent on (influenced, conditioned by) other genes.
m  Other names: dependencies, interdependencies, interactions.

Linkage:

m  Tendency of certain loci or alleles to be inherited together.

When optimizing the following functions, which of the variables are linked together?

f=x1+x2+x3

f =0.1x1 +0.7x2 + 3x3

f = x1x2x3
f=x1+x5+/x3

f =sin(x7) + cos(xp) 4 €*3
f =sin(xy + xp) + €™

Notes:

®=  Almost all real-world problems contain interactions among design variables.

= The “amount” and “type” of interactions depend on the representation and the
objective function.

1)
(2)
)
(4)
()
(6)

= Sometimes, by a clever choice of the representation and the objective function, we can

get rid of the interactions.
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Epistasis

o GA works well...
e GA fails...

e Quiz

e GA works again...
e Epistasis

e LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Linkage ldentification Techniques

Problems:

=  How to detect dependencies among variables?

m How to use them?

Techniques used for linkage identification:

1.

2.
3.
4

Indirect detection along genetic search (messy GAs)
Direct detection of fitness changes by perturbation
Model-based approach: classification

Model-based approach: distribution estimation (EDAs)
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Introduction to EDAs
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Epistasis

EDAs

e Genetic Algorithms
e GA vs EDA
e EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Genetic Algorithms

Algorithm 1: Genetic Algorithm

1 begin

2 Initialize the population.

3 while termination criteria are not met do

4 Select parents from the population.

5 Cross over the parents, create offspring.

6 Mutate offspring.

7 Incorporate offspring into the population.

Multivar. Interactions

Scalability Analysis

Summary
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“Select — cross over — mutate” approach

Conventional GA operators

m are not adaptive, and

m cannot (or ususally do not) discover and use the interactions among solution components.

AOMB33EOA: Evolutionary Optimization Algorithms —10 / 48



Epistasis

EDAs

e Genetic Algorithms
e GA vs EDA
e EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Genetic Algorithms

Algorithm 1: Genetic Algorithm

1 begin

2 Initialize the population.
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“Select — cross over — mutate” approach

Conventional GA operators

m are not adaptive, and

m cannot (or ususally do not) discover and use the interactions among solution components.

The goal of recombination operators:

= Intensify the search in areas which contained “good” individuals in previous
iterations.

m  Must be able to take the interactions into account.
= Why not directly describe the distribution of “good” individuals???
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GA vs EDA

Algorithm 1: Genetic Algorithm

1 begin

2 Initialize the population.

3 while termination criteria are not met do

4 Select parents from the population.

5 Cross over the parents, create offspring.

6 Mutate offspring.

7 Incorporate offspring into the population.

“Select — cross over — mutate” approach

Why not use directly.. .

Algorithm 2: Estimation-of-Distribution
Alg.

1 begin

2 Initialize the population.

3 while termination criteria are not met do

4 Select parents from the population.

5 Learn a model of their distribution.

6 Sample new individuals.

7 Incorporate offspring into the
population.

“Select — update model — sample” approach
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GA vs EDA

Algorithm 1: Genetic Algorithm

1 begin

2 Initialize the population.

3 while termination criteria are not met do

4 Select parents from the population.

5 Cross over the parents, create offspring.

6 Mutate offspring.

7 Incorporate offspring into the population.

“Select — cross over — mutate” approach

Why not use directly.. . Or even...
Algorithm 2: Estimation-of-Distribution Algorithm 3: Estimation-of-Distribution
Alg. Alg. (Type 2)

1 begin 1 begin
2 Initialize the population. 2 Initialize the model.
3 while termination criteria are not met do 3 while termination criteria are not met do
4 Select parents from the population. 4 Sample new individuals.
5 Learn a model of their distribution. 5 Select better ones.
6 Sample new individuals. 6 Update the model based on selected
7 Incorporate offspring into the ones.
population. -

“Sample — select — update model” approach
“Select — update model — sample” approach
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Epistasis

EDAs

e Genetic Algorithms
e GAvs EDA
e EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

P. Posik (© 2020

EDAs

Explicit probabilistic model:

= Sound and principled way of working with dependencies.
m Adaptation ability (different behavior in different stages of evolution).

Names:

EDA Estimation-of-Distribution Algorithm
PMBGA Probabilistic Model-Building Genetic Algorithm
IDEA TIterated Density Estimation Algorithm

Continuous EDAs (a very simplified view):

m Histograms and (Mixtures of) Gaussian distributions are used most often as the
probabilistic model.

m  Algorithms with Gaussians usually become very similar to CMA-ES.

In the following, we shall talk only about discrete (binary) EDAs.
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How EDAs work?
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Example

5-bit OneMax (CountOnes) problem:

u f DxlbitOneMax(x) = 25:1 Xd

Epistasis m Optimum: 11111, fitness: 5

EDAs

How EDAs work? Algorithm: Univariate Marginal Distribution Algorithm (UMDA)
e Example
o UMDA Pipeline m Population size: 6

e UMDA: OneMax

e Trap function

m Tournament selection: t = 2

o UMDA: Traps m  Model: vector of probabilities p = (p1,...,pD)
e Beating traps
e Good news! m each p; is the probability of observing 1 at dth element

Discrete EDAs

= Model learning;:

Pairwise Interactions

m estimate p from selected individuals

Multivar. Interactions

Scalability Analysis

= Model sampling;:

Summary

m generate 1 on dth position with probability p; (independently of other positions)
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Selection, Modeling, Sampling

Old population: Tournaments:

11001 (3) 11101 (4) Vs, 10111 (4)
Epistasis 00010 (1) 10111 (4) Vs, 11101 (4)
o 11101 (4) >| 11101  (4) vs. 00001 (1)
o EDAS worls 10111 4) 10010 (2) VS. 00010 (1)
o Example 00001 (1) 00010 (1) VS. 00010 (1)
« UMDA Pipeline 10010 2) 00010 (1) vs. 11001 (3)

e UMDA: OneMax

e Trap function /
e UMDA: Traps

e Beating traps /

* Cood news! Selected parents: Offspring:
Discrete EDAs 11101 (4) 11000 (2)
Pairwise Interactions 10111 (4) 10100 (2)
Multivar. Interactions 11101 (4) 11011 (4)
Scalability Analysis 10010 (2) 01011 (3)
S 00010 (1) 10101 3)

ummary

11001 3) 10111 4)
Probability vector:

53334

66666
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Epistasis

UMDA Behaviour for OneMax problem

EDAs

How EDAs work?

e Example

e UMDA Pipeline
e UMDA: OneMax
e Trap function

e UMDA: Traps

e Beating traps

e Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

m 1s are better then Os on average,
] selection increases the proportion of
] 1s

: = Recombination preserves and
1 combines 1s, the ratio of 1s increases
T over time

m If we have many 1s in population, we
cannot miss the optimum

! ! ! ! ! !

5 10 15 20 25 30 35 40 45 50
Generation

The number of evaluations needed for reliable convergence:

Algorithm Nr. of evaluations
UMDA O(DInD)
Hill-Climber O(DInD)

GA with uniform xover  approx. O(DInD)
GA with 1-point xover ~  a bit slower

UMDA behaves similarly to GA with uniform crossover!
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Epistasis

EDAs

How EDAs work?

e Example

e UMDA Pipeline
e UMDA: OneMax
e Trap function

e UMDA: Traps

e Beating traps

e Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

What about a different fithess?

For OneMax function:

s  UMDA works well, all the bits probably eventually converge to the right value.

Will UMDA be similarly successful for other fitness functions?

Problem: Concatanated 5-bit traps

f = fuap(x1,X2,X3, X4, X5)+
+ftrap(x6/ X7, X8, X9, X10)—|—
+ ...

The trap function is defined as

(5 ifu(x) =5
ferap (x) = { 4 —u(x) otherwise

where u(x) is the so called unity function
and returns the number of 1s in x (it is
actually the One Max function).

trap(x)

0 | | |

0 1 2 3 i 5
Number of 1s in chromosome, u(x)
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UMDA behaviour on concatanated traps

Traps:
m Optimumin 111111...1
 — m But firap(0* * * *) = 2 while firap (1 * % x x) = 1.375
EDAs

m 1-dimensional probabilities lead the GA to the wrong way!
How EDAs work?

« Example m  Exponentially increasing population size is needed, otherwise GA will not find
o UMDA Pipeline optimum reliably.
e UMDA: OneMax

e Trap function

e UMDA: Traps

e Beating traps

o o
® © -
T
1

e Good news!

Discrete EDAs 0.7

N
0.6 1Ly

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Probability vector entries
o
(6]

A \ \
) ‘\
L\ '("\\\\»\‘\\ “‘ "
\\N \\\ ,\
'W X

5 10 15 20 25 30 35 40 45 50
Generation
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Epistasis

EDAs

How EDAs work?

e Example

e UMDA Pipeline
e UMDA: OneMax
e Trap function

e UMDA: Traps

e Beating traps

e Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

What can be done about traps?

The firap function is deceptive:

m Statistics over 1**** and O**** do not lead us to the right solution
m  The same holds for statistics over 11*** and 00***, 111** and 000%*, 1111* and

0000*
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Epistasis

EDAs

How EDAs work?

e Example

e UMDA Pipeline
e UMDA: OneMax
e Trap function

e UMDA: Traps

e Beating traps

e Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

What can be done about traps?

The firap function is deceptive:

Statistics over 1***x and O**** do not lead us to the right solution

The same holds for statistics over 11*** and 00***, 111** and 000**, 1111* and
0000

Harder than the needle-in-the-haystack problem:

m regular haystack simply does not provide any information, where to search for
the needle

®  firap-haystack actively lies to you—it points you to the wrong part of the haystack
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Epistasis

EDAs

How EDAs work?

e Example

e UMDA Pipeline
e UMDA: OneMax
e Trap function

e UMDA: Traps

e Beating traps

e Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

What can be done about traps?

The firap function is deceptive:

Statistics over 1***x and O**** do not lead us to the right solution

The same holds for statistics over 11*** and 00***, 111** and 000**, 1111* and
0000

Harder than the needle-in-the-haystack problem:

m regular haystack simply does not provide any information, where to search for
the needle

®  firap-haystack actively lies to you—it points you to the wrong part of the haystack

But: firap(00000) < firap(11111), 11111 will be better than 00000 on average

5bit statistics should work for 5bit traps in the same way as 1bit statistics work for
OneMax problem!
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Epistasis

EDAs

How EDAs work?

e Example

e UMDA Pipeline
e UMDA: OneMax
e Trap function

e UMDA: Traps

e Beating traps

e Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

What can be done about traps?

The firap function is deceptive:

m Statistics over 1**** and O**** do not lead us to the right solution
m  The same holds for statistics over 11*** and 00***, 111** and 000%*, 1111* and
0000%*
m Harder than the needle-in-the-haystack problem:
m regular haystack simply does not provide any information, where to search for
the needle
®  firap-haystack actively lies to you—it points you to the wrong part of the haystack
m But: fi1ap(00000) < firap(11111), 11111 will be better than 00000 on average
m 5bit statistics should work for 5bit traps in the same way as 1bit statistics work for
OneMax problem!
Model learning:

m  build model for each 5-tuple of bits

compute p(00000), p(00001), ..., p(11111),
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Epistasis

EDAs

How EDAs work?

e Example

e UMDA Pipeline
e UMDA: OneMax
e Trap function

e UMDA: Traps

e Beating traps

e Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

What can be done about traps?

The firap function is deceptive:

m Statistics over 1**** and O**** do not lead us to the right solution
m  The same holds for statistics over 11*** and 00***, 111** and 000%*, 1111* and
0000%*
m Harder than the needle-in-the-haystack problem:
m regular haystack simply does not provide any information, where to search for
the needle
®  firap-haystack actively lies to you—it points you to the wrong part of the haystack
m But: fi1ap(00000) < firap(11111), 11111 will be better than 00000 on average
m 5bit statistics should work for 5bit traps in the same way as 1bit statistics work for
OneMax problem!
Model learning:

m  build model for each 5-tuple of bits

= compute p(00000), p(00001),..., p(11111),
Model sampling:
m Each 5-tuple of bits is generated independently
m  Generate 00000 with probability p(00000), 00001 with probability p(00001), ...
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Good news!

The right statistics work great! What shall we do next?

If we were able to

m find the right statistics with a small
overhead, and

m  use them in the UMDA framework,

we would be able to solve order-k separable
problems using O(D?) evaluations.

m ...and there are many problems of this type.

The problem solution is closely related to the
so-called linkage learning, i.e. discovering and
using statistical dependencies among variables.

.............................................................................................

20 256 30 35 40 45 50

Generation
Algorithm Nr. of evaluations
UMDA with 5bit BB O(DInD) (WOW!)
Hill-Climber O(DfInD), k=5
GA with uniform xover  approx. O(2P)
GA with 1-point xover similar to unif. xover
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Discrete EDAs
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Epistasis

EDAs without interactions

EDAs

How EDAs work?

Discrete EDAs

e EDAs without
interactions

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

1. Population-based incremental learning (PBIL)

Baluja, 1994

2. Univariate marginal distribution algorithm (UMDA)

Miihlenbein and Paafs, 1996

3. Compact genetic algorithm (cGA)
Harik, Lobo, Goldberg, 1998

Similarities:

m all of them use a vector of
probabilities

Differences:

m PBIL and cGA do not use population
(only the vector p); UMDA does

m PBIL and cGA use different rules for
the adaptation of p

Advantages:

= Simplicity

m Speed

m  Simple simulation of large
populations

Limitations:

= Reliable only for order-1
decomposable problems (i.e.,
problems without interactions).

P. Posik (© 2020
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EDAs with Pairwise Interactions
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Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

e Graph. models

e Quiz

e Dependency tree
e DT learning

e DT model

e Pairwise EDAs

e Summary

Multivar. Interactions

Scalability Analysis

Summary

From single bits to pairwise models

How to describe two positions together?

m  Using the joint probability distribution:

©@__©>

Number of free parameters: 3

m  Using conditional probabilities:

Number of free parameters: 3

p(A,B)
B
0 1
A 0] p(0,00 p(0,1)
1] p(1,0) p(L1)
p(A,B) = p(B|A) - p(A)
p(B=1A=0)
p(B=1A=1)
p(A=1)

P. Posik (© 2020
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Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

e Graph. models

e Quiz

e Dependency tree
e DT learning

e DT model

e Pairwise EDAs

e Summary

Multivar. Interactions

Scalability Analysis

Summary

Quiz

Question: What is the number of free parameters for the following models?
(A, B, C are binary random variables.)

Joint probability distribution:

L0
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Quiz

Question: What is the number of free parameters for the following models?
(A, B, C are binary random variables.)

Epistasis

Distribution using the following conditioning structure:

(D)—(E)—()
How EDAs work?

Discrete EDAs l 5
Pairwise Interactions

e Graph. models

e Quiz B 6
e Dependency tree

e DT learning l 7
e DT model

e Pairwise EDAs
e Summary 8

Multivar. Interactions

Scalability Analysis

Summary

P. Posik (© 2020 AOMB33EOA: Evolutionary Optimization Algorithms —25 / 48



Quiz

Question: What is the number of free parameters for the following models?
(A, B, C are binary random variables.)

Epistasis

Distribution using the following conditioning structure:

(D)—(E)—©)
How EDAs work?

Discrete EDAs l 5
Pairwise Interactions

e Graph. models

e Quiz B 6
e Dependency tree

e DT learning l 7
e DT model

e Pairwise EDAs
e Summary 8

Multivar. Interactions

Scalability Analysis

Summary
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Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

e Graph. models

e Quiz

e Dependency tree
e DT learning

e DT model

e Pairwise EDAs

e Summary

Multivar. Interactions

Scalability Analysis

Summary

How to learn pairwise dependencies: dependency tree

= Nodes: binary variables (loci of chromozome)
m  Edges: the strength of dependencies among variables

m Features:

m  Each node depends on at most 1 other node
m  Graph does not contain cycles
m  Graph is connected

Learning the structure of dependency tree:

1. Score the edges using mutual information:

N i) e LY
I(X,Y) —ley:p( y)-1 S p(@)p(y)

2. Use any algorithm to determine the maximum spanning tree of the graph, e.g. Prim
(1957)

(a) Start building the tree from any node

(b) Add such a node that is connected to the tree by the edge with maximum score
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Example of dependency tree learning (Max. spanning tree, Prim)
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Dependency tree: probabilities

Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

e Graph. models

e Quiz

e Dependency tree
e DT learning

e DT model

e Pairwise EDAs

e Summary

Multivar. Interactions

Scalability Analysis Probability Number of free params
Summary

p(X1=1) 1

p(Xy =1|Xq) 2

p(Xs = 1|Xy) 2

p(X2 = 1|Xy) 2

p(X3 =1|X2) 2

Whole model 9
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Epistasis

EDAs with pairwise interactions

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

e Graph. models

e Quiz

e Dependency tree
e DT learning

e DT model

e Pairwise EDAs

e Summary

Multivar. Interactions

Scalability Analysis

Summary

1. MIMIC (sequences)
m  Mutual Information Maximization
for Input Clustering

m de Bonetetal., 1996

2. COMIT (trees)
s Combining Optimizers with
Mutual Information Trees

= Baluja and Davies, 1997

3. BMDA (forrest)
m Bivariate Marginal Distribution

Algorithm
m Pelikan and Miihlenbein, 1998

L pTPLL
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Summary

m Advantages:

m Still simple

Sl m  Still fast
EDAs .
m Can learn something about the structure
How EDAs work?
Discrete EDAs m Limitations:
Painwise Interactions m Reliable only for order-1 or order-2 decomposable problems
e Graph. models
e Quiz

e Dependency tree
e DT learning

e DT model

e Pairwise EDAs

e Summary

Multivar. Interactions

Scalability Analysis

Summary
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EDAs with Multivariate Interactions
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Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

e ECGA

e MDL Metric

e BOA

e BOA: Learning

Scalability Analysis

Summary

ECGA

Extended Compact GA, Harik, 1999
Marginal Product Model (MPM)

m Variables are treated in groups

m Variables in different groups are considered statistically independent
m  Each group is modeled by its joint probability distribution

m The algorithm adaptively searches for the groups during evolution

Problem  Ideal group configuration

OneMax  [1][2][3][4][5][6][7][8][9][10]
S5bitTraps [1 2 3 4 5]1[6 7 8 9 10]

P. Posik (© 2020

AOMB33EOA: Evolutionary Optimization Algorithms —32 / 48



ECGA

Extended Compact GA, Harik, 1999
Marginal Product Model (MPM)

m Variables are treated in groups

Epistasis

EDAs

How EDAS work? m Variables in different groups are considered statistically independent

Discrete EDAs m  Each group is modeled by its joint probability distribution

Pairwise Interactions m The algorithm adaptively searches for the groups during evolution
l\fuéz\cz B Problem  Ideal group configuration

Con OneMax  [1][2][3][4][5] (6] [7][8] [9] [10]
« BOA: Learning SbitTraps [1 2 3 4 5][6 7 8 9 10]

Scalability Analysis
Summary Learning the structure

1. Evaluation metric: Minimum Description Length (MDL)
2. Search procedure: greedy

(a) Start with each variable belonging to its own group
(b) Perform such a join of two groups which improves the score best
(c) Finish if no join improves the score
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Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

e ECGA

e MDL Metric

e BOA

e BOA: Learning

Scalability Analysis

Summary

ECGA: Evaluation metric

Minimum description length:
Minimize the number of bits required to store the model and the data encoded using the
model

DL(Model, Data) = DLpjp4e1 + DLpata

Model description length:

Each group ¢ has |g| dimensions, i.e. 218/ — 1 frequencies, each of them can take on values
up to N

DLjjoger = log N Y (2181 — 1)
g€G

Data description length using the model:
Defined using the entropy of marginal distributions (X, is |g|-dimensional random vector,
X, is its realization):

DLpata = N ) _ h(Xg) = =N Y ) p(Xg = xg)log p(Xy = x)
gc€G 3€G Xg
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Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

e ECGA

e MDL Metric

e BOA

e BOA: Learning

Scalability Analysis

Summary

BOA

Bayesian Optimization Algorithm: Pelikan, Goldberg, Cantti-Paz, 1999
Bayesian network (BN)

= Conditional dependencies (instead groups)
m  Sequence, tree, forrest — special cases of BN

m For trap function:

m  The same model used independently in

m Estimation of Bayesian Network Alg. (EBNA), Etxeberria et al., 1999
m  Learning Factorized Density Alg. (LFDA), Miihlenbein et al., 1999
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Epistasis

BOA: Learning the structure

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

e ECGA

e MDL Metric

e BOA

e BOA: Learning

Scalability Analysis

Summary

1. Evaluation metric:

m Bayesian-Dirichlet metric, or

m Bayesian information criterion (BIC)

2. Search procedure: greedy

(a) Start with graph with no edges (univariate marginal product model)

(b) Perform one of the following operations, choose the one which improves the

score best

= Addanedge
m Delete an edge
m Reverse an edge

(c) Finish if no operation improves the score

BOA solves order-k decomposable problems in less then O(D?) evaluations!

nevuls — O(D155) tO O(Dz)
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Scalability Analysis
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Test functions

One Max: Trap:
D D if u(x) =D
fDxtbitoneMax (¥) = c; Xd fovitteap(X) =9 p _q _ u(x) otherwise
Equal Pairs:
D 1 ifxy =x
beitEqualPairs(x) =1+ dz quualPair(xd—lr xd) quualPair(xlr xz) - { 0 ifxg #x
=2
Sliding XOR:
fpbitslidingXoR (¥) = 1+ fanpqual (x)+ 1 ifx=(000...0)
D fAllEqual(x) — 1 ifx= <.111 e 1)
+ ) fxor(¥4-2,X4-1,%a) 0 otherwise
d=3 B 1 ifx@Px =23
Por(ry ) ={ 5 &

Concatenated short basis functions:

K

f NxKbitBasisFunction — Z f BasisFunction (xK(k—1)+1 geees X Kk)
k=1
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Test function (cont.)

1. f 40x1bitOneMax

m order-1 decomposable function, no interactions

2. f 1x40bitEqualPairs
= non-decomposable function

m  weak interactions: optimal setting of each bit depends on the value of the preceding bit

3. f 8x5bitEqualPairs
m order-5 decomposable function

4. f1x40bitSlidingXOR
= non-decomposable function

m stronger interactions: optimal setting of each bit depends on the value of the 2 preceding bits

5. f 8x5bitSlidingXOR
m order-5 decomposable function

6. f 8x5bitTrap
m order-5 decomposable function

m interactions in each 5-bit block are very strong, the basis function is deceptive
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Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

e Test functions

e Test function (cont.)
e Scalability analysis
e OneMax

e Non-dec. Eq. Pairs
e Decomp. Eq. Pairs
e Non-dec. SI. XOR
e Decomp. SI. XOR

e Decomp. Trap

e Model evolution

Summary

Scalability analysis

Facts:

using small population size, population-based optimizers can solve only easy
problems

increasing the population size, the optimizers can solve increasingly harder problems
... but using a too big population is wasting of resources.
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Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

e Test functions

e Test function (cont.)
e Scalability analysis
e OneMax

e Non-dec. Eq. Pairs
e Decomp. Eq. Pairs
e Non-dec. SI. XOR
e Decomp. SI. XOR

e Decomp. Trap

e Model evolution

Summary

Scalability analysis

Facts:

= using small population size, population-based optimizers can solve only easy
problems

m increasing the population size, the optimizers can solve increasingly harder problems

® ... but using a too big population is wasting of resources.

Scalability analysis:

m determines the optimal (smallest) population size, with which the algorithm solves
the given problem reliably
m reliably: algorithm finds the optimum in 24 out of 25 runs)

m for each problem complexity, the optimal population size is determined e.g.
using the bisection method

m studies the influence of the problem complexity (dimensionality) on the optimal
population size and on the number of needed evaluations
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Epistasis

Scalability on the One Max function

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

e Test functions

e Test function (cont.)
e Scalability analysis
e OneMax

e Non-dec. Eq. Pairs
e Decomp. Eq. Pairs
e Non-dec. SI. XOR
e Decomp. SI. XOR

e Decomp. Trap

e Model evolution

Summary

10

—_
o
w

pocet ohodnoceni
N

—
o

10
10

P. Posik (© 2020

AOMB33EOA: Evolutionary Optimization Algorithms —40 / 48



Epistasis

Scalability on the non-decomposable Equal Pairs function

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

e Test functions

e Test function (cont.)
e Scalability analysis
e OneMax

e Non-dec. Eq. Pairs
e Decomp. Eq. Pairs
e Non-dec. SI. XOR
e Decomp. SI. XOR

e Decomp. Trap

e Model evolution

Summary

pocet ohodnoceni
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Epistasis

Scalability on the decomposable Equal Pairs function

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

e Test functions

e Test function (cont.)
e Scalability analysis
e OneMax

e Non-dec. Eq. Pairs
e Decomp. Eq. Pairs
e Non-dec. SI. XOR
e Decomp. SI. XOR

e Decomp. Trap

e Model evolution

Summary

pocet ohodnoceni
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Epistasis

Scalability on the non-decomposable Sliding XOR function

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

e Test functions

e Test function (cont.)
e Scalability analysis
e OneMax

e Non-dec. Eq. Pairs
e Decomp. Eq. Pairs
e Non-dec. SI. XOR
e Decomp. SI. XOR

e Decomp. Trap

e Model evolution

Summary

pocet ohodnoceni
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Epistasis

Scalability

on the decomposable Sliding XOR function

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

e Test functions

e Test function (cont.)
e Scalability analysis
e OneMax

e Non-dec. Eq. Pairs
e Decomp. Eq. Pairs
e Non-dec. SI. XOR
e Decomp. SI. XOR

e Decomp. Trap

e Model evolution

Summary
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Epistasis

Scalability on the decomposable Trap function

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

o Test functions

e Test function (cont.)
e Scalability analysis
e OneMax

e Non-dec. Eq. Pairs
e Decomp. Eq. Pairs
e Non-dec. SI. XOR
e Decomp. SI. XOR

e Decomp. Trap

e Model evolution

Summary

pocet ohodnoceni
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Epistasis

Model structure during evolution

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

e Test functions

e Test function (cont.)
e Scalability analysis
e OneMax

e Non-dec. Eq. Pairs
e Decomp. Eq. Pairs
e Non-dec. SI. XOR
e Decomp. SI. XOR

e Decomp. Trap

e Model evolution

Summary

During the evolution, the model structure is increasingly precise and at the end of the
evolution, the model structure describes the problem structure exactly.
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Model structure during evolution

During the evolution, the model structure is increasingly precise and at the end of the
evolution, the model structure describes the problem structure exactly.

Epistasis
I ! I
o NO! That’s not true!
How EDAs work?
Why?
Discrete EDAs
Pairwise Interactions m  In the beginning, the distribution patterns are not very discernible, models similar to
-~ . uniform distributions are used.
ultivar. Interactions
Scalability Analysis m In the end, the population converges and contains many copies of the same
o Test functions individual (or a few individuals). No interactions among variables can be learned.
: geS; fsrl‘di(’“ fom') Model structure is wrong (all bits independent), but the model describes the position
e Scalability analysis . .
+ OneMax of optimum very precisely.
* Non-dec. Fq. Pairs m  The model with the best matching structure is found somewhere in the middle of the
e Decomp. Eq. Pairs evolution
e Non-dec. Sl. XOR ’
¢ Decomp. SI. XOR = Even though the right structure is never found during the evolution, the problem can
® Decomp. Trap be solved successfully.

e Model evolution

Summary
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Summary
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Learning outcomes

After this lecture, a student shall be able to

m  explain what an epistasis is and show an example of functions with and without
Epistasis epistatic relations;

EDAS = demonstrate how epistatic relationships can destroy the efficiency of the search
How EDAs work? performed by an optimization algorithm, and explain it using schemata;
Discrete EDAs

m describe an Estimation-of-Distribution algorithm and explain its differences from an
Pairwise Interactions Ordinary EA;

Multivar. Interactions m describe in detail and implement a simple UMDA algorithm for binary
Scalability Analysis representations;
Summary m understand, fit to data, and use simple Bayesian networks;

e Learning outcomes

m  explain the commonalities and differences among EDAs not able to work with any
interactions (PBIL, cGA, UMDA);

m  explain the commonalities and differences among EDAs able to work with only
pairwise interactions (MIMIC, COMIT, BMDA);

m  explain the commonalities and differences among EDAs able to work with
multivariate interactions (ECGA, BOA);

m  explain the model learning procedures used in ECGA and BOA,;

= understand what effect the use of a more complex model has on the efficiency of the
algorithm when used on problems with increasingly hard interactions.
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