

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering Department of Cybernetics

Epistasis. Estimation-of-Distribution Algorithms.

Petr Pošík

Introduction to Epistasis

- GA works well...
- GA fails...
- Quiz
- GA works again...
- Epistasis
- LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

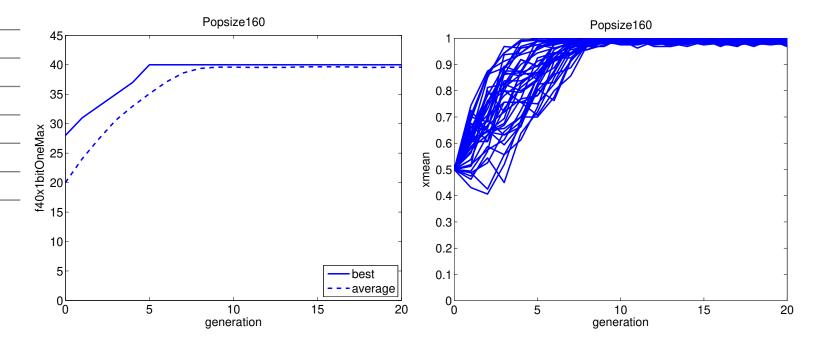
Summary

GA works well...

Problem f_1 :

- defined over 40-bit strings
- the quality of the worst solution: $f_1(x^{\text{worst}}) = 0$.
- the quality of the best solution: $f_1(x^{\text{opt}}) = 40$.
- the best solution: $x^{\text{opt}} = (1111...1)$.

GA: pop. size 160, uniform xover, bit-flip mutation



- GA works well...
- GA fails...
- Quiz
- GA works again...
- Epistasis
- LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

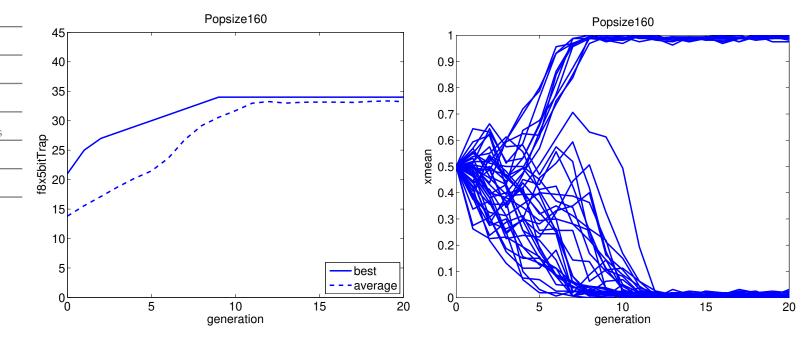
Summary

GA fails...

Problem f_2 :

- defined over 40-bit strings
- the quality of the worst solution: $f_2(x^{\text{worst}}) = 0$.
- the quality of the best solution: $f_2(x^{\text{opt}}) = 40$.
- the best solution: $x^{\text{opt}} = (1111...1)$.

GA: pop. size 160, uniform xover, bit-flip mutation



- GA works well...
- GA fails...
- Quiz
- GA works again...
- Epistasis
- LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Quiz

Note: Neither

- the information about the problems f_1 and f_2 , nor
- the information about the GA

allowed us to judge whether GA would work for the problem or not.

- GA works well...
- GA fails...
- Quiz
- GA works again...
- Epistasis
- LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Quiz

Note: Neither

- the information about the problems f_1 and f_2 , nor
- the information about the GA

allowed us to judge whether GA would work for the problem or not.

Question: Why do the results of the same GA look so different for f_1 and f_2 ?

- A For f_1 , we correctly tried to maximize the function, while for f_2 we minimized it by mistake.
- B Function f_2 is specially designed to be extremely hard for GA that it cannot be solved efficiently, no matter what modifications we make to the GA.
- In function f_1 all bits are independent, while f_2 contains some interactions among individual bits. GA is not aware of any interactions, and treats all bits independently.
- D I have absolutely no idea.

- GA works well...
- GA fails...
- Ouiz
- GA works again...
- Epistasis
- LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

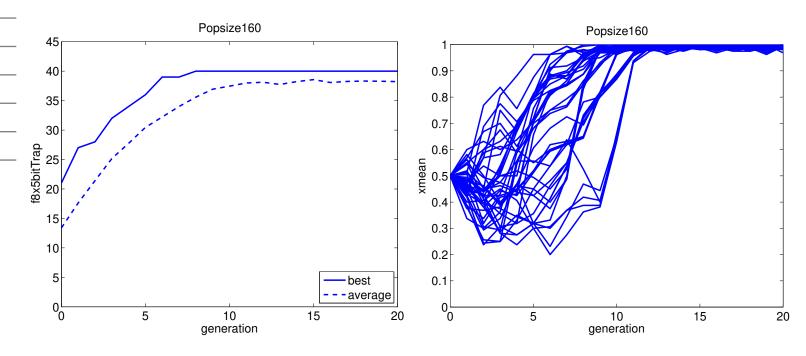
GA works again...

Still solving f_2 :

- defined over 40-bit strings
- the quality of the worst solution: $f_2(x^{\text{worst}}) = 0$.
- the quality of the best solution: $f_2(x^{\text{opt}}) = 40$.
- the best solution: $x^{\text{opt}} = (1111...1)$.

Instead of the uniform crossover,

let us *allow the crossover only after each 5th bit.*



Problem f_2 contains some interactions among variables and GA knows about them.

- GA works well...
- GA fails...
- Quiz
- GA works again...
- Epistasis
- LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Epistasis

Epistasis:

- Effects of one gene are dependent on (influenced, conditioned by) other genes.
- Other names: dependencies, interdependencies, interactions.

Linkage:

Tendency of certain loci or alleles to be inherited together.

- GA works well...
- GA fails...
- Quiz
- GA works again...
- Epistasis
- LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Epistasis

Epistasis:

- Effects of one gene are dependent on (influenced, conditioned by) other genes.
- Other names: dependencies, interdependencies, interactions.

Linkage:

Tendency of certain loci or alleles to be inherited together.

When optimizing the following functions, which of the variables are linked together?

$$f = x_1 + x_2 + x_3 \tag{1}$$

$$f = 0.1x_1 + 0.7x_2 + 3x_3 \tag{2}$$

$$f = x_1 x_2 x_3 \tag{3}$$

$$f = x_1 + x_2^2 + \sqrt{x_3} \tag{4}$$

$$f = \sin(x_1) + \cos(x_2) + e^{x_3} \tag{5}$$

$$f = \sin(x_1 + x_2) + e^{x_3} \tag{6}$$

- GA works well...
- GA fails...
- Quiz
- GA works again...
- Epistasis
- LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Epistasis

Epistasis:

- Effects of one gene are dependent on (influenced, conditioned by) other genes.
- Other names: dependencies, interdependencies, interactions.

Linkage:

Tendency of certain loci or alleles to be inherited together.

When optimizing the following functions, which of the variables are linked together?

$$f = x_1 + x_2 + x_3 \tag{1}$$

$$f = 0.1x_1 + 0.7x_2 + 3x_3 \tag{2}$$

$$f = x_1 x_2 x_3 \tag{3}$$

$$f = x_1 + x_2^2 + \sqrt{x_3} \tag{4}$$

$$f = \sin(x_1) + \cos(x_2) + e^{x_3} \tag{5}$$

$$f = \sin(x_1 + x_2) + e^{x_3} \tag{6}$$

Notes:

- Almost all real-world problems contain interactions among design variables.
- The "amount" and "type" of interactions depend on the representation and the objective function.
- Sometimes, by a clever choice of the representation and the objective function, we can get rid of the interactions.

- GA works well...
- GA fails...
- Quiz
- GA works again...
- Epistasis
- LI techniques

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Linkage Identification Techniques

Problems:

- How to detect dependencies among variables?
- How to use them?

Techniques used for linkage identification:

- 1. Indirect detection along genetic search (messy GAs)
- 2. Direct detection of fitness changes by perturbation
- 3. Model-based approach: classification
- 4. Model-based approach: distribution estimation (EDAs)

Introduction to EDAs

EDAs

- Genetic Algorithms
- GA vs EDA
- EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Genetic Algorithms

Algorithm 1: Genetic Algorithm

1 begin

- 2 **Initialize** the population.
- while termination criteria are not met do
 - **Select** parents from the population.
 - **Cross over** the parents, create offspring.
- **Mutate** offspring.
- **Incorporate** offspring into the population.

"Select \rightarrow cross over \rightarrow mutate" approach

Conventional GA operators

- are not adaptive, and
- cannot (or ususally do not) discover and use *the interactions among solution components*.

EDAs

- Genetic Algorithms
- GA vs EDA
- EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Genetic Algorithms

Algorithm 1: Genetic Algorithm

1 begin

- Initialize the population.
- while termination criteria are not met do
 - **Select** parents from the population.
 - **Cross over** the parents, create offspring.
- **Mutate** offspring.
- **Incorporate** offspring into the population.

"Select \rightarrow cross over \rightarrow mutate" approach

Conventional GA operators

- are not adaptive, and
- cannot (or ususally do not) discover and use the interactions among solution components.

The goal of recombination operators:

- Intensify the search in areas which contained "good" individuals in previous iterations.
- Must be able to take the interactions into account.
- Why not directly describe the distribution of "good" individuals???

GA vs EDA

Algorithm 1: Genetic Algorithm

```
    begin
    Initialize the population.
    while termination criteria are not met do
    Select parents from the population.
    Cross over the parents, create offspring.
    Mutate offspring.
    Incorporate offspring into the population.
```

"Select \rightarrow cross over \rightarrow mutate" approach

Why not use directly...

Algorithm 2: Estimation-of-Distribution Alg.

```
1 begin
```

```
Initialize the population.

while termination criteria are not met do

Select parents from the population.

Learn a model of their distribution.

Sample new individuals.

Incorporate offspring into the population.
```

[&]quot;Select \rightarrow update model \rightarrow sample" approach

GA vs EDA

Algorithm 1: Genetic Algorithm

```
1 begin
      Initialize the population.
      while termination criteria are not met do
          Select parents from the population.
         Cross over the parents, create offspring.
         Mutate offspring.
         Incorporate offspring into the population.
```

"Select \rightarrow cross over \rightarrow mutate" approach

Why not use directly...

Estimation-of-Distribution Algorithm 2: Alg.

1 begin

```
Initialize the population.
while termination criteria are not met do
   Select parents from the population.
   Learn a model of their distribution.
   Sample new individuals.
   Incorporate offspring into the
    population.
```

"Select \rightarrow update model \rightarrow sample" approach

Or even...

Estimation-of-Distribution Algorithm 3: Alg. (Type 2)

1 begin

```
Initialize the model.
     while termination criteria are not met do
         Sample new individuals.
         Select better ones.
5
         Update the model based on selected
6
          ones.
```

"Sample \rightarrow select \rightarrow update model" approach

EDAs

- Genetic Algorithms
- GA vs EDA
- EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

EDAs

Explicit probabilistic model:

- Sound and principled way of working with dependencies.
- Adaptation ability (different behavior in different stages of evolution).

Names:

EDA Estimation-of-Distribution Algorithm

PMBGA Probabilistic Model-Building Genetic Algorithm

IDEA Iterated Density Estimation Algorithm

Continuous EDAs (a very simplified view):

- Histograms and (Mixtures of) Gaussian distributions are used most often as the probabilistic model.
- Algorithms with Gaussians usually become very similar to CMA-ES.

In the following, we shall talk only about discrete (binary) EDAs.

How EDAs work?

EDAs

How EDAs work?

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

Example

5-bit OneMax (CountOnes) problem:

- $f_{\text{Dx1bitOneMax}}(\mathbf{x}) = \sum_{d=1}^{D} x_d$
- Optimum: 11111, fitness: 5

Algorithm: Univariate Marginal Distribution Algorithm (UMDA)

- Population size: 6
- Tournament selection: t = 2
- **Model:** vector of probabilities $p = (p_1, ..., p_D)$
 - **each** p_d is the probability of observing 1 at dth element
- Model learning:
 - \blacksquare estimate p from selected individuals
- Model sampling:
 - generate 1 on dth position with probability p_d (independently of other positions)

EDAs

How EDAs work?

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs

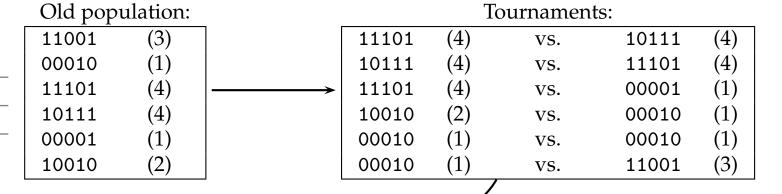
Pairwise Interactions

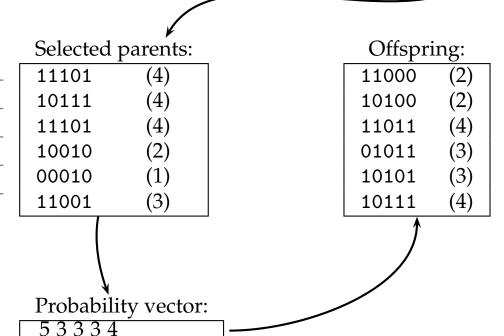
Multivar. Interactions

Scalability Analysis

Summary

Selection, Modeling, Sampling





66666

EDAs

How EDAs work?

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs

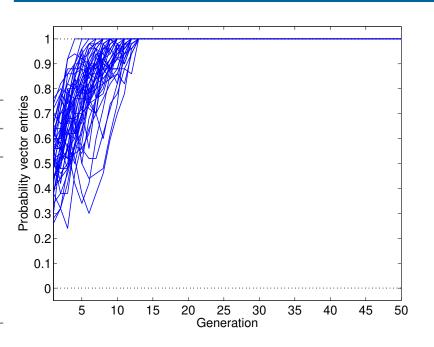
Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

UMDA Behaviour for OneMax problem



- 1s are better then 0s on average, selection increases the proportion of 1s
- Recombination preserves and combines 1s, the ratio of 1s increases over time
- If we have many 1s in population, we cannot miss the optimum

The number of evaluations needed for reliable convergence:

Algorithm	Nr. of evaluations
UMDA	$\mathcal{O}(D \ln D)$
Hill-Climber	$\mathcal{O}(D \ln D)$
GA with uniform xover	approx. $\mathcal{O}(D \ln D)$
GA with 1-point xover	a bit slower

UMDA behaves similarly to GA with uniform crossover!

EDAs

How EDAs work?

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

What about a different fitness?

For OneMax function:

■ UMDA works well, all the bits probably eventually converge to the right value.

Will UMDA be similarly successful for other fitness functions?

■ Well,no.:-(

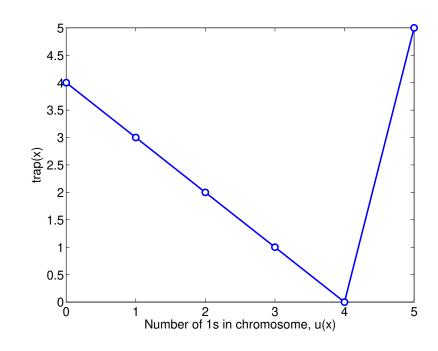
Problem: Concatanated 5-bit traps

$$f = f_{\text{trap}}(x_1, x_2, x_3, x_4, x_5) + f_{\text{trap}}(x_6, x_7, x_8, x_9, x_{10}) + \dots$$

The *trap* function is defined as

$$f_{\text{trap}}(x) = \begin{cases} 5 & \text{if } u(x) = 5 \\ 4 - u(x) & \text{otherwise} \end{cases}$$

where u(x) is the so called *unity* function and returns the number of 1s in x (it is actually the One Max function).



EDAs

How EDAs work?

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

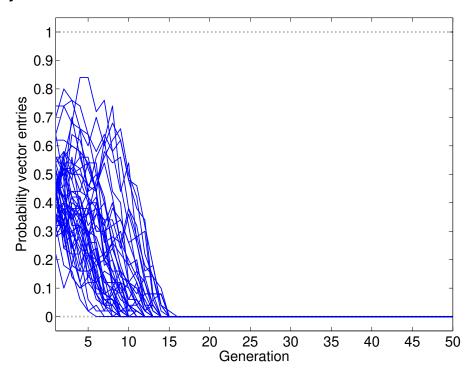
Scalability Analysis

Summary

UMDA behaviour on concatanated traps

Traps:

- Optimum in 1111111...1
- But $f_{\text{trap}}(0****) = 2$ while $f_{\text{trap}}(1****) = 1.375$
- 1-dimensional probabilities lead the GA to the wrong way!
- Exponentially increasing population size is needed, otherwise GA will not find optimum reliably.



EDAs

How EDAs work?

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

What can be done about traps?

The f_{trap} function is *deceptive*:

- Statistics over 1**** and 0**** do not lead us to the right solution
- The same holds for statistics over 11*** and 00***, 1111* and 0000*

EDAs

How EDAs work?

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

What can be done about traps?

The f_{trap} function is *deceptive*:

- Statistics over 1**** and 0**** do not lead us to the right solution
- The same holds for statistics over 11*** and 00***, 111** and 0000*
- Harder than the *needle-in-the-haystack* problem:
 - regular haystack simply does not provide any information, where to search for the needle
 - f_{trap} -haystack actively lies to you—it points you to the wrong part of the haystack

EDAs

How EDAs work?

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

What can be done about traps?

The f_{trap} function is *deceptive*:

- Statistics over 1**** and 0**** do not lead us to the right solution
- The same holds for statistics over 11*** and 00***, 111** and 0000*
- Harder than the *needle-in-the-haystack* problem:
 - regular haystack simply does not provide any information, where to search for the needle
 - f_{trap} -haystack actively lies to you—it points you to the wrong part of the haystack
- But: $f_{\text{trap}}(00000) < f_{\text{trap}}(11111)$, 11111 will be better than 00000 on average
- 5bit statistics should work for 5bit traps in the same way as 1bit statistics work for OneMax problem!

EDAs

How EDAs work?

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

What can be done about traps?

The f_{trap} function is *deceptive*:

- Statistics over 1**** and 0**** do not lead us to the right solution
- The same holds for statistics over 11*** and 00***, 111** and 0000*
- Harder than the *needle-in-the-haystack* problem:
 - regular haystack simply does not provide any information, where to search for the needle
 - f_{trap} -haystack actively lies to you—it points you to the wrong part of the haystack
- But: $f_{\text{trap}}(00000) < f_{\text{trap}}(11111)$, 11111 will be better than 00000 on average
- 5bit statistics should work for 5bit traps in the same way as 1bit statistics work for OneMax problem!

Model learning:

- build model for each 5-tuple of bits
- \blacksquare compute p(00000), p(00001), ..., p(11111),

EDAs

How EDAs work?

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

What can be done about traps?

The f_{trap} function is *deceptive*:

- Statistics over 1**** and 0**** do not lead us to the right solution
- The same holds for statistics over 11*** and 00***, 111** and 0000*
- Harder than the *needle-in-the-haystack* problem:
 - regular haystack simply does not provide any information, where to search for the needle
 - f_{trap} -haystack actively lies to you—it points you to the wrong part of the haystack
- But: $f_{\text{trap}}(00000) < f_{\text{trap}}(11111)$, 11111 will be better than 00000 on average
- 5bit statistics should work for 5bit traps in the same way as 1bit statistics work for OneMax problem!

Model learning:

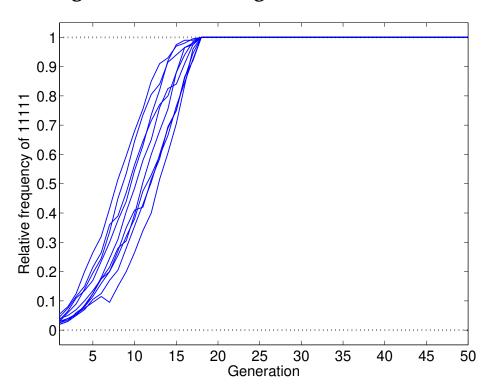
- build model for each 5-tuple of bits
- \blacksquare compute p(00000), p(00001), ..., p(11111),

Model sampling:

- Each 5-tuple of bits is generated independently
- Generate 00000 with probability p(00000), 00001 with probability p(00001), ...

Good news!

The right statistics work great!



Algorithm	Nr. of evaluations
UMDA with 5bit BB	$\mathcal{O}(D \ln D)$ (WOW!)
Hill-Climber	$\mathcal{O}(D^k \ln D), k = 5$
GA with uniform xover	approx. $\mathcal{O}(2^D)$
GA with 1-point xover	similar to unif. xover

What shall we do next?

If we were able to

- find the right statistics with a small overhead, and
- use them in the UMDA framework,

we would be able to solve order-k separable problems using $\mathcal{O}(D^2)$ evaluations.

...and there are many problems of this type.

The problem solution is closely related to the so-called *linkage learning*, i.e. discovering and using statistical dependencies among variables.

Discrete EDAs

EDAs

How EDAs work?

Discrete EDAs

• EDAs without interactions

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

EDAs without interactions

- 1. Population-based incremental learning (PBIL) Baluja, 1994
- 2. Univariate marginal distribution algorithm (UMDA) Mühlenbein and Paaß, 1996
- 3. Compact genetic algorithm (cGA) Harik, Lobo, Goldberg, 1998

Similarities:

all of them use a vector of probabilities

Differences:

- PBIL and cGA do not use population (only the vector *p*); UMDA does
- PBIL and cGA use different rules for the adaptation of *p*

Advantages:

- Simplicity
- Speed
- Simple simulation of large populations

Limitations:

 Reliable only for order-1 decomposable problems (i.e., problems without interactions).

EDAs with Pairwise Interactions

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

- Graph. models
- Quiz
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions

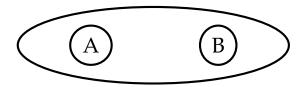
Scalability Analysis

Summary

From single bits to pairwise models

How to describe two positions together?

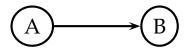
Using the joint probability distribution:



Number of free parameters: 3

p(A,B)						
			В			
			0	1		
	A	0	$\begin{array}{ c c } \hline p(0,0) \\ p(1,0) \\ \hline \end{array}$	p(0,1)		
		1	p(1,0)	p(1,1)		

Using conditional probabilities:



Number of free parameters: 3

$$p(A,B) = p(B|A) \cdot p(A):$$

$$p(B = 1|A = 0)$$

$$p(B = 1|A = 1)$$

$$p(A = 1)$$

Quiz

6

8

Question: What is the number of free parameters for the following models? (A, B, C are binary random variables.)

Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

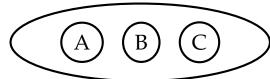
- Graph. models
- Quiz
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions

Scalability Analysis

Summary

Joint probability distribution:



Quiz

5

6

Question: What is the number of free parameters for the following models? (A, B, C are binary random variables.)

Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

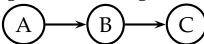
- Graph. models
- Quiz
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions

Scalability Analysis

Summary

Distribution using the following conditioning structure:



Quiz

5

6

Question: What is the number of free parameters for the following models? (A, B, C are binary random variables.)

Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

- Graph. models
- Quiz
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions

Scalability Analysis

Summary

Distribution using the following conditioning structure:

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

- Graph. models
- Quiz
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions

Scalability Analysis

Summary

How to learn pairwise dependencies: dependency tree

- Nodes: binary variables (loci of chromozome)
- Edges: the strength of dependencies among variables
- **Features:**
 - Each node depends on at most 1 other node
 - Graph does not contain cycles
 - Graph is connected

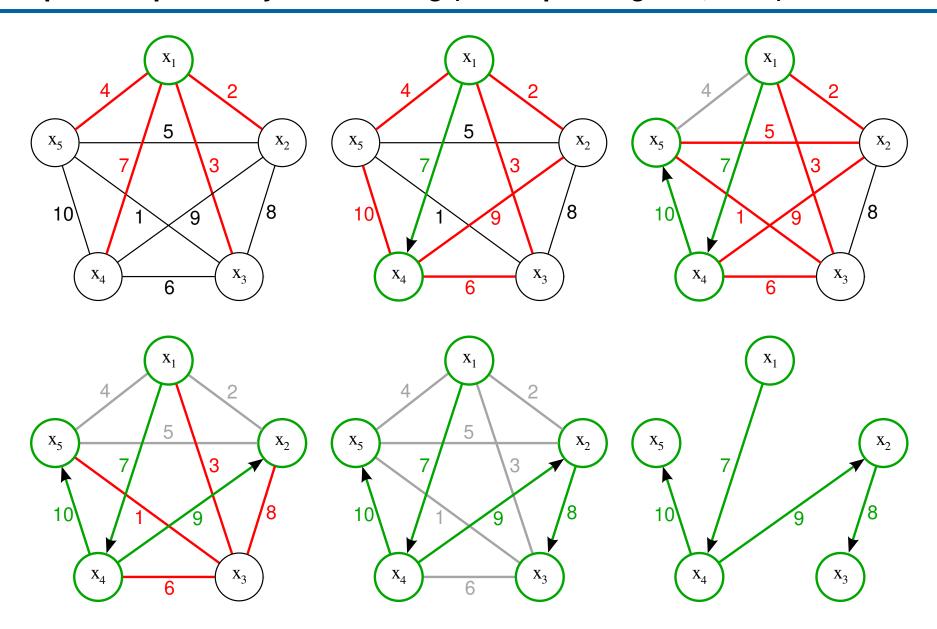
Learning the structure of dependency tree:

1. Score the edges using mutual information:

$$I(X,Y) = \sum_{x,y} p(x,y) \cdot \log \frac{p(x,y)}{p(x)p(y)}$$

- 2. Use any algorithm to determine the maximum spanning tree of the graph, e.g. Prim (1957)
 - (a) Start building the tree from any node
 - (b) Add such a node that is connected to the tree by the edge with maximum score

Example of dependency tree learning (Max. spanning tree, Prim)



Dependency tree: probabilities

Epistasis

EDAs

How EDAs work?

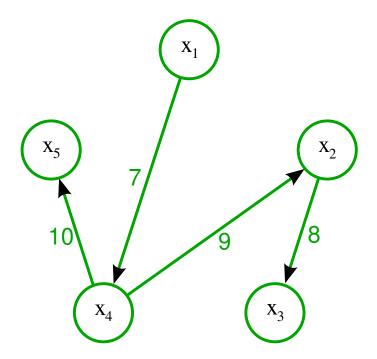
Discrete EDAs

Pairwise Interactions

- Graph. models
- Quiz
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions

Scalability Analysis



Probability	Number of free params
$p(X_1=1)$	1
$p(X_4 = 1 X_1)$	2
$p(X_5 = 1 X_4)$	2
$p(X_2 = 1 X_4)$	2
$p(X_3=1 X_2)$	2
Whole model	9

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

- Graph. models
- Quiz
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

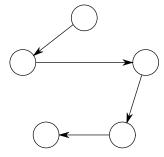
Multivar. Interactions

Scalability Analysis

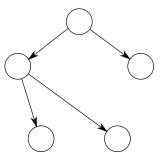
Summary

EDAs with pairwise interactions

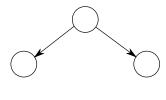
- 1. **MIMIC** (sequences)
 - Mutual Information Maximization for Input Clustering
 - de Bonet et al., 1996



- 2. **COMIT** (trees)
 - Combining Optimizers with Mutual Information Trees
 - Baluja and Davies, 1997



- 3. **BMDA** (forrest)
 - Bivariate Marginal Distribution Algorithm
 - Pelikan and Mühlenbein, 1998



EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

- Graph. models
- Quiz
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions

Scalability Analysis

Summary

- Advantages:
 - Still simple
 - Still fast
 - Can learn *something* about the structure
- Limitations:
 - Reliable only for order-1 or order-2 decomposable problems

EDAs with Multivariate Interactions

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

- ECGA
- MDL Metric
- BOA
- BOA: Learning

Scalability Analysis

Summary

ECGA

Extended Compact GA, Harik, 1999

Marginal Product Model (MPM)

- Variables are treated in groups
- Variables in different groups are considered statistically independent
- Each group is modeled by its joint probability distribution
- The algorithm adaptively searches for the groups during evolution

Problem	oblem Ideal group configuration								
OneMax	[1]	[2]	[3]	[4]	[5] [6]	[7]	[8]	[9]	[10]
5bitTraps	[1	2	3	4	5] [6	7	8	9	10]

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

- ECGA
- MDL Metric
- BOA
- BOA: Learning

Scalability Analysis

Summary

ECGA

Extended Compact GA, Harik, 1999

Marginal Product Model (MPM)

- Variables are treated in groups
- Variables in different groups are considered statistically independent
- Each group is modeled by its joint probability distribution
- The algorithm adaptively searches for the groups during evolution

Problem	Ideal group configuration				
OneMax	[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]				
5bitTraps	[1 2 3 4 5][6 7 8 9 10]				

Learning the structure

- 1. Evaluation metric: Minimum Description Length (MDL)
- 2. Search procedure: greedy
 - (a) Start with each variable belonging to its own group
 - (b) Perform such a join of two groups which improves the score best
 - (c) Finish if no join improves the score

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

- ECGA
- MDL Metric
- BOA
- BOA: Learning

Scalability Analysis

Summary

ECGA: Evaluation metric

Minimum description length:

Minimize the number of bits required to store the model and the data encoded using the model

$$DL(Model, Data) = DL_{Model} + DL_{Data}$$

Model description length:

Each group g has |g| dimensions, i.e. $2^{|g|} - 1$ frequencies, each of them can take on values up to N

$$DL_{Model} = \log N \sum_{g \in G} (2^{|g|} - 1)$$

Data description length using the model:

Defined using the entropy of marginal distributions (X_g is |g|-dimensional random vector, x_g is its realization):

$$DL_{Data} = N \sum_{g \in G} h(X_g) = -N \sum_{g \in G} \sum_{x_g} p(X_g = x_g) \log p(X_g = x_g)$$

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

- ECGA
- MDL Metric
- BOA
- BOA: Learning

Scalability Analysis

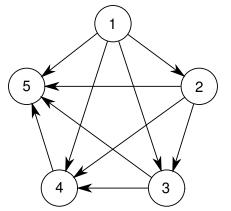
Summary

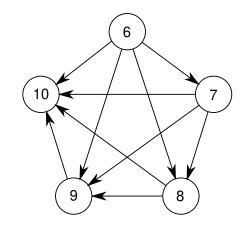
BOA

Bayesian Optimization Algorithm: Pelikán, Goldberg, Cantù-Paz, 1999

Bayesian network (BN)

- Conditional dependencies (instead groups)
- Sequence, tree, forrest special cases of BN
- For trap function:





- The same model used independently in
 - Estimation of Bayesian Network Alg. (EBNA), Etxeberria et al., 1999
 - Learning Factorized Density Alg. (LFDA), Mühlenbein et al., 1999

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

- ECGA
- MDL Metric
- BOA
- BOA: Learning

Scalability Analysis

Summary

BOA: Learning the structure

- 1. Evaluation metric:
 - Bayesian-Dirichlet metric, or
 - Bayesian information criterion (BIC)
- 2. Search procedure: greedy
 - (a) Start with graph with no edges (univariate marginal product model)
 - (b) Perform one of the following operations, choose the one which improves the score best
 - Add an edge
 - Delete an edge
 - Reverse an edge
 - (c) Finish if no operation improves the score

BOA solves order-k decomposable problems in less then $\mathcal{O}(D^2)$ evaluations!

$$n_{evals} = \mathcal{O}(D^{1.55})$$
 to $\mathcal{O}(D^2)$

Scalability Analysis

Test functions

One Max:

Trap:

$$f_{D \times 1 \text{bitOneMax}}(\mathbf{x}) = \sum_{d=1}^{D} x_d$$

 $f_{DbitTrap}(x) = \begin{cases} D & \text{if } u(x) = D \\ D - 1 - u(x) & \text{otherwise} \end{cases}$

Equal Pairs:

$$f_{DbitEqualPairs}(\mathbf{x}) = 1 + \sum_{d=2}^{D} f_{EqualPair}(\mathbf{x}_{d-1}, \mathbf{x}_d)$$

$$f_{\text{EqualPair}}(x_1, x_2) = \begin{cases} 1 & \text{if } x_1 = x_2 \\ 0 & \text{if } x_1 \neq x_2 \end{cases}$$

Sliding XOR:

$$f_{DbitSlidingXOR}(x) = 1 + f_{AllEqual}(x) +$$

$$+ \sum_{d=3}^{D} f_{XOR}(x_{d-2}, x_{d-1}, x_d)$$

$$f_{\text{AllEqual}}(x) = \begin{cases} 1 & \text{if } x = (000...0) \\ 1 & \text{if } x = (111...1) \\ 0 & \text{otherwise} \end{cases}$$
$$f_{\text{XOR}}(x_1, x_2, x_3) = \begin{cases} 1 & \text{if } x_1 \bigoplus x_2 = x_3 \\ 0 & \text{otherwise} \end{cases}$$

Concatenated short basis functions:

$$f_{NxKbitBasisFunction} = \sum_{k=1}^{K} f_{BasisFunction}(x_{K(k-1)+1}, \dots, x_{Kk})$$

Test function (cont.)

- 1. $f_{40x1bitOneMax}$
 - order-1 decomposable function, no interactions
- 2. $f_{1x40bitEqualPairs}$
 - non-decomposable function
 - weak interactions: optimal setting of each bit depends on the value of the preceding bit
- 3. $f_{8x5bitEqualPairs}$
 - order-5 decomposable function
- 4. $f_{1x40bitSlidingXOR}$
 - non-decomposable function
 - stronger interactions: optimal setting of each bit depends on the value of the 2 preceding bits
- 5. $f_{8x5bitSlidingXOR}$
 - order-5 decomposable function
- 6. $f_{8x5bitTrap}$
 - order-5 decomposable function
 - interactions in each 5-bit block are very strong, the basis function is deceptive

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution

Summary

Scalability analysis

Facts:

- using small population size, population-based optimizers can solve only easy problems
- increasing the population size, the optimizers can solve increasingly harder problems
- ... but using a too big population is wasting of resources.

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution

Summary

Scalability analysis

Facts:

- using small population size, population-based optimizers can solve only easy problems
- increasing the population size, the optimizers can solve increasingly harder problems
- ... but using a too big population is wasting of resources.

Scalability analysis:

- determines the optimal (smallest) population size, with which the algorithm solves the given problem reliably
 - reliably: algorithm finds the optimum in 24 out of 25 runs)
 - for each problem complexity, the optimal population size is determined e.g. using the bisection method
- studies the influence of the problem complexity (dimensionality) on the optimal population size and on the number of needed evaluations

Scalability on the One Max function

Epistasis

EDAs

How EDAs work?

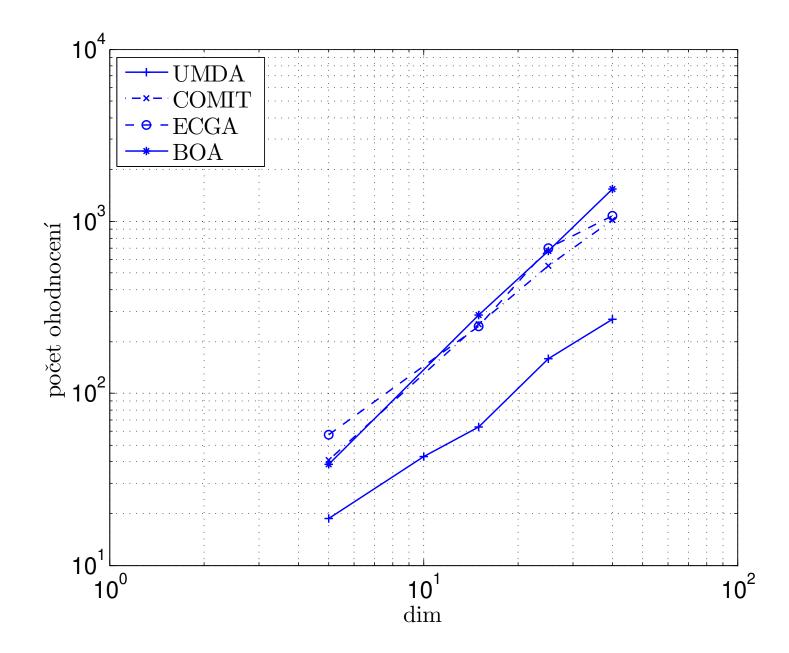
Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution



Scalability on the non-decomposable Equal Pairs function

Epistasis

EDAs

How EDAs work?

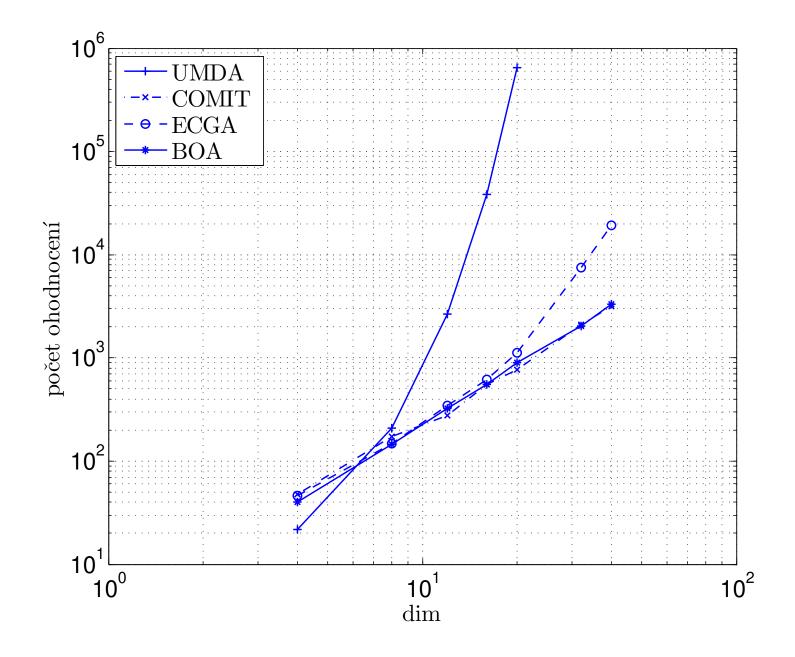
Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution



Scalability on the decomposable Equal Pairs function

Epistasis

EDAs

How EDAs work?

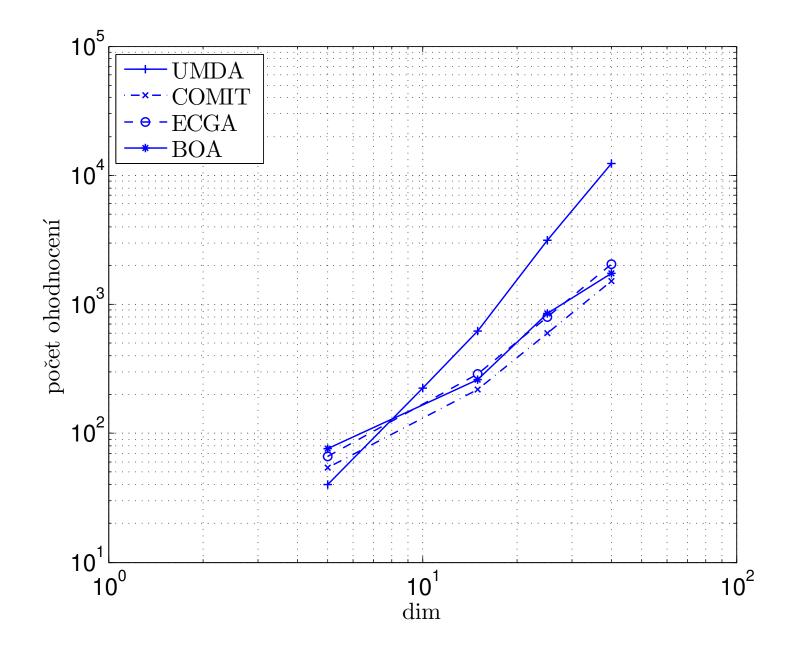
Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution



Scalability on the non-decomposable Sliding XOR function

Epistasis

EDAs

How EDAs work?

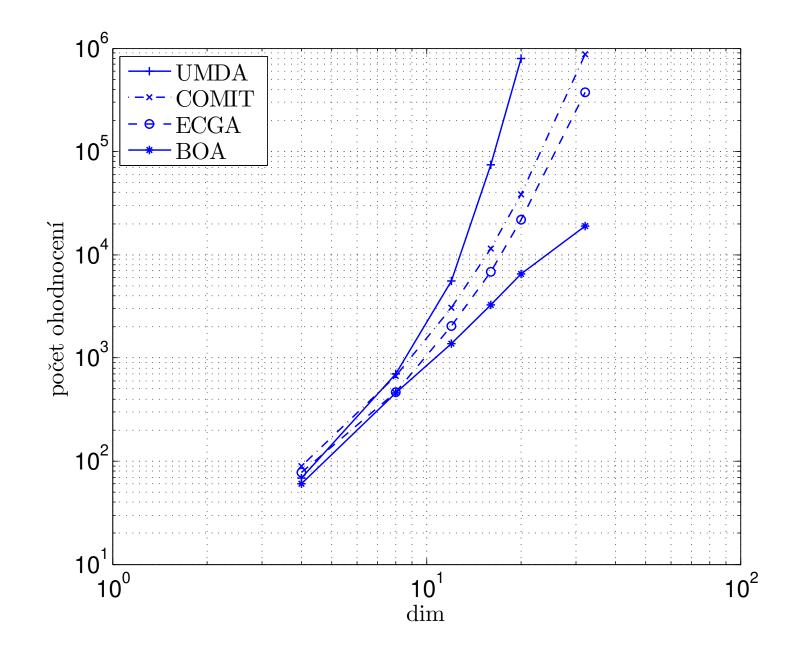
Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution



Scalability on the decomposable Sliding XOR function

Epistasis

EDAs

How EDAs work?

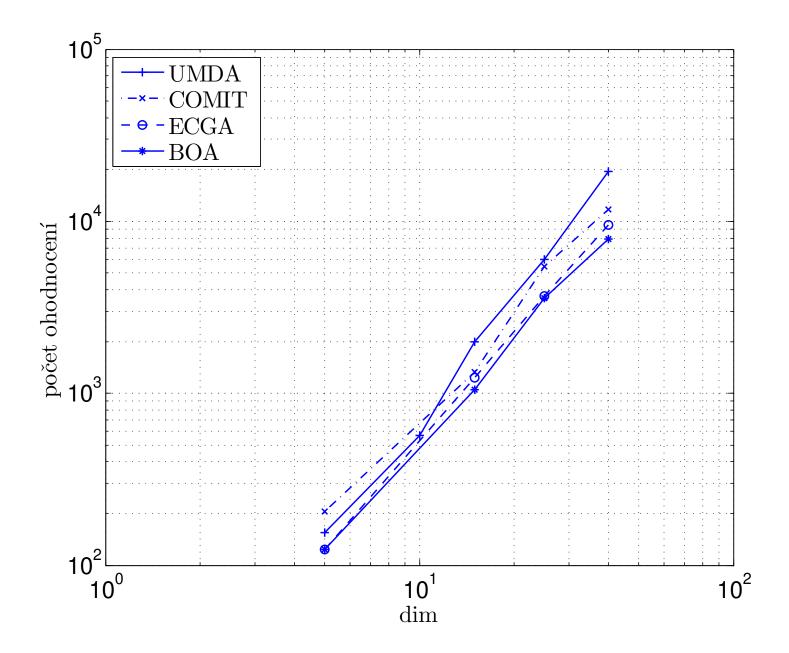
Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution



Scalability on the decomposable Trap function

Epistasis

EDAs

How EDAs work?

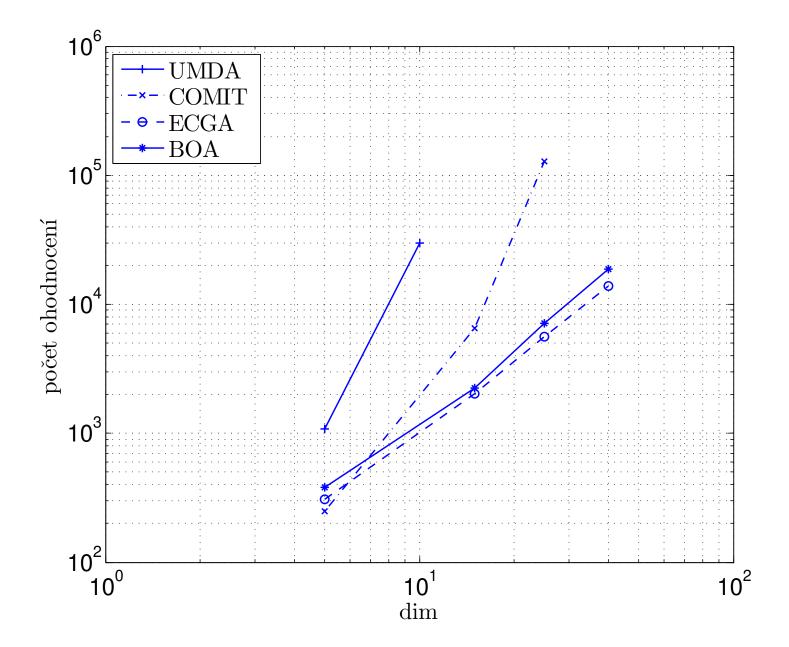
Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution



Model structure during evolution

During the evolution, the model structure is increasingly precise and at the end of the evolution, the model structure describes the problem structure exactly.

Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution

Model structure during evolution

During the evolution, the model structure is increasingly precise and at the end of the evolution, the model structure describes the problem structure exactly.

Epistasis

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution

Summary

NO! That's not true!

Why?

- In the beginning, the distribution patterns are not very discernible, models similar to uniform distributions are used.
- In the end, the population converges and contains many copies of the same individual (or a few individuals). No interactions among variables can be learned. Model structure is wrong (all bits independent), but the model describes the position of optimum very precisely.
- The model with the best matching structure is found somewhere in the middle of the evolution.
- Even though the right structure is never found during the evolution, the problem can be solved successfully.

EDAs

How EDAs work?

Discrete EDAs

Pairwise Interactions

Multivar. Interactions

Scalability Analysis

Summary

• Learning outcomes

Learning outcomes

After this lecture, a student shall be able to

- explain what an epistasis is and show an example of functions with and without epistatic relations;
- demonstrate how epistatic relationships can destroy the efficiency of the search performed by an optimization algorithm, and explain it using schemata;
- describe an Estimation-of-Distribution algorithm and explain its differences from an ordinary EA;
- describe in detail and implement a simple UMDA algorithm for binary representations;
- understand, fit to data, and use simple Bayesian networks;
- explain the commonalities and differences among EDAs not able to work with any interactions (PBIL, cGA, UMDA);
- explain the commonalities and differences among EDAs able to work with only pairwise interactions (MIMIC, COMIT, BMDA);
- explain the commonalities and differences among EDAs able to work with multivariate interactions (ECGA, BOA);
- explain the model learning procedures used in ECGA and BOA;
- understand what effect the use of a more complex model has on the efficiency of the algorithm when used on problems with increasingly hard interactions.