
pAlgorithm Configuration (Parameter Tuning) Problem

Let A denote an algorithm, whose parameters are to be optimized for a probability distribution
of problem instances, D.

D may be given

� implicitly, as through a random instance generator or a distribution over such generators, or

� as the uniform distribution over a finite sample of problem instances.

With each of the algorithm parameters, p1 . . . pk, a domain of possible values is associated and

the parameter configuration space, Θ, is the cross-product of these domains (or a subset

thereof).

� We assume that all parameter domains are finite sets.

This assumption can be met by discretizing all numerical parameters to a finite number of

values.

� While parameters may be ordered, we do not exploit such ordering relations =⇒ all parameters

are finite and categorical.

The elements of Θ are called parameter configurations, θi, and A(θ) denotes algorithm A
with parameter configuration θ ∈ Θ.

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pAlgorithm Configuration (Parameter Tuning) Problem

The objective of the parameter configuration (parameter tuning) problem is to find the parameter

configuration θ ∈ Θ resulting in the best performance of A on distribution D.

There are many ways of measuring the cost, o(A, θ, I, s), of running algorithm A with parameter

configuration θ on an instance I , using seed s in case of randomized algorithm:

� the computational resources consumed by the given algorithm (such as runtime, memory or

communication bandwidth),

� the approximation error,

� the improvement achieved over an instance-specific reference cost,

� the quality of the solution found.

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pAlgorithm Configuration (Parameter Tuning) Problem

The behaviour of the algorithms can vary significantly between multiple runs on different instances

or when randomized algorithms are run repeatedly with fixed parameters on a single problem

instance.

Therefore, the cost of a candidate solution θ is defined as

c(θ) = m(Oθ)

the statistical population parameter m of the cost distribution Oθ(A, θ,D), over instances drawn

from distribution of instances, D, and multiple independent runs.

An optimal solution, θ∗, minimizes c(θ):

θ∗ ∈ arg min
θ∈Θ

c(θ).

For example, we might aim to minimize mean runtime or median solution cost.

The Oθ(A, θ,D) is typically unknown, so we can only acquire approximations of their statistics,

c(θ), based on a limited number of samples (i.e. the cost of single executions of A(θ)) – let’s

denote an approximation of c(θ) based on N samples by ĉN(θ).

� For deterministic algorithms, the algorithm A is run on N ≤ M instances (M is the size of

the finite training set of instances).

� For randomized, algorithms, we can run multiple runs with different seeds if M < N .

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pSearching the Parameter Configuration Space

Manually-executed local search in parameter configuration space

1. Begin with some initial parameter configuration.

2. Experiment with modifications to single parameter values at a time, accepting new con-

figurations whenever they result in improved performance (iterative first improvement
procedure).

3. Repeat step 2 until no single-parameter change yields an improvement.

This procedure stops as soon as it reaches a local optimum (a parameter configuration that

cannot be improved by modifying a single parameter value).

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění



pSearching the Parameter Configuration Space

Manually-executed local search in parameter configuration space

1. Begin with some initial parameter configuration.

2. Experiment with modifications to single parameter values at a time, accepting new con-

figurations whenever they result in improved performance (iterative first improvement
procedure).

3. Repeat step 2 until no single-parameter change yields an improvement.

This procedure stops as soon as it reaches a local optimum (a parameter configuration that

cannot be improved by modifying a single parameter value).

Issues when trying to automate the process

� Which parameter configurations should be evaluated?

� Which problem instances should be used and how many runs should be performed on each

instance?

Stochastic nature of the algorithm configuration problem.

� Which cutoff time κi (the maximum amount of time the configured algorithm is allowed to

use) should be used for each run?

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pParamILS: Iterated Local Search in Parameter Configuration Space

Employs Iterated Local Search that builds a chain of local optima by iterating through a main

loop consisting of:

1. a solution perturbation to escape from local optima,

2. a subsidiary local search procedure and

3. an acceptance criterion to decide whether to keep or reject a newly obtained candidate solution.

ParamILS(θ0, r, prestart, s)

1. uses a combination of default and random settings for initialization,

θ0 is the initial parameter configuration, and

r is the number of randomly chosen configurations for initialization,

2. uses a one-exchange neighborhood (one parameter is modified in each search step),

3. employs iterative first improvement as a subsidiary local search procedure,

4. uses a fixed number, s, of random moves for perturbation,

5. always accepts better or equally-good parameter configurations,

6. re-initializes the search at random with probability prestart.

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pParamILS(N): Algorithm

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pBasicILS(N): Procedure betterN(θ1, θ2)

Basic variant, BasicILS(N), uses procedure betterN(θ1, θ2) that compares two cost approxi-

mations ĉN(θ1) and ĉN(θ2) based on exactly N samples from the respective cost distributions

Oθ(A, θ1,D) and Oθ(A, θ2,D) – the same N instances are used for all configurations θi.

Procedure betterN(θ1, θ2) simply compares estimates ĉN(θ1) and ĉN(θ2) based on the same N

instances using the same random seeds.

� It updates the best-so-far solution, θinc.

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pFocusedILS

The question is how to choose the optimal number of training instances, N?

� Using too small N leads to good training performance, but poor generalization to previously

unseen test benchmarks.

� On the other hand, we cannot evaluate every parameter configuration on an enormous training

set - if we did, search progress would be unreasonably slow.

FocusedILS is a variant of ParamILS that adaptively varies the number of training
samples considered from one parameter configuration to another in order to focus samples
on promising configurations.

� N(θ) denotes the number of runs available to estimate the cost statistic c(θ).

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění



pFocusedILS

The question is how to choose the optimal number of training instances, N?

� Using too small N leads to good training performance, but poor generalization to previously

unseen test benchmarks.

� On the other hand, we cannot evaluate every parameter configuration on an enormous training

set - if we did, search progress would be unreasonably slow.

FocusedILS is a variant of ParamILS that adaptively varies the number of training
samples considered from one parameter configuration to another in order to focus samples
on promising configurations.

� N(θ) denotes the number of runs available to estimate the cost statistic c(θ).

The question is how to compare two parameter configurations θ1 and θ2 for which N(θ1) ≤ N(θ2)?

� What if we computed the empirical statistics based on the available number of runs for each

configuration?

Can lead to systematic bias if, for example, the first instances are easier than the average ones.

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pFocusedILS: Procedure betterFoc(θ1, θ2)

Domination: Configuration θ1 dominates θ2 when at least as many runs have been conducted

on θ1 as on θ2, and the performance of A(θ) on the first N(θ2) runs is at least as good as that

of A(θ2) on all of its runs.

θ1 dominates θ2 if and only if N(θ1) ≥ N(θ2) and ĉN(θ2)(θ1) ≤ ĉN(θ2)(θ2).

FocusedILS – procedure betterFoc(θ1, θ2) implements a comparison strategy based on the dom-

ination

1. first it acquires one additional run for the configuration i having smaller N(θi), or one run for

both configurations if N(θ1) = N(θ2);

2. then, it continues performing runs in this way until one configuration dominates the other.

It returns true if θ1 dominates θ2, and false otherwise.

It keeps track of the total number, B, of configurations evaluated since the last improving step.

� Whenever betterFoc(θ1, θ2) returns true, B extra (bonus) runs are performed for θ1 and B is

reset to 0.

� This way it is ensured that many runs are performed with good configurations =⇒ the error

made in every comparison of two configurations θ1 and θ2 decreases on expectation.

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pFocusedILS: Procedure betterFoc(θ1, θ2)

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pAdaptive Capping of Algorithm Runs

Often, the computational resources are wasted with evaluating a parameter configuration

that is much worse than other, previously-seen configurations.

Ex.: Let’s assume a case where parameter configuration θ1 takes a total of 10 seconds to solve

N = 100 instances (i.e. it has a mean runtime of 0.1 seconds per instance), and another parameter

configuration θ2 takes 100 seconds to solve the first of these instances.

Clearly, when comparing the mean runtimes of θ1 and θ2 based on this set of instances, it is not

necessary to run θ2 on remaining 99 instances. Instead, we can terminate the first run of θ2 after

10 + ε seconds, which is a lower bound on θ2’s mean runtime of 0.1 + ε/100. This lower bound

exceeds the mean runtime of θ1, so we can already be sure that θ2 cannot do better than θ1.

Question is how to determine the cutoff time for each run of the target algorithm, A, in an

automated way?

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění



pAdaptive Capping of Algorithm Runs

Often, the computational resources are wasted with evaluating a parameter configuration

that is much worse than other, previously-seen configurations.

Ex.: Let’s assume a case where parameter configuration θ1 takes a total of 10 seconds to solve

N = 100 instances (i.e. it has a mean runtime of 0.1 seconds per instance), and another parameter

configuration θ2 takes 100 seconds to solve the first of these instances.

Clearly, when comparing the mean runtimes of θ1 and θ2 based on this set of instances, it is not

necessary to run θ2 on remaining 99 instances. Instead, we can terminate the first run of θ2 after

10 + ε seconds, which is a lower bound on θ2’s mean runtime of 0.1 + ε/100. This lower bound

exceeds the mean runtime of θ1, so we can already be sure that θ2 cannot do better than θ1.

Question is how to determine the cutoff time for each run of the target algorithm, A, in an

automated way?

Adaptive capping is based on the idea of avoiding unnecessary runs of the algorithm A by
developing bounds on the performance measure to be optimized.

� Trajectory-preserving capping – provably does not change BasicILS’s search trajectory,

but can lead to large computational savings.

� Aggressive capping – potentially yielding even better performance.

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění



pBasicILS: Trajectory-Preserving Capping

Trajectory-Preserving Capping (for the case of minimizing the mean of non-negative
cost function) – implements bounded evaluation of a parameter configuration θ, procedure

objective(θ,N, bound), based on N runs so that

� it sequentially performs runs for θ and after each run computes a lower bound on ĉN(θ) based

on i ≤ N runs performed so far (i.e. the lower bound ĉN(θ) is calculated as the sum of

runtimes of each of the i runs, divided by N);

� once the lower bound exceeds the bound passed as an argument, the remaining runs for θ2

are skipped and a large constant, worstPossibleObjective, is returned.

Procedure betterN(θ1, θ2) is modified as follows

1 bound←∞
2 ĉN(θ2)← objective(θ2, N, bound)

3 bound← ĉN(θ2)

4 ĉN(θ1)← objective(θ1, N, bound)

5 return ĉN(θ1) ≤ ĉN(θ2)

Trajectory-preserving capping typically requires much less runtime than the standardBasicILS.

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pTrajectory-Preserving Capping: Summary

The trajectory-preserving capping computes the upper bound on the cumulative runtime from
the best configuration encountered in the current ILS iteration.

New ILS iteration starts with a perturbation of the best-so-far configuration θ.

Frequently, the new parameter configuration θ is of poor quality, thus the capping criterion
does not apply as quickly as it could if the comparison was performed against the overall

incumbent.

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění



pParamILS(N): Algorithm

� � � � � � � � � � � � � � � � � � � ParamILS



pBasicILS: Aggressive Capping

Aggressive Capping – bounds the evaluation of any configuration by the performance of

the overall best-so-far (incumbent) configuration, θinc, multiplied by a factor bound multiplier,

bm.

� Different values of bm may imply different search trajectories:

− bm =∞ reduces to trajectory-preserving but no savings strategy.

− bm = 1 is a very aggressive strategy, since once we know the evaluated configuration

θ is worse than the θinc, its evaluation is terminated.

Recommended setting is bm = 2.

� When two configurations θ1 and θ2 are compared and the evaluations of both are termi-
nated preemptively, the configuration having solved more instances within the allowed
time is considered the better one.

Ties are broken to favor moving to a new parameter configuration.

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pFocusedILS: Adaptive Capping

FocusedILS varies the number of runs used to compare two parameter configurations.

The number of runs can differ from one comparison to the next.

How can the adaptive capping be used here?

� � � � � � � � � � � � � � � � � � � ParamILS



pFocusedILS: Adaptive Capping

FocusedILS varies the number of runs used to compare two parameter configurations.

The number of runs can differ from one comparison to the next.

How can the adaptive capping be used here?

� By using separate bounds for every number of runs, N .

� � � � � � � � � � � � � � � � � � � ParamILS



pParamILS: Final Remarks

Suitable for configuration problems with many parameters and huge configuration spaces.

Successful applications:

� SPEAR, a complete SAT solver

− 26 parameters,

− 8.34 · 1017 possible configurations,

− FocusedILS produced configurations that solved test problems about 100 times faster than

previous state-of-the-art solvers.

� CPLEX, a prominent solver for mixed integer programming problems with carefully chosen

default parameter settings

− 76 parameters,

− 1.9 · 1047 possible configurations,

− FocusedILS obtained substantial improvements in terms of both the time required to find

optimal solutions (speedup factors from 1.98 to 52.3) and minimizing the optimality gap

with factors from 1.26 to 8.65.

� � � � � � � � � � � � � � � � � � � ParamILS

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění

Jiri
Zvýraznění



pRecommended Material

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle: ParamILS: An Auto-

matic Algorithm Configuration Framework. In Journal of Artificial Intelligence Research (JAIR),

volume 36, pp. 267-306, October 2009.

Other papers and SW available at http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

� � � � � � � � � � � � � � � � � � � ParamILS




