{{indexmenu_n>2}} ====== Lectures ====== Supporting materials for the lectures of the academic year 2018/2019. The materials are slides, also available in printer safe version as handouts with 2x2 and 3x3 slides on a single page. **These supportive materials are not intended as a replacement of your own notes from the lectures. They are rather provided to help you to understand the studied problems.** ^ #TWeek ^ Week ^ Monday (Room No. KN:E-126) 9:15-10:45 ^ |#1 | 39. | [[#1. Course information, introduction to robotics| Lecture 01 - Course information, introduction to robotics]] | 21.09. - lec01 | |#2 | 40. | 28.09. - //National holidays (28.09.)// | |#3 | 41. | [[#2. Robotic paradigms and control architectures| Lecture 02 - Robotic paradigms and control architectures]] | 05.10. - lec02 | |#4 | 42. | [[#3. Path planning - Grid and graph-based path planning methods | Lecture 03 - Path planning - grid and graph-based path planning methods]] | 12.10. - lec03 | |#5 | 43. | [[#4. Robotic information gathering - Mobile robot exploration| Lecture 04 - Robotic information gathering - Mobile robot exploration]] | 19.10. - lec04 | |#6 | 44. | [[#5. Multi-goal Path planning | Lecture 05 - Multi-goal Path planning]] | 26.10. - lec05 | |#7 | 45. | [[#6. Data Collection Planning | Lecture 06 - Data Collection Planning ]] | 02.11. - lec06 | |#8 | 46. | [[#7. Curvature-constrained Data collection Planning | Lecture 07 - Curvature-constrained Data collection Planning]] | 09.11. - lec07 | |#9 | 47. | [[#8. Randomized sampling-based motion planning methods | Lecture 08 - Randomized sampling-based motion planning methods]] | 16.11. - lec08 | |#10 | 48. | [[#9. Game theory in robotics| Lecture 09 - Game theory in robotics]] | 23.11. - lec09 | |#11 | 49. | [[#10. Visibility based pursuit evasion games | Lecture 10 - Visibility based pursuit evasion games]] | 30.11. - lec10 | |#12 | 50. | [[#11. Patrolling games | Lecture 11 - Patrolling games]] | 07.12. - lec11 | |#13 | 51. | [[#12. Temporal Task-Motion Planning | Lecture 12 - Temporal Task-Motion Planning]] | 14.12. - lec12 | | | 52. | 21.12. - //Winter holidays (21.12. - 3.1.)// | | | 53. | 28.12. - //Winter holidays (21.12. - 3.1.)// | |#14 | 01. |[[#13. Multi-robot Systems | Lecture 13 - Multi-robot Systems]] | 04.01. - lec13 | | **TBA** - **Ungraded Assessment Deadline!** ||| /* |#13 | 51. | [[#12. Localisation and mapping | Lecture 12 - Localisation and mapping]] | 14.12. - lec12 | |#14 | 01. | [[#13. Long-term navigation and spatiotemporal mapping | Lecture 13 - Long-term navigation and spatio-temporal mapping ]] | 04.01. - lec13 | */ ===== 1. Course information, introduction to robotics ===== * slides: {{courses:b4m36uir:lectures:b4m36uir-lec01-slides.pdf|}} * slides - handout: {{courses:b4m36uir:lectures:b4m36uir-lec01-handout.pdf|}} * slides - handout 2x2: {{courses:b4m36uir:lectures:b4m36uir-lec01-handout-2x2.pdf|}} * slides - handout 3x3: {{courses:b4m36uir:lectures:b4m36uir-lec01-handout-3x3.pdf|}} /* * demo codes: {{courses:b4m36uir:lectures:b4m36uir-lec01-codes.zip|}} */ --- //[[faiglj@fel.cvut.cz|Jan Faigl]] 2020/09/18 10:50// ===== 2. Robotic paradigms and control architectures ===== * slides: {{courses:b4m36uir:lectures:b4m36uir-lec02-slides.pdf|}} * slides - handout: {{courses:b4m36uir:lectures:b4m36uir-lec02-handout.pdf|}} * slides - handout 2x2: {{courses:b4m36uir:lectures:b4m36uir-lec02-handout-2x2.pdf|}} * slides - handout 3x3: {{courses:b4m36uir:lectures:b4m36uir-lec02-handout-3x3.pdf|}} /* * demo codes: {{courses:b4m36uir:lectures:b4m36uir-lec02-codes.zip|}} */ --- //[[faiglj@fel.cvut.cz|Jan Faigl]] 2020/09/19 18:34// ===== 3. Path planning - Grid and graph-based path planning methods ===== * slides: {{courses:b4m36uir:lectures:b4m36uir-lec03-slides.pdf|}} * slides - handout: {{courses:b4m36uir:lectures:b4m36uir-lec03-handout.pdf|}} * slides - handout 2x2: {{courses:b4m36uir:lectures:b4m36uir-lec03-handout-2x2.pdf|}} * slides - handout 3x3: {{courses:b4m36uir:lectures:b4m36uir-lec03-handout-3x3.pdf|}} /* * demo codes: {{courses:b4m36uir:lectures:b4m36uir-lec03-codes.zip|}} */ --- //[[faiglj@fel.cvut.cz|Jan Faigl]] 2020/10/12 16:19// ===== 4. Robotic information gathering - Mobile robot exploration ===== * slides: {{courses:b4m36uir:lectures:b4m36uir-lec04-slides.pdf|}} * slides - handout: {{courses:b4m36uir:lectures:b4m36uir-lec04-handout.pdf|}} * slides - handout 2x2: {{courses:b4m36uir:lectures:b4m36uir-lec04-handout-2x2.pdf|}} * slides - handout 3x3: {{courses:b4m36uir:lectures:b4m36uir-lec04-handout-3x3.pdf|}} --- //[[faiglj@fel.cvut.cz|Jan Faigl]] 2019/10/14 13:50 // **Update**: Comments on Hungarian algorithm and dummy tasks and resources. Further comments on the relation of the decision-making and particular realization of the whole navigation stack. --- //[[faiglj@fel.cvut.cz|Jan Faigl]] 2020/10/19 09:10// ===== 5. Multi-goal Path planning ===== * slides: {{courses:b4m36uir:lectures:b4m36uir-lec05-slides.pdf|}} * slides - handout: {{courses:b4m36uir:lectures:b4m36uir-lec05-handout.pdf|}} * slides - handout 2x2: {{courses:b4m36uir:lectures:b4m36uir-lec05-handout-2x2.pdf|}} * slides - handout 3x3: {{courses:b4m36uir:lectures:b4m36uir-lec05-handout-3x3.pdf|}} --- //[[faiglj@fel.cvut.cz|Jan Faigl]] 2020/10/19 09:10// ===== 6. Data Collection Planning ===== * slides: {{courses:b4m36uir:lectures:b4m36uir-lec06-slides.pdf|}} * slides - handout: {{courses:b4m36uir:lectures:b4m36uir-lec06-handout.pdf|}} * slides - handout 2x2: {{courses:b4m36uir:lectures:b4m36uir-lec06-handout-2x2.pdf|}} * slides - handout 3x3: {{courses:b4m36uir:lectures:b4m36uir-lec06-handout-3x3.pdf|}} --- //[[faiglj@fel.cvut.cz|Jan Faigl]] 2020/10/16 12:46// ===== 7. Curvature-constrained Data collection Planning ===== * slides: {{courses:b4m36uir:lectures:b4m36uir-lec07-slides.pdf|}} * slides - handout: {{courses:b4m36uir:lectures:b4m36uir-lec07-handout.pdf|}} * slides - handout 2x2: {{courses:b4m36uir:lectures:b4m36uir-lec07-handout-2x2.pdf|}} * slides - handout 3x3: {{courses:b4m36uir:lectures:b4m36uir-lec07-handout-3x3.pdf|}} --- //[[faiglj@fel.cvut.cz|Jan Faigl]] 2020/10/19 09:10// ===== 8. Randomized sampling-based motion planning methods ===== * slides: {{courses:b4m36uir:lectures:b4m36uir-lec08-slides.pdf|}} * slides - handout: {{courses:b4m36uir:lectures:b4m36uir-lec08-handout.pdf|}} * slides - handout 2x2: {{courses:b4m36uir:lectures:b4m36uir-lec08-handout-2x2.pdf|}} * slides - handout 3x3: {{courses:b4m36uir:lectures:b4m36uir-lec08-handout-3x3.pdf|}} --- //[[faiglj@fel.cvut.cz|Jan Faigl]] 2020/10/19 09:10// ===== 9. Game theory in robotics ===== * slides: {{courses:b4m36uir:lectures:b4m36uir-lec09-slides.pdf|}} * slides - 2x2: {{courses:b4m36uir:lectures:b4m36uir-lec09-slides-2x2.pdf|}} * slides - 3x3: {{courses:b4m36uir:lectures:b4m36uir-lec09-slides-3x3.pdf|}} -- == Game theory basics == * Yoav Shoham, Kevin Leyton-Brown: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. [Sections 3.2, 4.1, 6.3] http://www.masfoundations.org * Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. Machine Learning Proceedings 1994, 157–163. [[https://www2.cs.duke.edu/courses/spring07/cps296.3/littman94markov.pdf]] == Pursuit evasion games == * Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking: taxonomy and survey. Autonomous Robots, 40(4), 729–760. [[https://hal.archives-ouvertes.fr/hal-01183372/document]] * Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in mobile robotics: A survey. Autonomous Robots, 31(4), 299–316. [[https://www-users.cs.umn.edu/~isler/pub/pe-survey.pdf]] * Sgall J. (2001). Solution of David Gale's lion and man problem. Theoretical Computer Science. 259(1-2):663-70. [[https://core.ac.uk/download/pdf/82510373.pdf]] * Homicidal chauffeur game: [[http://sector3.imm.uran.ru/poland2008patsko/index.html]] * S. Karaman, E. Frazzoli. Incremental Sampling-Based Algorithms for a Class of Pursuit- Evasion Games, 2011. [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1018.3630&rep=rep1&type=pdf]] --- //[[rytirpav@fel.cvut.cz|Pavel Rytir]] 2020/12/07 19:00// ===== 10. Visibility based pursuit evasion games ===== * slides: {{courses:b4m36uir:lectures:b4m36uir-lec10-slides.pdf|}} * slides - 2x2: {{courses:b4m36uir:lectures:b4m36uir-lec10-slides-2x2.pdf|}} * slides - 3x3: {{courses:b4m36uir:lectures:b4m36uir-lec10-slides-3x3.pdf|}} * Urrutia, J. (1997). Art Gallery and Illumination Problems. Handbook of Computational Geometry, 973–1027. [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.3028&rep=rep1&type=pdf]] * Guibas, L. J., Latombe, J. C., LaValle, S. M., Lin, D., & Motwani, R. (1997, August). Visibility-based pursuit-evasion in a polygonal environment. In Workshop on Algorithms and Data Structures (pp. 17-30). {{ :courses:b4m36uir:lectures:guibas1997.pdf |}} * McMahan, Gordon, Blum (2003): Planning in the presence of cost functions controlled by an adversary. ICML. [[http://www.cs.cmu.edu/~ggordon/mcmahan-ggordon-blum.icml2003.pdf]] * Raboin, E., Nau, D., Kuter, U., Gupta, S. K., & Svec, P. (2010). Strategy generation in multi-agent imperfect-information pursuit games. AAMAS, pp. 947-954. [[http://www.cs.umd.edu/~nau/papers/raboin2010strategy.pdf]] --- //[[rytirpav@fel.cvut.cz|Pavel Rytir]] 2020/12/07 19:00// ===== 11. Patrolling games ===== * slides: {{courses:b4m36uir:lectures:b4m36uir-lec11-slides.pdf|}} * slides - 2x2: {{courses:b4m36uir:lectures:b4m36uir-lec11-slides-2x2.pdf|}} * slides - 3x3: {{courses:b4m36uir:lectures:b4m36uir-lec11-slides-3x3.pdf|}} * Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F. and Tambe, M. Computing optimal randomized resource allocations for massive security games. AAMAS 2009. {{ :courses:b4m36uir:lectures:computing_optimal_randomized_resource_allocations_.pdf |}} * Agmon, Noa, Gal A. Kaminka, and Sarit Kraus. Multi-robot adversarial patrolling: facing a full-knowledge opponent. Journal of Artificial Intelligence Research 42 (2011): 887-916. [[http://u.cs.biu.ac.il/~galk/publications/papers/jair11.pdf]] * Basilico, Nicola, Nicola Gatti, and Francesco Amigoni. Patrolling security games: Definition and algorithms for solving large instances with single patroller and single intruder. Artificial Intelligence 184 (2012): 78-123. {{ :courses:b4m36uir:lectures:1-s2.0-s0004370212000240-main.pdf |}} --- //[[rytirpav@fel.cvut.cz|Pavel Rytir]] 2020/12/07 19:00// ===== 12. Temporal Task-Motion Planning ===== * slides (pdf): {{courses:b4m36uir:lectures:b4m36uir-lec12-slides.pdf|}} * J. Benton, A. J. Coles and A. Coles: [[https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4699/4708 | Temporal planning with preferences and time-dependent continuous costs]], ICAPS, 2012, pp. 2-10. * S. Edelkamp, E. Plaku, Y. Warsame: [[https://link.springer.com/chapter/10.1007/978-3-030-30179-8_13 | Monte-Carlo Search for Prize-Collecting Robot Motion Planning with Time Windows, Capacities, Pickups, and Deliveries]]. KI, 2019, pp. 154-167. * S. Edelkamp, M. Lahijanian, D. Magazzeni, E. Plaku: [[https://ieeexplore.ieee.org/document/8405360|Integrating Temporal Reasoning and Sampling-Based Motion Planning for Multigoal Problems Wit Dynamics and Time Windows]]. IEEE Robotics Automation Letters, 3(4):3473-3480, 2018. * M. Fox and D. Long: [[https://www.jair.org/index.php/jair/article/view/10352| PDDL2.1: An extension to PDDL for expressing temporal planning domains]], Journal of Artificial Intelligence Research, 20:61-124, 2003. * E. Plaku, S. Rashidian, and S. Edelkamp: [[https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1688 | Multi-group motion planning in virtual environments]], Comput. Animation Virtual Worlds, 2016. * Y. Warsame, S. Edelkamp, E. Plaku: [[https://ieeexplore.ieee.org/document/9217008 | Energy-Aware Multi-Goal Motion Planning Guided by Monte Carlo Search]], CASE 2020, pp. 335-342. ===== 13. Multi-robot Systems ===== * slides (pdf): {{courses:b4m36uir:lectures:b4m36uir-lec13-slides-opt.pdf|}} * slides (original pdf 101 MB): {{courses:b4m36uir:lectures:b4m36uir-lec13-slides.pdf|}} --- //[[faiglj@fel.cvut.cz|Jan Faigl]] 2021/01/03 21:05// ====== Topics on Autonomous Navigation, Localization, and Mapping ====== ==== AA. Autonomous navigation ==== ---- == Slides == * slides: {{courses:b4m36uir:lectures:b4m36uir-navigation.pdf|}} * slides 2x2: {{courses:b4m36uir:lectures:b4m36uir-navigation-2x2.pdf|}} * slides 3x3: {{courses:b4m36uir:lectures:b4m36uir-navigation-3x3.pdf|}} * videos and supplementary materials: [[https://drive.google.com/drive/folders/1IsRFUU649gYp41Oish3HmMv2wKtSydhq?usp=sharing|available on google drive]] ---- == References == - Bonin-Font, Francisco, Alberto Ortiz, and Gabriel Oliver. //Visual navigation for mobile robots: A survey.// Journal of intelligent and robotic systems 53.3 (2008): 263-296. [[https://www.researchgate.net/profile/Gabriel_Oliver/publication/220062245_Visual_Navigation_for_Mobile_Robots_A_Survey/links/02bfe50e45bd503e58000000/Visual-Navigation-for-Mobile-Robots-A-Survey.pdf|pdf]] - Rodney Brooks. //Intelligence without representation.// Artificial Intelligence 91 [[http://sites.oxy.edu/rnaimi/pastCourses/cogsci-computers-reality/110Cogs-s07/SupplementaryFiles/Brooks--Intelligence-without-representation.pdf|pdf]] - Filliat, David, and Jean-Arcady Meyer. //Map-based navigation in mobile robots:: I. a review of localization strategies.// Cognitive Systems Research 4.4 (2003): 243-282. [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.1764&rep=rep1&type=pdf|pdf]] - Tomáš Krajník, Filip Majer et al. //Navigation without localisation: reliable teach and repeat based on the convergence theorem.// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. [[https://www.researchgate.net/publication/330591216_Navigation_without_localisation_reliable_teach_and_repeat_based_on_the_convergence_theorem|pdf]] ==== BB. Simultanneous Localisation and Mapping ==== ---- == Slides == * slides: {{courses:b4m36uir:lectures:b4m36uir-slam.pdf|}} * slides 2x2: {{courses:b4m36uir:lectures:b4m36uir-slam-2x2.pdf|}} * slides 3x3: {{courses:b4m36uir:lectures:b4m36uir-slam-3x3.pdf|}} * videos and supplementary materials: [[https://drive.google.com/drive/folders/1IsRFUU649gYp41Oish3HmMv2wKtSydhq?usp=sharing|available on google drive]] ---- == References == - Stachniss, Cyrill: Introduction to Robot Mapping [[https://www.youtube.com/watch?v=wVsfCnyt5jA|video]] - Cadena et al.: Past, Present and Future of SLAM: Towards the Robust-Perception Age. IEEE T-RO 2018. [[https://arxiv.org/pdf/1606.05830.pdf|pdf]] - Grissetti et al.: Tutorial on Graph-Based SLAM. ITS Magazine [[http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti10titsmag.pdf|pdf]] ==== CC. Long-term navigation and spatio-temporal mapping ==== ---- == Slides == * slides: {{courses:b4m36uir:lectures:b4m36uir-chronorobotics.pdf|}} * slides 2x2: {{courses:b4m36uir:lectures:b4m36uir-chronorobotics-2x2.pdf|}} * slides 3x3: {{courses:b4m36uir:lectures:b4m36uir-chronorobotics-3x3.pdf|}} * videos and supplementary materials: [[https://drive.google.com/drive/folders/1IsRFUU649gYp41Oish3HmMv2wKtSydhq?usp=sharing|available on google drive]] ---- == References == - Krajnik et al. //CHRONOROBOTICS: Representing the structure of time for service robots// In IJCRAI 2019. [[https://www.researchgate.net/publication/338411934_CHRONOROBOTICS_Representing_the_structure_of_time_for_service_robots|pdf]] - Kunze et al. //Artificial Intelligence for Long-term Autonomy: a survey.// IEEE RA-L 19. [[https://www.researchgate.net/profile/Marc_Hanheide/publication/326412563_Artificial_Intelligence_for_Long-Term_Robot_Autonomy_A_Survey/links/5b505e4b0f7e9b240fed28c4/Artificial-Intelligence-for-Long-Term-Robot-Autonomy-A-Survey.pdf|pdf]] - Krajnik et al. //Image Features for Visual T\&R Navigation in Changing Environments.// RASS 17. [[http://labe.felk.cvut.cz/~tkrajnik/articles/grief_2016_RAS.pdf|pdf]] - Halodova et al. //Predictive and adaptive maps for long-term visual navigation.// In IROS 19. [[https://www.researchgate.net/publication/338551801_Predictive_and_adaptive_maps_for_long-term_visual_navigation_in_changing_environments|pdf]]\\ - Krajnik et al. //FreMEn: Frequency map enhancement for long-term mobile robot autonomy in changing environments.//IEEE T-RO 2017. [[https://www.researchgate.net/profile/Tomas_Krajnik/publication/316004565_FreMEn_Frequency_Map_Enhancement_for_Long-Term_Mobile_Robot_Autonomy_in_Changing_Environments/links/59f44b41458515547c207b48/FreMEn-Frequency-Map-Enhancement-for-Long-Term-Mobile-Robot-Autonomy-in-Changing-Environments.pdf|pdf]] - Krajnik et al. // Warped Hypertime Representations for Long-termAutonomy of Mobile Robots// IEEE RA-L 2019.[[https://www.researchgate.net/profile/Tomas_Krajnik/publication/334288338_Warped_Hypertime_Representations_for_Long-Term_Autonomy_of_Mobile_Robots/links/5d4d603b92851cd046ade7e0/Warped-Hypertime-Representations-for-Long-Term-Autonomy-of-Mobile-Robots.pdf|pdf]] --- //[[krajnt1@fel.cvut.cz|Tomáš Krajník]] 2020/01/13 13:28//