STRUCTURED MODEL LEARNING (SML2019) SEMINAR 3.

Assignment 1. Let \mathcal{X} be a set of input observations and $\mathcal{Y} = \mathcal{A}^n$ a set of sequences of length n defined over a finite alphabet A. Let $h: \mathcal{X} \to \mathcal{Y}$ be a prediction rule that for each $x \in \mathcal{X}$ returns a sequence $h(x) = (h_1(x), \dots, h_n(x))$. Assume that we want to measure the prediction accuracy of h(x) by the expected Hamming distance $R(h) = \mathbb{E}_{(x,y_1,\dots,y_n)\sim p}(\sum_{i=1}^n [h_i(x) \neq y_i])$ where $p(x,y_1,\dots,y_n)$ is a p.d.f. defined over $\mathcal{X} \times \mathcal{Y}$. As the distribution $p(x, y_1, \dots, y_n)$ is unknown we estimate R(h) by the test error

$$R_{\mathcal{S}^{l}}(h) = \frac{1}{l} \sum_{j=1}^{l} \sum_{i=1}^{n} [\![y_{i}^{j} \neq h_{i}(x^{j})]\!]$$

where $S^l = \{(x^i, y_1^i, \dots, y_n^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, l\}$ is a set of examples drawn from i.i.d. random variables with the distribution $p(x, y_1, \ldots, y_n)$. What is the minimal number of the test examples l which we need to collect in order to guarantee that R(h) is in the interval $[R_{S^l}(h) - \varepsilon, R_{S^l}(h) + \varepsilon]$ with probability $1 - \delta$ at least where $\delta \in (0, 1)$? Write *l* as a function of ε , *n* and δ .

Hint: Use the Hoeffding's inequality

$$\mathbb{P}_{\mathcal{S}^{l} \sim p^{l}}\left(\left|R(h) - R_{\mathcal{S}^{l}}(h)\right| \ge \varepsilon\right) \le 2\exp\left(\frac{-2l\,\varepsilon^{2}}{(\ell_{\max} - \ell_{\max})^{2}}\right) \tag{1}$$

Assignment 2. Let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{Y}}$ be a finite hypothesis space, $\ell \colon \mathcal{Y} \times \mathcal{Y} \to [\ell_{min}, \ell_{max}]$ a loss function, $R(h) = \mathbb{E}_{(x,y)\sim p}(\ell(y,h(x)))$ the expected risk of a hypothesis $h \in \mathcal{H}$, $R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i)) \text{ the empirical risk of } h \in \mathcal{H} \text{ computed from examples}$ $\mathcal{T}^m = \{(x^i, y^i) \in \mathcal{X} \times \mathcal{Y} \mid i = 1, \dots, m\} \text{ drawn i.i.d. from } p(x, y). \text{ Prove that}$

$$\mathbb{P}_{\mathcal{T}^m \sim p^m} \left(\max_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right| \ge \varepsilon \right) \le 2|\mathcal{H}| \exp\left(\frac{-2m\varepsilon^2}{(\ell_{\max} - \ell_{\min})^2} \right)$$

holds for any $\varepsilon > 0$.

Hint:

- Start from the Hoeffding's inequality (1) which claims the same for the case when \mathcal{H} contains just a single hypothesis.
- Note that for a sequence of random variables A_1, \ldots, A_n it holds

$$\mathbb{P}\Big(\max_{i=1,\dots,n} A_i \ge \varepsilon\Big) = \mathbb{P}\Big((A_1 \ge \varepsilon) \lor (A_2 \ge \varepsilon) \lor \cdots \lor (A_n \ge \varepsilon)\Big)$$

• Exploit the identity $\mathbb{P}(A \lor B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \land B)$

Assignment 3. Assume we want to train a convolutinal neural network $h: \mathcal{X} \to \mathcal{Y}$ which minimizes the probability of classification error when predicting a label $y \in \mathcal{Y}$ from an image $x \in \mathcal{X}$. Assume $\mathcal{H} = \{h_t: \mathcal{X} \to \mathcal{Y} \mid t = 1, ..., T\}$ are CNNs obtained after 1, 2, ..., T training epochs when one epoch corresponds to running SGD though the entire training set. The final CNN h^* is selected out of \mathcal{H} by minimizing the validation error

$$R_{\mathrm{val}}(h) = \frac{1}{v} \sum_{i=1}^{v} \llbracket h(x^i) \neq y^i \rrbracket$$

where $\{(x^i, y^i) \in \mathcal{X} \times \mathcal{Y} \mid i = 1, ..., v\}$ are i.i.d. drawn validation examples. What is the minimal number of validation examples v which guarantees that the expected classification error is within the interval $(R_{\text{val}}(h^*) - 0.01, R_{\text{val}}(h^*) + 0.01)$ with probability 95% at least ? Write the number of examples as a function of T and evaluate it for T = 100.

Assignment 4. Let $\mathcal{G} \subseteq [a, b]^{\mathcal{Z}}$ be a set of functions $g: \mathcal{Z} \to [a, b]$ where $a, b \in \mathbb{R}$ and a < b. The *empirical Rademacher complexity* of \mathcal{G} w.r.t. to the sample $\mathcal{U}^m = \{z^1, \ldots, z^m\} \in \mathcal{Z}^m$ is

$$\hat{\mathfrak{R}}_m(\mathcal{G},\mathcal{U}^m) = \mathbb{E}_{\sigma \sim \text{Unif}\{-1,+1\}} \left[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^m \sigma_i g(z_i) \right]$$

Prove that $\hat{\mathfrak{R}}_m(\mathcal{G}, \mathcal{U}^m)$ is always non-negative and that it is 0 if \mathcal{G} contains just a single function.

Assignment 5. Assume a class of binary classifiers $\mathcal{H} \subseteq \{-1,+1\}^{\mathcal{X}}$. Let $\mathcal{Z} = \mathcal{X} \times \{+1,-1\}$ and $\mathcal{G} = \{\llbracket h(x) \neq y \rrbracket \mid h \in \mathcal{H}\}$ be a class of functions $g(z) = \llbracket y \neq h(x) \rrbracket$, i.e. composition of the 0/1-loss $\llbracket y \neq y' \rrbracket$ and the hypothesis $h \in \mathcal{H}$. Let $\mathcal{U}^m = \{z^i \in \mathcal{Z} \mid i = 1, \ldots, m\} = \{(x^i, y^i) \in \mathcal{X} \times \{+1, -1\} \mid i = 1, \ldots, m\}$ be a sample of points from $\mathcal{X} \times \{-1, +1\}$ and $\mathcal{V}^m = \{x^i \in \mathcal{X} \mid i = 1, \ldots, m\}$ be a projection of \mathcal{U}^m on the domain \mathcal{X} . The *empirical Rademacher complexity* of \mathcal{G} w.r.t. to the sample \mathcal{U}^m is

$$\hat{\mathfrak{R}}_m(\mathcal{G},\mathcal{U}^m) = \mathbb{E}_{\sigma \sim \mathrm{Unif}\{-1,+1\}} \left[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^m \sigma_i g(z_i) \right].$$

Similarly, the *empirical Rademacher complexity* of \mathcal{H} w.r.t. to the sample \mathcal{V}^m is

$$\hat{\mathfrak{R}}_m(\mathcal{H},\mathcal{V}^m) = \mathbb{E}_{\sigma \sim \text{Unif}\{-1,+1\}} \left[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^m \sigma_i h(x_i) \right]$$

Prove that $\hat{\mathfrak{R}}_m(\mathcal{G}, \mathcal{U}^m) = \frac{1}{2} \hat{\mathfrak{R}}_m(\mathcal{H}, \mathcal{V}^m).$

SEMINAR 3.