
STRUCTURED MODEL LEARNING (SML2019)
SEMINAR 3.

Assignment 1. Let X be a set of input observations and Y = An a set of sequences
of length n defined over a finite alphabet A. Let h : X → Y be a prediction rule
that for each x ∈ X returns a sequence h(x) = (h1(x), . . . , hn(x)). Assume that we
want to measure the prediction accuracy of h(x) by the expected Hamming distance
R(h) = E(x,y1,...,yn)∼p(

∑n
i=1[[hi(x) 6= yi]]) where p(x, y1, . . . , yn) is a p.d.f. defined over

X × Y . As the distribution p(x, y1, . . . , yn) is unknown we estimate R(h) by the test
error

RSl(h) =
1

l

l∑
j=1

n∑
i=1

[[yji 6= hi(x
j)]]

where S l = {(xi, yi1, . . . , yin) ∈ (X × Y) | i = 1, . . . , l} is a set of examples drawn
from i.i.d. random variables with the distribution p(x, y1, . . . , yn). What is the minimal
number of the test examples l which we need to collect in order to guarantee thatR(h) is
in the interval [RSl(h)− ε, RSl(h)+ ε] with probability 1− δ at least where δ ∈ (0, 1) ?
Write l as a function of ε, n and δ.

Hint: Use the Hoeffding’s inequality

PSl∼pl
(∣∣∣R(h)−RSl(h)∣∣∣ ≥ ε

)
≤ 2 exp

(
−2l ε2

(`max − `max)2

)
(1)

Assignment 2. Let H ⊆ YY be a finite hypothesis space, ` : Y × Y → [`min, `max] a
loss function, R(h) = E(x,y)∼p

(
`(y, h(x))

)
the expected risk of a hypothesis h ∈ H,

RT m(h) = 1
m

∑m
i=1 `(y

i, h(xi)) the empirical risk of h ∈ H computed from examples
T m = {(xi, yi) ∈ X × Y | i = 1, . . . ,m} drawn i.i.d. from p(x, y). Prove that

PT m∼pm

(
max
h∈H

∣∣∣∣R(h)−RT m(h)

∣∣∣∣ ≥ ε

)
≤ 2|H| exp

(
−2mε2

(`max − `min)2

)
holds for any ε > 0.

Hint:
• Start from the Hoeffding’s inequality (1) which claims the same for the case

whenH contains just a single hypothesis.
• Note that for a sequence of random variables A1, . . . , An it holds

P
(
max
i=1,...,n

Ai ≥ ε
)
= P

(
(A1 ≥ ε) ∨ (A2 ≥ ε) ∨ · · · ∨ (An ≥ ε)

)
• Exploit the identity P(A ∨B) = P(A) + P(B)− P(A ∧B)
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Assignment 3. Assume we want to train a convolutinal neural network h : X → Y
which minimizes the probability of classification error when predicting a label y ∈ Y
from an image x ∈ X . Assume H = {ht : X → Y | t = 1, . . . , T} are CNNs
obtained after 1, 2, . . . , T training epochs when one epoch corresponds to running SGD
though the entire training set. The final CNN h∗ is selected out ofH by minimizing the
validation error

Rval(h) =
1

v

v∑
i=1

[[h(xi) 6= yi]]

where {(xi, yi) ∈ X × Y | i = 1, . . . , v} are i.i.d. drawn validation examples. What is
the minimal number of validation examples v which guarantees that the expected clas-
sification error is within the interval (Rval(h

∗)− 0.01, Rval(h
∗) + 0.01) with probability

95% at least ? Write the number of examples as a function of T and evaluate it for
T = 100.

Assignment 4. Let G ⊆ [a, b]Z be a set of functions g : Z → [a, b] where a, b ∈ R
and a < b. The empirical Rademacher complexity of G w.r.t. to the sample Um =
{z1, . . . , zm} ∈ Zm is

R̂m(G,Um) = Eσ∼Unif{−1,+1}

[
sup
g∈G

1

m

m∑
i=1

σi g(zi)

]
.

Prove that R̂m(G,Um) is always non-negative and that it is 0 if G contains just a single
function.

Assignment 5. Assume a class of binary classifiers H ⊆ {−1,+1}X . Let Z = X ×
{+1,−1} and G = {[[h(x) 6= y]] | h ∈ H} be a class of functions g(z) = [[y 6= h(x)]],
i.e. composition of the 0/1-loss [[y 6= y′]] and the hypothesis h ∈ H. Let Um = {zi ∈
Z | i = 1, . . . ,m} = {(xi, yi) ∈ X × {+1,−1} | i = 1, . . . ,m} be a sample of points
from X × {−1,+1} and Vm = {xi ∈ X | i = 1, . . . ,m} be a projection of Um on the
domain X . The empirical Rademacher complexity of G w.r.t. to the sample Um is

R̂m(G,Um) = Eσ∼Unif{−1,+1}

[
sup
g∈G

1

m

m∑
i=1

σi g(zi)

]
.

Similarly, the empirical Rademacher complexity ofH w.r.t. to the sample Vm is

R̂m(H,Vm) = Eσ∼Unif{−1,+1}

[
sup
g∈G

1

m

m∑
i=1

σi h(xi)

]
.

Prove that R̂m(G,Um) = 1
2
R̂m(H,Vm).


