## STRUCTURED MODEL LEARNING (SS2019) <br> 6. SEMINAR

Assignment 1. Let $F$ be a $n \times n$ matrix with matrix elements $F_{i j}$ and $a, b \in \mathbb{R}_{+}^{n}$ be two nonnegative $n$-dimensional vectors such that their respective components sum up to 1 . Consider the following linear optimisation problem

$$
\begin{array}{ll} 
& \sum_{i j} F_{i j} \lambda_{i j} \rightarrow \min _{\lambda \geq 0} \\
\text { s.t. } & \sum_{j} \lambda_{i j}=a_{i} \forall i  \tag{1}\\
& \sum_{i} \lambda_{i j}=b_{j} \forall j
\end{array}
$$

This problem can be interpreted as a transportation problem, where $a$ is the vector of supplies, $b$ is the vector of demands and $F_{i j}$ is the unit transportation cost from supplier $i$ to consumer $j$.
a) Construct the dual problem for (1).
b) (submodular polyhedron) Assume that the matrix $F$ is submodular, i.e.

$$
F_{\tau}+F_{\sigma} \geq F_{\tau \vee \sigma}+F_{\tau \wedge \sigma},
$$

where $\tau$ and $\sigma$ denote multi-indices $(i, j)$ and the operations $\vee$ and $\wedge$ denote the element-wise maximum and minimum respectively. Prove that the transportation problem has an optimiser $\lambda^{*}$ such that its non-zero (matrix) elements $\lambda_{\tau}^{*}>0$ form a chain in the partially ordered multiindex space.
c) (Wasserstein distance) Consider the cost matrix $F_{i j}=|i-j|$. Prove that it is submodular. Show that the dual problem for this cost matrix can be further simplified to the task

$$
\begin{aligned}
& \quad \sum_{i} a_{i} x_{i}-\sum_{j} b_{j} x_{j} \rightarrow \max _{x} \\
& \text { s.t. } x_{i}-x_{j} \leq|i-j| \forall i, j .
\end{aligned}
$$

Assignment 2. Prove consistency of the maximum likelihood estimator for the exponential family

$$
p_{u}(x)=\frac{1}{Z} e^{\langle\Phi(x), u\rangle}
$$

under the assumptions $\|\Phi(x)\| \leq 1 \forall x$ and $u \in \mathcal{B}_{r}$, where $\mathcal{B}_{r}$ denotes the closed ball with radius $r$ centered at the origin.

