STRUCTURED MODEL LEARNING (SS2019) 6. SEMINAR

Assignment 1. Let F be a $n \times n$ matrix with matrix elements F_{ij} and $a, b \in \mathbb{R}^n_+$ be two nonnegative n-dimensional vectors such that their respective components sum up to 1. Consider the following linear optimisation problem

$$\sum_{ij} F_{ij} \lambda_{ij} \to \min_{\lambda \ge 0}$$

s.t.
$$\sum_{j} \lambda_{ij} = a_i \quad \forall i$$
$$\sum_{i} \lambda_{ij} = b_j \quad \forall j$$
(1)

This problem can be interpreted as a transportation problem, where a is the vector of supplies, b is the vector of demands and F_{ij} is the unit transportation cost from supplier i to consumer j.

a) Construct the dual problem for (1).

b) (submodular polyhedron) Assume that the matrix F is submodular, i.e.

$$F_{\tau} + F_{\sigma} \ge F_{\tau \lor \sigma} + F_{\tau \land \sigma},$$

where τ and σ denote multi-indices (i, j) and the operations \vee and \wedge denote the element-wise maximum and minimum respectively. Prove that the transportation problem has an optimiser λ^* such that its non-zero (matrix) elements $\lambda^*_{\tau} > 0$ form a chain in the partially ordered multi-index space.

c) (Wasserstein distance) Consider the cost matrix $F_{ij} = |i - j|$. Prove that it is submodular. Show that the dual problem for this cost matrix can be further simplified to the task

$$\sum_{i} a_{i} x_{i} - \sum_{j} b_{j} x_{j} \to \max_{x}$$

s.t. $x_{i} - x_{j} \le |i - j| \quad \forall i, j.$

Assignment 2. Prove consistency of the maximum likelihood estimator for the exponential family

$$p_u(x) = \frac{1}{Z} e^{\langle \Phi(x), u \rangle}$$

under the assumptions $\|\Phi(x)\| \leq 1 \ \forall x$ and $u \in \mathcal{B}_r$, where \mathcal{B}_r denotes the closed ball with radius r centered at the origin.