STRUCTURED MODEL LEARNING (SS2019) 1. SEMINAR

Assignment 1.* (Maximum entropy) Define a convex function $h: \mathbb{R} \rightarrow(-\infty,+\infty]$ by

$$
h(u)= \begin{cases}u \log u-u & \text { if } u>0 \\ 0 & \text { if } u=0 \\ +\infty & \text { if } u<0\end{cases}
$$

and a convex function $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ by

$$
f(x)=\sum_{i=1}^{n} h\left(x_{i}\right)
$$

(a) Prove f is strictly convex on \mathbb{R}_{+}^{n} with compact level sets.
(b) Suppose the map $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear with $G \hat{x}=b$ for some point \hat{x} in the interior of \mathbb{R}_{+}^{n}. Prove for any vector c in \mathbb{R}^{n} that the problem

$$
\inf \left\{f(x)+\langle c, x\rangle \mid G x=b, x \in \mathbb{R}^{n}\right\}
$$

has a unique solution \bar{x} lying in \mathbb{R}_{++}^{n}.
(c) Prove that some vector λ in \mathbb{R}^{m} satisfies $\nabla f(\bar{x})=G^{T} \lambda-c$, and deduce $\bar{x}_{i}=\exp \left(G^{*} \lambda-c\right)_{i}$.

Assignment 2. Consider a collection $\left\{S_{i} \mid i=1,2,3\right\}$ of three binary valued random variables, i.e., $s_{i} \in\{0,1\}$ for $i=1,2,3$. Suppose we fix all three pairwise marginal distributions $p_{i j}\left(s_{i}, s_{j}\right)=\mu\left(s_{i}, s_{j}\right)$, where

$$
\mu\left(s_{i}, s_{j}\right)= \begin{cases}\frac{1}{2} \alpha & \text { if } s_{i}=s_{j} \\ \frac{1}{2}(1-\alpha) & \text { otherwise }\end{cases}
$$

and α is a fixed real number from the interval $[0,1]$. We seek a simple joint distribution $p\left(s_{1}, s_{2}, s_{3}\right)$ that has the given marginals. Someone proposes the properly normalised product of μ-s

$$
\bar{p}\left(s_{1}, s_{2}, s_{3}\right)=\frac{1}{Z(\alpha)} \mu\left(s_{1}, s_{2}\right) \mu\left(s_{2}, s_{3}\right) \mu\left(s_{1}, s_{3}\right)
$$

Prove that the pairwise marginal distributions of \bar{p} do $\operatorname{not}(!)$ coincide with the function μ.
Assignment 3. Consider a collection $\left\{S_{i} \mid i=1,2,3\right\}$ of three binary valued random variables as in the previous assignment. Let us fix the following pairwise marginal distributions

$$
p\left(s_{1}, s_{2}\right)=\mu\left(s_{1}, s_{2}\right), \quad p\left(s_{1}, s_{3}\right)=\mu\left(s_{1}, s_{3}\right), \quad p\left(s_{2}, s_{3}\right)=\tilde{\mu}\left(s_{2}, s_{3}\right)
$$

where

$$
\mu\left(s_{i}, s_{j}\right)=\left\{\begin{array}{ll}
0.5 & \text { if } s_{i}=s_{j} \\
0 & \text { otherwise }
\end{array} \quad \tilde{\mu}\left(s_{i}, s_{j}\right)= \begin{cases}0.5 & \text { if } s_{i} \neq s_{j} \\
0 & \text { otherwise }\end{cases}\right.
$$

Do the μ-s represent a valid system of pairwise marginal distributions? I.e., is there a joint distribution $p\left(s_{1}, s_{2}, s_{3}\right)$ whose pairwise marginals coincide with the μ-s?

Assignment 4. Let $S=\left\{S_{i} \mid i \in V\right\}$ be a K-valued random field and let \mathcal{P} denote the set of all possible joint probability distributions $p: K^{|V|}=\mathcal{S} \rightarrow \mathbb{R}_{+}$, s.t. $\sum_{s \in \mathcal{S}} p(s)=1$.
a) Prove that the distribution $p \in \mathcal{P}$ with highest entropy is the uniform distribution. Prove that it factorises into the product of its unary marginal distributions.
b) Let us fix unary marginal distributions for each $S_{i}, i \in V$ by $p\left(s_{i}\right)=\mu_{i}\left(s_{i}\right)$. We assume that the functions $\mu_{i}: K \rightarrow \mathbb{R}_{++}$fulfil $\sum_{k \in K} \mu_{i}(k)=1$ for all $i \in V$.

Prove that the distribution

$$
p(s)=\prod_{i \in V} \mu_{i}\left(s_{i}\right)
$$

has the highest entropy among all joint distributions $p \in \mathcal{P}$ which have the given unary marginals. What happens if the functions μ_{i} are not necessarily strictly positive?
c) We equip V with the structure of an undirected graph (V, E). Let us fix pairwise marginal distributions for each pair of variables S_{i}, S_{j} where $\{i, j\} \in E$ by setting $p\left(s_{i}, s_{j}\right)=$ $\mu_{i j}\left(s_{i}, s_{j}\right)$. All functions $\mu_{i j}: K^{2} \rightarrow \mathbb{R}_{++}$fulfil

$$
\sum_{k, k^{\prime} \in K} \mu_{i j}\left(k, k^{\prime}\right)=1
$$

Furthermore, we assume that the system of μ-s represents a valid system of pairwise marginals, i.e. there exists at least one strictly positive joint distribution $\bar{p} \in \mathcal{P}$ whose pairwise marginal distributions coincide with μ-s.

Fill in details for the derivation in Section 1. of the lecture and prove that the distribution $p \in \mathcal{P}$ with highest entropy (among all those that have the given fixed pairwise marginals) has the form

$$
p_{u}(s)=\frac{1}{Z(u)} \exp \left[\sum_{i j \in E} u_{i j}\left(s_{i}, s_{j}\right)\right]
$$

where u-s are Lagrange multipliers which have to determined such that p has the required pairwise marginals.

