
STRUCTURED MODEL LEARNING
EXAM SS2020 (25P)

Assignment 1. (14p) Consider a linear classifier h : X × X → Y × Y predicting a pair of
labels (y1, y2) ∈ Y × Y from a pair of inputs (x1, x2) ∈ X × X based on the rule

h(x1, x2;θ) = argmax
y1∈Y,y2∈Y

(〈φ(x1),wy1〉+ 〈φ(x2),wy2〉+ g(y1, y2)) (1)

where φ : X → Rn is a feature map, wy ∈ Rn, y ∈ Y , are vectors and g : Y × Y → R
is a function. The vector θ ∈ Rn|Y|+|Y|2 encapsulates all parameters of the classifier, i.e.
vectors {wy ∈ Rn | y ∈ Y} and function values {g(y, y′) ∈ R | y ∈ Y , y′ ∈ Y}. Let
T m = {(xj1, x

j
2, y

j
1, y

j
2) ∈ (X 2×Y2) | j = 1, . . . ,m} and S l = {(xj1, x

j
2, y

j
1, y

j
2) ∈ (X 2×Y2) |

j = 1, . . . , l} be a set of training and testing examples, respectively, both being drawn from
i.i.d. random variables with a distribution p(x1, x2, y1, y2). The goal is to use T m to learn a
predictor h with small expected risk R(h) = E(x1,x2,y1,y2)∼p`

(
y1, y2, h1(x1), h2(x2)

)
, where

the loss `(y1, y2, ŷ1, ŷ2) = |y1 + y2 − ŷ1 − ŷ2| measures the absolute deviation between the
sum of the correct and the predicted labels.

The Structured Output SVM can learn parameters θ ∈ Rd of a linear classifier

h′(x1, x2) ∈ argmax
(y1,y2)∈Y2

〈θ,ψ(x1, x2, y1, y2)〉 , (2)

by solving a convex problem θ∗ = argminθ∈Rd

(
λ
2
‖θ‖2 + R̂(θ)

)
where λ > 0 is a regulariza-

tion constant, ψ : X 2 × Y2 → Rn is an input-output feature map, and

R̂(θ) =
1

m

m∑
i=1

max
(y1,y2)∈Y2

(
`(yi1, y

i
2, y1, y2) + 〈θ,ψ(xi1, xi2, y1, y2)−ψ(xi1, xi2, yi1, yi2)〉

)
.

a) (3p) Define ψ and θ such that (2) and (1) are equivalent.

b) (3p) Write a formula for computing the sub-gradient of R̂(θ).

c) (4p) Describe a variant of the Perceptron algorithm learning parameters θ such that the
classifier (1) predicts all examples from T m correctly provided such parameters exist.

d) (4p) Assume that we want to estimate the expected risk R(h) of the learned predictor h
by computing the test risk RSl(h) = 1

l

∑l
j=1 `(y

j
1, y

j
2, h1(x

j
1), h2(x

j
2)). What is the minimal

number of the test examples l we need to collect in order to guarantee that R(h) is in the
interval (RSl(h)− ε, RSl(h) + ε) with probability δ at least? Write l as a function of ε and δ.
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Assignment 2. (3p) Consider a binary valued Gibbs random field on a bipartite graph with
n+m nodes. Its distribution is given by

p(x, y) =
1

Z
exp
[
aTx+ xTWy + bTy

]
,

where x ∈ Bn and y ∈ Bm are the label vectors of the two node sets and B = {±1}. The
n ×m matrix W and the vectors a, b are model parameters. Explain how to learn them from
a training sample of pairs (x, y).

Assignment 3. (8p) Let x ∈ Bn denote n-dimensional binary vectors, where B = {±1}. Let
W be a symmetric, real valued n× n matrix. Consider the following parallel sampler on Bn.

T (xt+1 | xt) =
1

Z(xt)
exp[xTt+1Wxt]

a) Find a close form expression for the normalising factor Z(x). Hint: You may want to use
the cosh(x) = 1

2
(ex + e−x) function for this.

b) Prove that the sampler has a unique limiting distribution p∗(x).

c) Show that the limiting distribution is

p∗(x) = α
n∏
i=1

cosh(wT
i x),

where wi, i = 1, . . . , n denote the row vectors of the matrix W .

d) Check whether the sampler has the detailed balance property.


