
STRUCTURED MODEL LEARNING
EARLY TRACK EXAM SS2020 (24P)

Assignment 1. (4p)
Let X be a set of inputs and Y = An a set of sequences of length n defined over a finite
alphabet A. Let h : X → Y be a prediction rule that for each x ∈ X returns a sequence
h(x) = (h1(x), . . . , hn(x)). Assume that we want to measure the prediction accuracy of
h(x) by the expected Hamming distance R(h) = E(x,y1,...,yn)∼p(

∑n
i=1[[hi(x) 6= yi]]) where

p(x, y1, . . . , yn) is a p.d.f. defined over X ×Y . As the distribution p(x, y1, . . . , yn) is unknown
we estimate R(h) by the test error

RSl(h) =
1

l

l∑
j=1

n∑
i=1

[[yji 6= hi(x
j)]]

where S l = {(xi, yi1, . . . , yin) ∈ (X × Y) | i = 1, . . . , l} is a set of examples drawn from i.i.d.
random variables with the distribution p(x, y1, . . . , yn).

a) Assume that the sequence length is n = 10 and that we compute the test error from l =
1000 examples. What is the minimal probability that R(h) will be in the interval (RSl(h) −
1, RSl(h) + 1) ?

b) What is the minimal number of the test examples l which we need to collect in order to
guarantee that R(h) is in the interval (RSl(h) − ε, RSl(h) + ε) with probability δ at least?
Write l as a function of ε, n and δ.

Assignment 2. (8p)
Let X be a set of inputs and Y = An a set of hidden sequences of length n defined over
finite alphabet A. Let h : X → Y be a prediction rule that for each x ∈ X returns a sequence
h(x) = (h1(x), . . . , hn(x)) obtained solving

h(x) = argmax
(y1,...,yn)∈An

( n∑
i=1

q(x, yi) +
n∑
i=2

g(yi−1, yi)

)
(1)

where q : X × A → R and g : A × A → R are quality functions describing compati-
bility between input and hidden states. Let T m = {(xj, yj1, . . . , yjn) ∈ X × An | j =
1, . . . ,m} be a training set of examples drawn from i.i.d. random variables with a distribution
p(x, y1, . . . , yn). The goal is to learn q and g such that the predictor (1) has a small expected
Hamming distance R(h) = E(x,,y1,...,yn)∼p(

∑n
i=1[[hi(x) 6= yi]]) . To this end, we employ the

SO-SVM algorithm learning parameters w ∈ Rd of a linear classifier

h′(x) ∈ argmax
(y1,...,yn)∈An

〈w,φ(x, y1, . . . , yn)〉 (2)
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by solving a convex problem w∗ = argminw∈Rd

(
λ
2
‖w‖2 + R(w)

)
where λ > 0 is a regular-

ization constant and

R(w) =
1

m

m∑
i=1

max
(y1,...,yn)∈An

( n∑
j=1

[[yij 6= yj]] + 〈w,φ(xi, y1, . . . , yn)− φ(xi, yi1, . . . , yin)〉
)
.

a) Define w and φ such that (2) and (1) are equivalent.

b) Write a formula for the sub-gradient of R(w).

c) Describe a polynomial time algorithm which evaluates the risk R(w) and its subgradient
R′(w). How does the time complexity of the algorithm scale with the number of examples m,
sequence length n and the alphabet size |A|?

Assignment 3. (4p)
Consider the following two definitions of a stochastic binary neuron with output y = ±1 and
input x ∈ Rn

(1) pw(y | x) = 1/(1 + e−y〈w,x〉)
(2) y = sign

[
〈w, x〉 − z

]
where z is a random variable with standard logistic distribution.

Prove that the definitions are equivalent. Use the fact that the cumulative distribution function
of the logistic distribution is Fz(u) = 1/(1 + e−u).

Assignment 4. (8p)
Consider the task of semantic segmentation of images x : V → R3. Let us denote the segmen-
tations by y : V → K, where K is the set of labels. We want to use a discriminative model
combining a convolutional neural network and a Markov random field

pw(y | x) =
1

Z(x,w)
exp
[
−α

∑
ij∈E

|yi − yj|+
∑
i∈V

ui(yi, xCi
, w)
]
,

where ui(yi, xCi
, w) is the output of the CNN in pixel i ∈ V and Ci ⊂ V denotes its transitive

receptive field. The network parameters are denoted by w. The MRF parameter α is known.
We are given a training set of pairs (x, y) and want to learn the network parameters using the
maximum conditional likelihood estimate.

a) Show that learning the network parameters w by gradient descent requires computing mar-
ginal probabilities pw(yi | x).
b) Propose a suitable approximation algorithm for computing the required marginal probabil-
ities and explain it.


