
B(E)3M33UI — Exercise ML03:
Basis expansion for linear and logistic regression

Petr Pošík

March 3, 2020

Goals of this exercise:

• make linear models non-linear using basis expansion

• build a simple custom operator in scikit-learn

• construct pipelines in scikit-learn

• demonstrate that more flexible models achieve lower error on the training data

• show that different predictive models (in this case linear regression, logistic regression,
and support vector machine) have the same interface in scikit-learn.

The program code for this exercise is organized in several Python modules:

• ML03-1.py – main script for the first part (regression models)

• ML03-2.py – main script for the second part (classification models)

• ml03_utils.py – helper functions for loading data, plotting, error computations

• mapping.py – functions for basis expansion,

After completion, zip all the above files and hand in the archive via the Upload system (BRUTE).
If you will not manage to complete the exercise in the lab, finish it as a homework!

1 Non-linear regression models using linear regression and basis ex-
pansion

As in the previous exercise, we work with the auto-mpg.csv dataset, and study the relation of
horse power and displacement, i.e. we will build the model ĥp = h(disp). Run the ML03-1.py

script. It should plot the data and end up in an error (if no plot is shown use the function
plt.show() to invoke the plotting).

Task 1: Fill in the missing code in plot_1d_regr_model(), so that the example script will show
the predictions of the model given as a parameter.

Hints: Assume that the model argument is a sklearn predictive model, i.e. that it has a predict()

method. There is nothing new in this task, you have done this already in the last exercise.

Now, we can see the predictions of the linear model in a figure. We compute the mean
squared error of this model on the training data.

1



Task 2: Fill in the function compute_model_error(model,X,y,err_func), which takes a trained
model, the training data X,y, and the error function err_func, and produces the error of the
model.

Hints:

• Look at the function compute_err_mse(). You should be familiar with it, we implemented
it last week.

• Make the function compute_model_error universal in such a way that it can compute the
error of any predictive model, as long as a suitable err_func is provided by the user.

• In ML03-1.py, we supply the compute_err_mse function to the compute_model_error as the
error function (err_func) argument. Later in this exercise, we will provide a different
error function for classification models.

1.1 Basis expansion: polynomials

In this part of the exercise, we implement the basis expansion as a transformation usable in
the scikit-learn pipeline, i.e. it must implement the relevant APIs (functions: fit() and
transform().

We implement a simple polynomial mapping that transforms the data points from the fea-
ture space X to an image space containing X, X2, . . . , Xmax_deg, where the max_deg is the maxi-
mal degree of the polynomial.

Task 3: In mapping.py, implement the class PolynomialMapping:

• In case of transformations, the fit() method is used to train the transformation in an
unsupervised way. In our case, the transformation is fixed and does not depend on the
data; the fit method will be empty, but it must return self, i.e. the current instance of
the PolynomialMapping class.

• The transform() method performs the actual transformation (or mapping). In our case, it
takes a [m × D] matrix X, and returns a matrix of size [m × (max_deg · D)], where the first
block of D columns will be just a copy of X, the second block is X2 (meaning a matrix of
squares of items), etc.

Hints:

• You should be already able to concatenate Numpy arrays using numpy.hstack().

• You can test your solution in Python shell. By issuing the commands:

>>> pm = PolynomialMapping(2)
>>> pm.transform(X)

you should get a matrix with 2 columns, where the values in the second one are squares
of the values in the first one.

Now, we should learn about scikit-learn pipelines. They allow to chain a series of pre-
processing steps (transformations) with a final predictive model, making the whole sequence
effectively a single larger model, which can be used as a whole. In our case, we build a pipeline
of PolynomialMapping and LinearRegression.

Task 4: In ML03-1.py, fill in the missing code to

1. create an instance of PolynomialMapping class with degree 2,

2

http://scikit-learn.org/stable/developers/#apis-of-scikit-learn-objects
http://docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html
http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html


2. create an instance of a pipe containing the polynomial mapping and the linear regresion
model (which already exists in the workspace),

3. fit the pipe to the training data,

4. plot the pipe predictions in the graph, and

5. compute the error of the pipe (quadratic model).

Once the above part is finished, it shouldn’t be hard to embed it in a for-loop, so that we
will see a nice comparison of the linear, quadratic, cubic, quadratic and even higher order
polynomial models.

1.2 Comparison of polynomial models with increasing degree

Task 5: In ML03-1.py, fill in the missing code inside the for-loop, which shall for degrees from 1
to 4 create a pipeline containing the PolynomialMapping instance with the respective degree and
the linear regression model, fit the model, plot the model predictions in the graph and compute
the error for each of the model.

If successfully finished, you should see that with increasing flexibility of the model (increas-
ing degree), the error of the model measured on the training data gets smaller. This is a general
phenomenon and we shall study this in the next lectures.

2 Non-linear classification models using logistic regression and ba-
sis expansion

We shall now turn our attention to the script ML03-2.py. Run it, it will end up with an error, but
you should at least see the data points with color indicating their class.

Task 6: In ML03-2.py, fill in the code that would fit a logistic regression model to the data.

Hints:

• Take inspiration in ML03-1.py from the case with linear regresion.

• You should just create an instance of linear_model.LogisticRegression and fit it to the
data.

The script shall then continue by graphically showing the predictions and decision bound-
ary of the trained model.

Task 7: Implement the function compute_err_01, which shall return the average number of
incorrect predictions.

After completion of the above task, the script shall be able to compute the error rate of the
logistic regression model, and shall display it in the title of the figure.

2.1 Basis expansion: Pure polynomials

Task 8: In ML03-2.py, fill in the code that shall build a pipe containing an instance of PolynomialMapping
with certain degree and an instance of linear_model.LogisticRegression, fit the pipe to the
data, plot the classification of the model using plot_2d_class_model, and compute the error
rate of the model.

Hints:

3



• Again, take inspiration in ML03-1.py from the case with linear regression.

• All the building blocks are already present in the ML03-2.py in the case for logistic regres-
sion.

• Experiment a bit with the degree of the model.

Now, you shall see another figure showing the predictions of logistic regression with non-
linear decision boundary. The error rate printed in the figure title shall be a bit lower than in
case of the linear prediction, although the decision boundaries do not differ much (compared
by human eyes).

2.2 Basis expansion: Full polynomial mapping

Task 9: In mapping.py, implement the class FullPolynomialMapping. The PolynomialMapping

class produces only pure polynomials like X2
1 , X2

2 , X3
1 , X3

2 , etc. It does not produce the cross-
product terms X1X2, X2

1X2, X1X2
2 , etc. which shall be part of the FullPolynomialMapping. The

class shall be general in the respect that it can handle matrix X with any number of columns
and it shall work for any given maximal degree max_deg.

Hints:

• This task is a bit more involved. You may start by expecting that the matrix X contains 2
columns only (x and y coordinates), and you want to construct a full quadratic mapping
only, i.e. include terms X1, X2, X2

1 , X1X2, and X2
2 .

• If you want to implement the class in a general way (as required), you may use the func-
tion itertools.combinations_with_replacement. An example of its usage:

>>> from itertools import combinations_with_replacement
>>> list(combinations_with_replacement([0,1,2], 1))
[(0,), (1,), (2,)]
>>> list(combinations_with_replacement([0,1,2], 2))
[(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)]
>>> list(combinations_with_replacement([0,1,2], 3))
[(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2),
(0, 2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2)]

Do you see how the results can be used to generate

– the linear terms X1, X2, X3,

– the quadratic terms X2
1 , X1X2, X1X3, X2

2 , X2X3, X2
3 ,

– the cubic terms X3
1 , X2

1X2, X2
1X3, X1X2

2 , X1X2X3, X1X2
3 , X3

2 , X2
2X3, X2X2

3 , X3
3?

Task 10: In ML03-2.py, fill in the code that would build a pipe containing an instance of FullPolynomialMapping
with certain degree and an instance of LogisticRegression, fit the pipe to the data, plot the clas-
sification of the model using plot_2d_class_model, and compute the error rate of the model.

Hints:

• Experiment a bit with the degree of the model and observe the results.

4



2.3 SVM: Linear kernel

We shall now try to solve the same task by a support vector machine. For this task, we shall use
the sklearn.svm.SVC class. This can be used to create a support vector classifier with various
kinds of kernels.

Task 11: In ML03-2.py, fill in the code that shall instantiate a sklearn.svm.SVC model with linear
kernel, fit it to the data, plot the classification of the model using plot_2d_class_model, and
compute the error rate of the model.

Hints:

• The default kernel used by the SVC model is the RBF kernel. If we want to use a linear
kernel (to train the optimal separating hyperplane with soft margin), we have to specify
kernel='linear' when constructing the model instance like this:

model = sklearn.svm.SVC(kernel='linear')

• Observe the difference between the linear model trained by the logistic regression and
the linear model trained by the SVM algorithm.

2.4 SVM: RBF kernel

Task 12: In ML03-2.py, fill in the code that shall instantiate a sklearn.svm.SVC model with RBF
kernel, fit it to the data, plot the classification of the model using plot_2D_class_model, and
compute the error rate of the model.

Hints:

• The RBF kernel is the default one when constructing the instance of SVC class, you do not
need to specify it explicitly (but you can).

• If you do not see anything interesting in the figure, try to zoom in to see the neighborhood
of the data points in more detail.

• Try to set the gamma parameter of the SVC model to a value different from the default one,
e.g.

>>> model = sklearn.svm.SVC(gamma=0.005)

It is the parameter of the RBF kernel and this setting changes the widths of the RBF func-
tions.

• Experiment a bit with the gamma value.

3 Summary

We have seen several easy ways how to use algorithms for fitting linear models to create non-
linear ones, both in the regresssion and classification setting. We have also build a custom trans-
formation operator able to work in a pipeline with a predictive model. It was demonstrated
that the error of a model measured on the training data usually gets smaller with increasing
flexibility of the model. And we have also seen the support vector machine in action. But, we
still have no idea which of the models seen today shall be better for prediction!

Finish the exercise as a homework, ask questions on the forum, and upload the solution to
the BRUTE!

5

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

	Non-linear regression models using linear regression and basis expansion
	Basis expansion: polynomials
	Comparison of polynomial models with increasing degree

	Non-linear classification models using logistic regression and basis expansion
	Basis expansion: Pure polynomials
	Basis expansion: Full polynomial mapping
	SVM: Linear kernel
	SVM: RBF kernel

	Summary

