
Learning from Entailment in First-Order Setting

B4M36SMU

In the last tutorial, we focused on relational lgg and rlgg. In this tutorial, we will have a look at a
first-order logic version of the former (as the latter follows trivially).

LGG

Almost everything stays the same as in the relational lgg. The only new things that FOL adds are
functions, i.e. functions symbols from which one can construct compound terms. Therefore, we have to
define lgg such that it can handle even compound terms.

Constructing lgg of two terms: The basic step to compute lgg of two clauses is to compute firstly
lgg of two terms t1 and t2.

• The simplest rule comes with resolving two constants: if these two constants are equal, then return
the constant.

• The second simplest rule comes with resolving two variables or one constant and a variable, e.g.
t1 = Adam and t2 = x. In this situation, lgg returns a new variable for the tuple, in this case
(Adam, x).

• (!) The third rule to compute lgg of two terms is applicable when at least one of them is a
compound term. If there is only one compound term, e.g. t1 = fatherOf(Adam) and t2 = x,
or function symbols of the terms differ, e.g. t1 = fatherOf(Adam) and t2 = motherOf(Adam),
lgg returns a new variable for this tuple (similarly to the basic rule). Finally, if both terms have
the same function symbol, e.g. t1 = fatherOf(Adam) and t2 = fatherOf(x); then lgg returns a
compound term with the same function symbol applied to lgg-ed arguments of these compound
terms, e.g. fatherOf(LGG(Adam, x)) which equals to father(xAdam,x).

• However, it is important to note that each pair of terms (t1, t2) is anti-unified with exactly one
variable, where t1 is a term from l1 and t2 is a term from l2.

We can sum up these rules in the following pseudocode1:

LGG(A, t) =

{
A A = t
xA,t otherwise

LGG(x, y) = xx,y

LGG(f(. . . ), x) = xf(... ),x

LGG(f(t1, . . . ), f
′(t′1, . . . )) =

{
xf(t1,... ),f ′(t′1,... )

f 6= f ′

f(LGG(t1, t
′
1), . . . ) otherwise

Where A is a constant, t is an arbitrary term, x and y are variables, and f/n is a function symbol of
arity n. New variables are denoted either by tuples they represent, e.g. xA,t.

1Recall that lgg is a symmetric operator, thus these rules behave similarly for symmetric inputs.

1



Constructing lgg of two clauses: Stays the same as in the previous tutorial, i.e.:

LGG(γ1, γ2) =
∨

l1∈γ1,l2∈γ2
compatibleLiterals(l1,l2)

LGG(l1, l2)

LGG(p(t1, t2, . . . ), p(t
′
1, t

′
2, . . . )) = p(LGG(t1, t

′
1), LGG(t2, t

′
2), . . . )

Where p is a predicate symbol, l is a literal and both γ1 and γ2 are clauses. The compatibleLiterals is a
function which returns true iff both of its arguments have the same negation sign and the same predicate.
Once again, recall from the lecture that lgg is a symmetric, commutative, and associative operator.

Exercise

• Does this equation lgg(p(x, f(A), A), p(f(A), x, A)) = p(x′, y′, z′) hold? If not, why?

• Compute unification and anti-unification (lgg) of γ1 = p(A, x, f(x)) and γ2 = p(y, f(B), f(f(B))),
[1]. Write down γ1, γ2 and the results obtained to visualize the lattice induced by θ-subsumption.

• Find two clauses (universally quantified disjunctions) γ1 and γ2 for which γ1 |= γ2 and γ1 6⊆θ γ2
hold.

Solution:

• No. Although the resulting clause θ-subsumes the input ones, it is not the least – the correct result
is p(x, y,A).

• lgg(γ1, γ2) = p(x, y, f(y)), unification of γ1 and γ2 is p(A, f(B), f(f(B))).

p(xA,y, xx,f(B), f(xx,f(B)))

p(A, x, f(x)) p(y, f(B), f(f(B)))

p(A, f(B), f(f(B)))

θ1 = {xA,y 7→ A, xx,f(B) 7→ x}
θ2 = {xA,y 7→ y, xx,f(B) 7→ f(B)}

θ3 = {x 7→ f(B)}
θ4 = {y 7→ A}

Lgg of γ1 and γ2 is at the top of the lattice. Corresponding substitutions lie on edges to show
how a clause higher in the lattice can θ-subsume a lower clause. At the bottom, the unification of
γ1 and γ2 lies; see, the most general unifier (mgu) is θmgu = {x 7→ B, y 7→ A}.

new variable γ1 (θ1) γ2 (θ2)
xA,y A y
xx,f(B) x f(B)

• We need self-resolving clauses, e.g. γ1 = n(x) =⇒ n(s(x)) and γ2 = n(x) =⇒ n(s(s(x))).

References

[1] Shan-Hwei Nienhuys-Cheng and Ronald De Wolf. Foundations of inductive logic programming.
Vol. 1228. Springer Science & Business Media, 1997.

2


