
Symbolic Machine Learning
Lecture Slides

Filip Železný

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

A General Framework

A General Framework 2 / 265

Agent Interacts with Environment

Agent Environment

Percepts

Actions

Discrete time
k = 1, 2, . . .

Percepts
∀k : xk ∈ X

Actions
∀k : ak ∈ A

A General Framework Percepts and Actions 3 / 265

Histories, Probability, Agent’s Policy

Interaction or history up to time m which we denote as xa≤m

xa≤m = x1, a1, x2, a2, . . . , xm, am

starts with a percept (arbitrary choice but stick to it) and has probability

P(xa≤m) = P(x1)P(a1|x1)P(x2|x1, a1) . . .P(xm|xa<m)P(am|xm, xa<m)

The P(x1) and P(xk |.) factors depend on the stochastic environment while
P(ak |.) factors depend on the agent. We will only assume deterministic
agents so

P(ak |xa<k , xk) =

{
1 if ak = π(xa<k , xk)

0 otherwise

where π(xa<k , xk) is the agent’s policy.

A General Framework Percepts and Actions 4 / 265

Rewards

The environment rewards the agent depending on its past actions.
Formally, rewards rk ∈ R ⊂ R are a distinguished part of percepts

xk = 〈ok , rk〉

while everything else in the percepts are observations ok ∈ O. The set R
of possible rewards must be bounded, i.e., for some a, b ∈ R and all r ∈ R,
a ≤ r ≤ b.

Notes:

Rewards, as part of percepts, generally depend on the entire history.
A long sequence of ‘good’ actions may be needed for a high reward.
Example: chess-game with the only ‘win’ reward at the end.

r1 is immaterial.

A General Framework Rewards and Goals 5 / 265

Policy Value

The agent’s goal is to maximize the value V π of its policy π, defined as:

for a finite time horizon m ∈ N, the expected cumulative reward

V π = E

(
m∑

k=1

rk

)
=
∑
x≤m

P(x≤m|a<m)(r1 + r2 + . . .+ rm)

Remind that xk = (ok , rk) and ak = π(x≤k).

for the infinite horizon, use a discount sequence δk such that∑∞
i=1 δi <∞ (usually δk = γk , 0 < γ < 1), and maximize

V π = E

(∞∑
k=1

rkδk

)
= lim

m→∞

∑
x≤m

PR(r≤m|a<m)
m∑

k=1

rkδk

A General Framework Rewards and Goals 6 / 265

Policy Value: Remarks

P(x≤m|a<m) means the probability of sequence x1, . . . , xm given actions
a1, . . . , am−1. If the environment did not depend on agent’s actions, we
would have just

P(x≤m) = P(x1)P(x2|x1) . . .P(xm|xm−1, . . . , x1)

with actions, we have

P(x≤m|a<m) = P(x1)P(x2|x1, a1) . . .P(xm|xm−1, am−1 . . . , x1, a1)

So, e.g., for m = 2, the value of policy π would be:

V π = E

(
2∑

k=1

rk

)
=
∑
x1,x2

P(x1)P(x2|x1, a1)(r1 + r2)

V π where the sum is over all possible sequences x1, x2 of percepts.

A General Framework Markovian Settings 7 / 265

Policy Value: Remarks (cont’d)

Remind that the rewards rk are components of the percepts xk = 〈ok , rk〉
and that ak = π(xa<k , xk) so we can write fully explicitly (still for m = 2):

V π =
∑

〈o1,r1〉,〈o2,r2〉

P (〈o1, r1〉)P(〈o2, r2〉 | 〈o1, r1〉 , π(〈o1, r1〉))(r1 + r2)

For an infinite horizon, we just need to multiply rk by a coefficient that
decays sufficiently quickly, e.g. γk and then

V π = lim
m→∞

E

(
m∑

k=1

γk rk

)

A General Framework Markovian Settings 8 / 265

Markovian Environments

A Markovian or state-based environment is one for which a state variable
s : N→ S and distributions Px ,PS exist such that S has bounded size and

P(xk |xa<k) = Px(xk |sk), i.e., xk depends only on the current state.
The assumption is strong because S is bounded and cannot contain a
state for each possible history xa<k as k →∞.

State sk+1 (k ≥ 1) is distributed according to PS(sk+1|sk , ak), i.e., it
depends only the previous state and the action taken on it by the
agent. The initial state is distributed by PS(s1).

Note: since Px(xk |sk) = Px(〈ok , rk〉 |sk), both ok+1 and rk+1 depend solely
on the state sk+1. Sometimes it is more convenient to model the reward
rk+1 as distributed by Pr (rk+1|sk , ak) instead and we will use both options.

A General Framework Markovian Settings 9 / 265

Markovian Agents

A Markovian or state-based agent is one for which a state variable
t : N→ T and functions π,T exist such that T has bounded size and

π(x≤k) = π(tk , xk). Since T is bounded, some different histories will
result in the same action of the agent. One can view tk as agent’s
flexible (learnable) decision model while π its fixed interpreter.

For k > 1, tk+1 = T (tk , xk+1), i.e., it depends only on the previous
state and the latest percept (t1 is some initial state). T is the state
update function, which will be the core of learning.

Note: since π(tk , xk) = π(tk , (ok , rk)), the policy depends also on rk .
Usually, it suffices to consider dependence only on ok by π(tk , ok). And
since both ok , rk can be stored as part of tk by the update function, one
may even use π(tk) as done on the next page.

A General Framework Markovian Settings 10 / 265

Markovian Interaction Model

We now have a general structure in which to study learning:

Agent Environment
actions: a = π(tk) percepts: xk ∼ Px(xk |sk)
state update: tk = T (tk−1, xk) state update: sk ∼ PS(sk |sk−1, ak−1)

Agent

t

T

π

k − 1

Environment

s

PS

Px

k − 1

k − 1

x

a

A General Framework Markovian Settings 11 / 265

Terminal States, Proper Policies

We can distinguish some states from S as terminal. If sk is terminal then
sk+1 is sampled independently of sk , ak from Ps(sk+1), i.e. just like the
initial state s1. The interaction history between a terminal (or initial) state
and the next terminal state is called an episode.

Informally, the environment is ‘restarted’ after a terminal state. However,
the agent is not restarted (tk+1 = T (tk , xk+1)), so it can learn from one
episode to another.

For a given environment, a policy π is proper if it is guaranteed to achieve
a terminal state.

With a proper policy, we can modify the agent’s goal as to maximize
E (
∑m

k=1 rk) where sm is the first terminal state in the interaction (no
need for a discount factor).

A General Framework Markovian Settings 12 / 265

Reinforcement Learning

Reinforcement Learning 13 / 265

Reinforcement Learning

Reinforcement learning is a collection of techniques by which the agent
achieves high rewards in the state-based (Markovian) setting under two
assumptions:

Environment fully observable, i.e., O = S and for ∀k: ok = sk .

Reward is a function of current state: ∀k : rk = r(sk).

There is no PX anymore because percepts are here a function of states

xk = (ok , rk) = (sk , r(sk))

The environment is described by the update (transition) distribution PS

and the reward function r , both of which are unknown to the agent.

Reinforcement Learning Introduction 14 / 265

Reinforcement Learning: Example

Agent should learn to get from START to the +1 goal in the grid world.
The -1 goal should be avoided.

Effects of actions (moves) are uncertain.

1

2

3

1 2 3 4

START

0.8

0.10.1
–1

+ 1

Images in the RL part: AIMA book (Russel, Norvig), RL Book (Sutton, Barto)

Reinforcement Learning Introduction 15 / 265

Formalizing the Example in the Markovian Setting

1

2

3

1 2 3 4

START

–1

+ 1

Env. states S = { 1, 2, 3, 4 } × { 1, 2, 3 } \ { (2, 2) } correspond to agent’s
positions on the grid. States (4, 3) and (4, 2) are terminal,
with respective rewards 1 and −1.

Percepts X = S × R

Agent states T encode possible agent’s decision models. Depend on the
chosen implementation of an agent (we will study that).

Actions A = { left, right, up, down }.

Reinforcement Learning Introduction 16 / 265

Formalizing the Example (cont’d)

Actions have uncertain effects on the environment state.

1

2

3

1 2 3 4

START

0.8

0.10.1
–1

+ 1

Prescribed by distribution PS(sk+1|sk , ak). Here e.g.

PS(〈3, 2〉 | 〈3, 1〉 , up) = 0.8

PS(〈2, 1〉 | 〈3, 1〉 , up) = 0.1

PS(〈4, 1〉 | 〈3, 1〉 , up) = 0.1

Bouncing: if outcome sk+1 out of grid, then sk+1 := sk .

Reinforcement Learning Introduction 17 / 265

Agent State, Fixed Policy

Agent state tk contains the agent’s model at
time k, prescribing the action (decision) policy

ak = π(tk , sk)

In the simplest case, tk may be a static lookup
table Π (see on right)

π(Π, sk) = Π[sk]

When the agent state does not change with k as
here, we call the policy fixed. Of course, fixed
policy means no learning. In this case we can
omit the first argument, writing just π(sk).

–1

+1

1

2

3

1 2 3 4

s Π[s]
〈1, 1〉 up
〈1, 2〉 up
〈1, 3〉 right
〈2, 1〉 left
〈2, 3〉 right
〈3, 1〉 left
〈3, 2〉 up
〈3, 3〉 right
〈4, 1〉 left

Reinforcement Learning Introduction 18 / 265

State Utility Under a Fixed Policy

Given a fixed policy π, how good is it to be in state sk at time k? The
better, the higher the expected utility of the state (under that policy):

Uπ(sk) = E

[∞∑
i=0

γ i r(sk+i)

]
= r(sk) + γUπ(sk+1)

where 0 < γ < 1 is the discount factor. If π is proper, we can have γ = 1,
summing only up to the first terminal state sk+i .

Since sk+1 (k ≥ 1) are distributed by PS(sk+1|sk , ak), we can write this as

Uπ(sk) = r(sk) + γ
∑
s∈S

PS(s|sk , π(sk))Uπ(s)

Reinforcement Learning Introduction 19 / 265

Optimal Policy, State Utility

π∗ = arg max
π

Uπ(s)

is called the optimal policy.

Which policy π : S → A is optimal depends on a state s by this definition.
However, it can be shown that any s ∈ S yields the same π∗.

Considering the definition of Uπ(sk), π∗ maps each sk (k > 1) to an
action maximizing the expected utility of the next state

π∗(sk) = arg max
a∈A

∑
s∈S

PS(s|sk , a)U(s)

U(s) = Uπ∗(s) is called the state utility (without adjectives).

Reinforcement Learning Introduction 20 / 265

Computing an Optimal Policy

So if the agent knows PS and r , it can decide optimally by

ak = arg max
a∈A

∑
s∈S

PS(s|sk , a)U(s)

For this, it first needs to compute U(s) for all s ∈ S . They are solutions of
|S | non-linear Bellman equations (one for each s ∈ S)

U(s) = r(s) + γmax
a∈A

∑
s′∈S

PS(s ′|s, a)U(s ′)

These can be solved by the value iteration algorithm known from the
theory of Markov Decision Processes.

(Note: PS , r , S ,A, γ define an MDP, π∗ is its solution.)

Reinforcement Learning Introduction 21 / 265

Optimal Policy and State Utilities

–1

+1

1

2

3

1 2 3 4 1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

Optimal policy (left) and state utilities (right) for γ = 1 and r(s) = −0.04
for all non-terminal states s

Reinforcement Learning Introduction 22 / 265

Optimal Policies Under Different Rewards

1 2 3

1

2

3 + 1

–1

4

–1

+1

 r(s) < –1.6284

– 0.0221 < r(s) < 0

–1

+1

–1

+1

–1

+1

r(s) > 0

– 0.4278 <r(s) < – 0.0850

Optimal policy for γ = 1
and r(s) = −0.04 for
non-terminal states s.

Optimal policies for γ = 1 and
different ranges of r(s) for
non-terminal states s.

Reinforcement Learning Introduction 23 / 265

Learning an Optimal Policy

What if Ps and r are not known?

1 If the agent knows the state utilities, it can determine an optimal
policy.

2 State utilities can be estimated by interacting with the environment.
But for this interaction, some policy is needed.

So 1 and 2 must be somehow interleaved.

We will first look at 2. The agent will be prescribed a fixed policy. Such
an agent is called passive.

Then we will see how to combine 1 with 2.

Reinforcement Learning Introduction 24 / 265

Passive Direct Utility Estimation Agent

Follows a fixed proper policy π - see example on right.
Policy formally extended with end actions to indicate
terminal states (needed for later pseudo-codes).

With γ = 1, agent’s estimate of Uπ(s) for state s at
time k is the average of all rewards-to-go of s until k .

A reward-to-go of s is the sum of rewards from s till
the end of the current episode. If s visited multiple
times in one episode, then that episode produces
multiple rewards-to-go to include in the average.

s Π[s]
〈1, 1〉 up
〈1, 2〉 up
〈1, 3〉 right
〈2, 1〉 left
〈2, 3〉 right
〈3, 1〉 left
〈3, 2〉 up
〈3, 3〉 right
〈4, 1〉 left
〈4, 2〉 end
〈4, 3〉 end

Example: estimate utility of state (1, 2) over 3 episodes in the grid:

(1, 1)−.04 → (1, 2)−.04 → (1, 3)−.04 → (1, 2)−.04 → (1, 3)−.04 → (2, 3)−.04 → (3, 3)−.04 → (4, 3)+1 . . . 0.76, 0.84
(1, 1)−.04 → (1, 2)−.04 → (1, 3)−.04 → (2, 3)−.04 → (3, 3)−.04 → (3, 2)−.04 → (3, 3)−.04 → (4, 3)+1 . . . 0.76
(1, 1)−.04 → (2, 1)−.04 → (3, 1)−.04 → (3, 2)−.04 → (4, 2)−1 . . . no occurrence

So the estimate is (0.76 + 0.84 + 0.76)/3.

Reinforcement Learning Passive Reinforcement Learning 25 / 265

Passive DUE Agent: Properties

The DUE Agent does not make use of the known dependence between
state utilities

Uπ(sK) = r(sK) + γ
∑
s∈S

PS(s|sK , π(sK))Uπ(s)

E.g. below the newly explored state will likely have low utility due to the
neighbor state (already explored). The agent does not ‘know’ this.

Slow convergence is a consequence.

Reinforcement Learning Passive Reinforcement Learning 26 / 265

Passive Adaptive Dynamic Programming Agent

Instead of computing Û directly from samples, learn a model of PS and r
and compute Û from them.

For r , just collect an array r̂ [s] of observed rewards for observed states.

For PS(s ′|s, a), collect the counts N[s ′, s, a] of observed triples of action a
taken in state s and resulting in state s ′. Then estimate:

PS(s ′|s, a) ≈ N[s ′, s, a]∑
s′′∈S N[s ′′, s, a]

The policy evaluation algorithm (as known from MDP’s) takes r̂ and N,
and produces Û.

Reinforcement Learning Passive Reinforcement Learning 27 / 265

Policy Evaluation: Reminder of Pre-Requisite Material

State utilities should satisfy

Uπ(s) = r(s) + γ
∑
s′∈S

PS(s ′|s, π(s))Uπ(s ′)

The policy evaluation plugs in the model N[s′,s,a]∑
s′′∈S N[s′′,s,a] and r̂ of PS(s ′|s, a)

and r , and calculates Û by value iteration for all s ∈ S until convergence:

Û[s]← r̂ [s] + γ
∑
s′∈S

N[s ′, s, π(s)]∑
s′′∈S N[s ′′, s, π(s)]

Û[s ′]

This is a system of linear assignments, so instead of iterating them, the
corresponding equations can be solved through matrix algebra in O(|S |3)
time.

Reinforcement Learning Passive Reinforcement Learning 28 / 265

Passive ADP Agent: Design

Agent’s state is a tuple

tk =
〈

Π, soldk ,Nk , r̂k , Ûk

〉

Π: fixed decision array (as in the DUE agent)

soldk : last seen state

Nk : 3-way contingency array indexed by [s ′ ∈ S , s ∈ S , a ∈ A].

r̂k : reward array indexed by s ∈ S .

Ûk : state utility estimate array indexed by s ∈ S .

The last four variables are initially (k = 1) filled with the none value.

Reinforcement Learning Passive Reinforcement Learning 29 / 265

Passive ADP Agent: Design (cont’d)

Update step tk+1 = T (tk , xk) where tk =
〈

Π, soldk ,Nk , r̂k , Ûk

〉
and

xk = (rk , sk):

soldk+1 = sk Current state is stored for use at next
update.

Nk+1[sk , s
old
k ,Π[soldk]]

= Nk [sk , s
old
k ,Π[soldk]] + 1 Contingency array is incremented.

r̂k+1[sk] = rk Reward observed for the current state
is stored.

Ûk+1 =
policy eval(Nk+1, r̂k+1) Utilities are estimated by the policy

evaluation algorithm.

Reinforcement Learning Passive Reinforcement Learning 30 / 265

Passive Temporal Difference Agent

In the passive temporal difference agent, the expensive policy evaluation of
the ADP agent is replaced by only local changes.

〈1, 3〉
Uπ = 0.84
r = −0.04

〈2, 3〉
Uπ = 0.92
r = −0.04

If there was no other transition from (1, 3), then with γ = 1, Uπ((1, 3))
should be changed to

Û[(1, 3)]← −0.04 + γÛ[(2, 3)] = 0.88

In the general case, we make a small iteration for each executed transition:

Ûk+1[sk] = Ûk [sk] + α
(
rk + γÛk [sk+1]− Ûk [sk]

)
where α decreases with the number of times sk has been visited.

Reinforcement Learning Passive Reinforcement Learning 31 / 265

Passive TD Agent: Design

Agent’s state is a tuple

tk =
〈

Π, soldk , roldk ,Nk , Ûk , α
〉

Π: fixed decision array (as in the DUE and ADP agents)

soldk : last seen state, sold1 = none

roldk : last reward, rold1 = 0

Nk : state frequency array addressed by s, N1 filled with zeros.

Ûk : state utility estimate array addressed by s ∈ S . Û1 filled with
none.

α : N→ R: a positive, monotone decreasing function

Note: no model of PS or r ! roldk just remembers a single (last state)
reward.

Reinforcement Learning Passive Reinforcement Learning 32 / 265

Passive TD Agent: Design (cont’d)

Update step tk+1 = T (
〈

Π, soldk , roldk ,Nk , Ûk , α
〉
, (rk , sk))

soldk+1 = sk , roldk+1 = rk Current observation and reward
are stored for use at next update.

Nk+1[sk] = Nk [sk] + 1 Frequency array is is incremented
for s = sk

Ûk+1[sk] = rk iff Ûk [sk] = none Utility set to reward for a newly
visited state.

and iff soldk 6= none:

Ûk+1[soldk] = Ûk [soldk] + α(Nk [sk])
(
rk + γÛk [sk]− Ûk [soldk]

)
Π and α do not change. N and Û retain values for all non-indicated
arguments.

Reinforcement Learning Passive Reinforcement Learning 33 / 265

ADP (top) vs TD (bottom)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

U
ti

li
ty

 e
st

im
at

es

Number of episodes

(1,1)
(1,3)

(3,2)

(3,3)
(4,3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

R
M

S
er

ro
r

in
 u

ti
li

ty

Number of episodes

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

U
ti

li
ty

 e
st

im
at

es

Number of episodes

(1,1)
(1,3)

(2,1)

(3,3)
(4,3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

R
M

S
er

ro
r

in
 u

ti
li

ty

Number of episodes

Reinforcement Learning Passive Reinforcement Learning 34 / 265

Passive Agents – Discussion

Direct utility estimation

simple to implement, model-free,
each update is fast,
does not exploit state dependence and thus converges slowly,

Adaptive dynamic programming

harder to implement, model-based,
each update is a full policy evaluation (expensive),
fully exploits state dependence, fastest convergence in terms of
episodes,

Temporal difference learning

similar to DUE: model-free, update speed and implementation
partially exploits state dependence but does not adjust to all possible
successors,
convergence in between DUE and ADP.

Reinforcement Learning Passive Reinforcement Learning 35 / 265

Active ADP Agent

Change the passive ADP agent into an active one following the optimal
policy principle:

ak = π∗(tk , sk) = arg max
a∈A

∑
s∈S

PS(s|sk , a)U(s)

With models Nk , Ûk of PS ,U stored in tk =
〈

Π, s ′k ,Nk , r̂k , Ûk

〉
, this gives:

ak = π(tk , sk) = arg max
a∈A

∑
s∈S

Nk [s, sk , a]∑
s′∈S Nk [s ′, sk , a]

Ûk [s]

Note that Nk , Ûk evolve by following the agent’s policy π, which in turn
depends on them.

This agent is greedy: never chooses a sub-optimal (w.r.t. Ûk) state just to
explore it. If π were optimal that would be OK but ...

Reinforcement Learning Active Reinforcement Learning 36 / 265

Greedy ADP Agent: Properties

–1

+1

1

2

3

1 2 3 4 1 2 3

1

2

3

–1

+1

4

Optimal policy
Policy learned by Greedy
ADP

Agent did not learn an optimal policy because it followed an
inaccurate model of PS ,U.

Agent did not learn an accurate model of PS ,U because it did not
follow an optimal policy.

Reinforcement Learning Active Reinforcement Learning 37 / 265

N-Armed Bandit

Converging to an optimal strategy requires exploration, i.e. actions
suboptimal w.r.t. the current utility model.

Easily demonstrated in a setting even simpler than reinforcement learning.

The n-armed bandit problem.:

set of actions A and rewards R

Agent repeatedly picks a ∈ A and gets r ∈ R
according to Pr |a(r |a)

No states, just a series of independent trials

Agent’s goal: without knowing Pr |a,
maximize mean of received rewards.

Reinforcement Learning Active Reinforcement Learning 38 / 265

N-Armed Bandit: Greedy vs. Explorative

Optimal strategy: a = arg maxa∈A E (r |a) = arg maxa∈A
∑

r∈R Pr |a(r |a)r

Without knowing Pr |a, the agent first tries each action a ∈ A exactly once,
storing the received rewards r̂ [a] = r and then iterate one of:

Greedy approach: a = arg maxa∈A r̂ [a] (would be optimal if r̂ [a] = E (r |a))

Explorative approach: with some 0 < ε < 1:

a =

{
arg maxa∈A r̂ [a] with probability 1− ε
random action with probability ε

(1)

updating r̂ [a] to the mean of all rewards seen for a.

Reinforcement Learning Active Reinforcement Learning 39 / 265

Exploration vs. Exploitation

Greedy (green) performs
poorly: not enough
exploration to estimate r̂ .

But once r̂ is accurate, it is
better to exploit it by the
greedy strategy.

When to switch from
exploration to exploitation?
An essential AI dilemma.

Instead of switching,
decaying ε→ 0 also possible.

Example with Pr|a Gaussian

Reinforcement Learning Active Reinforcement Learning 40 / 265

Greedy in the limit of infinite exploration (GLIE)

A GLIE strategy makes sure that with k →∞, in each state, each action
is tried an infinite number of times. This way, no good action is missed.

In reinforcement learning, take a random action with a decaying

probability ε > 0, ε
k→∞−−−→ 0. For example, instead of taking action

arg max
a

Q(s, a) where Q(s, a) =
∑
s′

PS(s ′|s, a)Uπ(s ′)

choose a random action a with softmax probability.

eQ(s,a)/τ∑
a′∈A eQ(s,a′)/τ

where the temperature τ → 0 with k →∞. GLIE strategies tend to
converge slow.

Reinforcement Learning Active Reinforcement Learning 41 / 265

Exploration Function

Faster convergence is achieved if unexplored nodes are deliberately
promoted, e.g. by tweaking the utility function

Uπ(sk) = r(sk) + γ
∑
s∈S

PS(s|sk , ak)Uπ(sk)

where ak = π(sk) = arg maxa∈A
∑

s∈S PS(s|sk , a)Uπ(s), into

Uπ
e (sk) = r(sk) + γmax

a
f

(∑
s∈S

PS(s|sk , ak)Uπ
e (sk),Nk(sk , ak)

)

where ak = π(sk) = arg maxa∈A
∑

s∈S PS(s|sk , a)Uπ
e (s) and the

exploration function f trades off between

the estimated expected utility of the next state

Nk(s, a): the number of times action a was taken in state s until time
k .

Reinforcement Learning Active Reinforcement Learning 42 / 265

Optimistic Utilities

f should not

decrease with
∑

s∈S PS(s|sk , ak)Ue(sk)

increase with Nk(s, a)

A simple option is to assign an optimistic utility value (maxR - highest
reward value) to states explored less then m times:

f =

{
maxR if Nk(s, a) < m∑

s∈S PS(s|sk , ak)Ue(sk) otherwise

If Ue(s) ≥ U(s) is preserved during updates for ∀s then utilities converge
to U(s).

Exploration vs. Exploitation dilemma: it is not feasible to optimize m
theoretically. Use ‘rule of the thumb’.

Reinforcement Learning Active Reinforcement Learning 43 / 265

Greedy vs. Exploratory ADP Agent

Exploratory ADP Agent: like greedy ADP but with U replaced by Ue .

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400 450 500

R
M

S
 e

rr
o
r,

 p
o
li

cy
 l

o
ss

Number of trials

RMS error
Policy loss

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

R
M

S
 e

rr
o
r,

 p
o
li

cy
 l

o
ss

Number of trials

RMS error
Policy loss

Greedy ADP agent Exploratory ADP agent with
maxR = 2, t = 5.

Unlike greedy, it converges to the optimal policy (loss → 0) and comes
close to the true state utilities (small root mean squared error).

Reinforcement Learning Active Reinforcement Learning 44 / 265

Active TD Agent

Recall: unlike ADP, the passive TD agent does not need a model of PS to
estimate U. However, its active version would still need such a model to
approximate the policy

π(s) = arg max
a

∑
s′

PS(s ′|s, a)Uπ(s ′)

This can be prevented: instead of learning state utilities Uπ(s), learn
state-action utilities Qπ(s, a).

Qπ(s, a) is the utility of taking action a in state s under policy π, so

Uπ(s) = max
a

Qπ(s, a)

(Q means Qπ for an optimal policy π.)

Reinforcement Learning Active Reinforcement Learning 45 / 265

Explorative Q-Learning Agent

Qπ can be computed as the solution to the set of Bellman-like equations

Qπ(s, a) = r(s) + γ
∑
s′∈S

PS(s ′|s, a) max
a′∈A

Qπ(s ′, a′)

∀s ∈ S , a ∈ A. This is achieved without PS by iterating similar to TD:

Qπ(sk , ak)← Qπ(sk , ak) + α
(
rk + γmax

a
Qπ(sk+1, a)− Qπ(sk , ak)

)
The exploration incentive is put in the policy:

ak =

{
none if sk is terminal

arg maxa f (Qπ(sk , a),N(sk , a)) otherwise

N(s, a) counts the times a was taken in state s.

Reinforcement Learning Active Reinforcement Learning 46 / 265

Q-Learning Agent: Design

Agent’s state is a tuple

tk =
〈
soldk , aoldk , roldk ,Nk , Q̂k , α

〉

soldk , aoldk : last state and action, aold1 = sold1 = none

roldk : last reward, rold1 = 0

Nk : state-action pair frequency array addressed by [s, a], N1 filled
with zeros.

Q̂k : Qπ estimate array addressed by [s, a]. Q̂1 filled with zeros.

α : N→ R: a positive, monotone decreasing function

Note: this agent must store the last action as policy is not fixed: in
general ak−1 = π(tk−1, sk−1) 6= π(tk , sk−1).

Reinforcement Learning Active Reinforcement Learning 47 / 265

Q-Learning Agent: Design (cont’d)

Agent state update:

Nk+1[sk , ak] = Nk [sk , ak] + 1
Counter incremented for current
state/action, rest of array unchanged.

soldk+1 = sk , aoldk+1 = ak
roldk+1 = rk

Current observation, action, and re-
ward are stored for use at next update.

Q̂k+1[soldk , aoldk] = rk
if aoldk = none

Value of a terminal state (detected by
none action) is its reward. For non-
terminal states, iterate as below. Rest
of Q̂ array unchanged.

Q̂k+1[soldk , aoldk] =

Q̂k [soldk , aoldk]+α(Nk [soldk , aoldk])
(
roldk + γmaxa Q̂k [sk , a]− Q̂k [soldk , aoldk]

)
if soldk 6= none 6= aoldk

Reinforcement Learning Active Reinforcement Learning 48 / 265

Greedy Q-Learning Agent

Consider a greedy (non-exploratory) variant of the Q-Learning agent,
deciding by

ak+1 = arg max
a

Qπ(sk+1, a)

Here, the iteration

Qπ(sk , ak)← Qπ(sk , ak) + α
(
rk + γmax

a
Qπ(sk+1, a)− Qπ(sk , ak)

)
can get rid of the maximization:

Qπ(sk , ak)← Qπ(sk , ak) + α (rk + γQπ(sk+1, ak+1)− Qπ(sk , ak))

Reinforcement Learning Active Reinforcement Learning 49 / 265

SARSA Agent

SARSA agent is the exporatory Q-Learning agent where even for a
non-greedy strategy the iteration is changed to

Qπ(sk , ak)← Qπ(sk , ak) + α (rk + γQπ(sk+1, ak+1)− Qπ(sk , ak))

Name due to State-Action-Reward-State-Action quintuplet

sk , ak , rk , sk+1, ak+1

from which Qπ iterated.

Q-Learning is an off-policy (as in, less dependent on policy) strategy.
Tends to learn Q better event if π is far from optimal.

SARSA is an on-policy strategy. Tends to adapt better to partially
enforced policies.

Reinforcement Learning Active Reinforcement Learning 50 / 265

Problems with Table Models

So far, Û, Q̂ have been look-up tables (arrays) demanding at least O(|S |)
resp. O(|S | · |A|) memory and time.

Table-based agents would not scale to large (‘real-life’) state spaces S .

Backgammon or Chess: |S | somewhere btw. 1020 and 1045

No way to capture in an array, let alone do policy evaluation

A more compact (‘generalized’) model for

U : S → R or Q : S × A→ R

is needed. Must allow learning (updating) from [sk , ak , rk , sk+1] or
[sk , ak , rk , sk+1, ak+1] samples.

Reinforcement Learning State Representation 51 / 265

Feature-Based Representation of Û

Consider learning Û with the Direct Utility Estimation agent.

A simple option is to define a set of relevant features φi : S → R and use
a regression model.

Û(w, s) =
n∑

i=1

w iφi (s)

and adapt the parameters w = [w1,w2, . . . ,wn] at each episode’s end to
reduce the squared error

Ej(w, s) =
1

2

(
Û(w, s)− uj(s)

)2

where uj(s) is the utility sample obtained for s at the end of episode
j = 1, 2, . . . (when a terminal state is reached).

Reinforcement Learning State Representation 52 / 265

Feature-Based Representation of Û (cont’d)

Going against the error gradient with learning rate α ∈ R:

w i ← w i − α
∂Ej(w, s)

∂w i
= w i + α

(
uj(s)− Û (w, s)

) ∂Û(w, s)

∂w i

Example: Let [φ1(s), φ2(s)] = [s1, s2], i.e., the agent’s coordinates in the
grid environment and φ3 ≡ 1.
Note: superscript component indexes to disambiguate from subscripted time indexes

Then
Û(w, s) = w1s1 + w2s2 + w3

and the iterative update:

w1 ←w1 + α(uj(s)− Û(w, s))s1,

w2 ←w2 + α(uj(s)− Û(w, s))s2

w3 ←w3 + α(uj(s)− Û(w, s))

Reinforcement Learning State Representation 53 / 265

Feature-Based Representation of Û : Notes

1 Observe:
∂Û(w, s)

∂w i
= φi (s)

So the derivative is simple even with non-linear features such as

φi (s) =
√

(s1 − 4)2 + (s2 − 3)2

measuring the Euclidean (‘air’) distance to the terminal state (4, 3).

2 Features allow to deal with a kind of partial state observability. If a
component of the state is not observable, design features that do not
use that component.

Reinforcement Learning State Representation 54 / 265

Feature-Based Representation of Q̂

A similar strategy can be applied in the TD agent or the Q-Learning
agent. For the latter

Q̂(w, s, a) =
n∑

i=1

w iφi (s, a)

where φi are predefined features of state-action pairs.

Follow the gradient descent (again, ∂Q̂(w,s,a)
∂w i = φi (s, a)) at each time k

w i
k+1 = w i

k + α
(
r(sk) + γmax

a
Q̂(wk , sk+1, a)− Q̂(wk , sk , ak)

)
φi (sk , ak)

The principle is simple, the art is in designing good features φi .

Reinforcement Learning State Representation 55 / 265

Inverted Pendulum Demo

Real-valued features especially appropriate where environment is a dynamic
physical system. Typical features are positions and accelerations of objects.

Example: inverted pendulum

Videos: Single (Experience Replay - see later) , Triple (!) .

Reinforcement Learning Examples 56 / 265

https://www.youtube.com/watch?v=b1c0N_Fs9wc
https://www.youtube.com/watch?v=cyN-CRNrb3E

Deep Q-Learning: DQN

Learns to play ATARI 2600 games from screen images and score.
(DeepMind / Nature, 2015)

Deep feed-forward network approximating Q(s, a)

input = state = 4 time-subsequent 84x84
gray-scale screens

separate output for each a ∈ A

2 convolution + 1 connected hidden layers

Demo

Reinforcement Learning Examples 57 / 265

https://www.youtube.com/watch?v=W2CAghUiofY

Deep Q-Learning: DQN (cont’d)

Experience replay prevents long chains of
correlated training examples by sampling
from a buffer of ~φ(sk), ak , rk , ~φ(sk+1) tuples
recorded in the past.

Backpropagation to the
original image inputs
reveals areas of
‘attention’.

Reinforcement Learning Examples 58 / 265

OpenAI: Hide and Seek Game

go to web

Two hiders, two seekers, each learning by reinforcement

Can move, shift and lock blocks, see others and blocks (if in line of
sight), sense distance

Team-wide rewards to hiders: -1 if any hider seen by a seeker, +1 if
all hiders hidden

Seekers get opposite rewards.

Reinforcement Learning Examples 59 / 265

https://openai.com/blog/emergent-tool-use/
https://openai.com/blog/emergent-tool-use/

Policy Search

Instead of searching Q̂ (or Û or PS and r) search directly a good policy
π : S → A.

If S unmanageably large, use features again: φi : S → Zi where
i = 1, 2, . . . n and Zi are the feature value ranges.

Then set π(S) = π′(φ1(S), . . . φn(S)) where π′ : Z1 × . . .× Zn → A

Quality of π′ is estimated as mean total rewards over repeated episodes
using π. Search may e.g. be greedy adjustments to π′ improving its
quality.

Since A is finite (discrete), π′ is not differentiable so gradient descent not
applicable. If Zi are finite (e.g. discretized), this means combinatorial
search.

Reinforcement Learning More Ways to Learn in R/L 60 / 265

Differentiable Policy Search

Gradient-based policy search is possible with a stochastic policy choosing
action a in state s with (softmax) probability

eq(w,φφφ(s,a))∑
a′∈A eq(w,φφφ(s,a′))

where w ∈ Rn are real parameters, φφφ = 〈φ1, . . . , φn′〉 are some real-valued
features, and q : Rn+n′ → R. If q differentiable in all φi as in e.g. (n = n′)

q(w,φφφ(s, a)) =
n∑

i=1

w iφi (s, a)

then w can be adapted through (empirical) gradient descent (but gradient
estimation not trivial with stochastic environment and policy).

Reminds of Q̂ learning but q optimized w.r.t. policy performance.

Reinforcement Learning More Ways to Learn in R/L 61 / 265

Learning a Feature-Based Environment Model

An agent deriving policy from a model of PS and r can learn such models.
In the ADP agent, such models were just relative frequencies.

They can also be feature based. So PS(s ′|s, a) can be modeled e.g. by

f (w,φφφ(s ′, s, a)) =
n∑

i=1

w iφi (s ′, s, a)

where φi are features of the s ′, s, a triple and w i real parameters. Gradient
method applicable, every transition provides a sample. No need to
normalize f (probability!) if only used in arg max expressions.

Similarly for the reward model (modeling a function, not a prob.)

Reinforcement Learning More Ways to Learn in R/L 62 / 265

Bayesian Learning of an Environment Model

Consider the following Bayesian approach which involves

a countable probability distribution class M (“model class”)

at each time k, a probability distribution Bk on M where Bk(P)
(P ∈M) quantifies the belief that PS ≡ P. B1 is the initial belief.

At each time k, our model ξk(sk+1|sk , a) of PS(sk+1|sk , ak) is

ξk(sk+1|sk , ak) =
∑
P∈M

P(sk+1|sk , ak)Bk(P)

i.e, a probability-weighted sum where each model contributes the stronger
the higher its belief. |M| may be ∞ but the sum obviously converges.

Reinforcement Learning More Ways to Learn in R/L 63 / 265

Bayesian Learning of an Environment Model (cont’d)

At each time k + 1, Bk is updated by the Bayes rule to the posterior

Bk+1(P) = αP(sk+1|sk , ak)Bk(P)

for each P ∈M, where the normalizer α is such that∑
P∈M

Bk+1(P) = 1

Note that the sk+1 states are sampled mutually independently given sk , ak
from the same distribution PS(sk+1|sk , ak) although sk+1 are not
independent of sk or a.

(This can also be posed as learning a separate model Psk ,ak (sk+1) for each
possible sk ∈ S , ak ∈ A.)

Reinforcement Learning Bayesian Learning 64 / 265

Bayesian Learning of an Environment Model (notes)

ξ is a convex linear combination of environments (transition
distributions). So with simpler notation (wk ∈ R|M|):

ξk(sk+1|sk , ak) =
∑

Pi∈M
w i
kPi (sk+1|sk , ak) (2)

w i
k+1 = αw i

kPi (sk+1|sk , ak) (3)

For an uncountable model class Mw parameterized by w ∈ Rn

(different w from above!), we would have

ξk(sk+1|sk , ak) =

∫
w
P(sk+1|sk , ak ,w)B(w) (4)

Bk+1(w) = αP(sk+1|sk , ak ,w)Bk(w) (5)

Reinforcement Learning Bayesian Learning 65 / 265

Bayesian Learning of an Environment Model (notes cont’d)

The Bayesian approach reminds of Belief-updates in POMDP which
you (should) know:

Bk+1(sk+1) = αPo|s(ok+1|sk+1)P(sk+1|ak)

where
P(sk+1|ak) =

∑
sk∈S

PS(sk+1|sk , ak)Bk(sk)

However, POMDP model unknown states with known transition
distributions, whereas we model unknown transition distributions with
observed states.

Both unknown states and unknown transition distributions can be
modeled simultaneously in the Bayesian approach, giving rise to
‘partially observable reinforcement learning’. Of course, very complex
computationally.

Reinforcement Learning Bayesian Learning 66 / 265

Bayesian Learning of an Environment Model (notes cont’d)

An agent implementing the Bayesian updates of ξ and following the
optimal policy w.r.t. ξ:

π∗(sk) = arg max
a∈A

∑
s∈S

ξ(s|sk , a)U(s)

where
U(sk) = r(sk) + γ

∑
s∈S

ξ(s|sk , π∗(sk))U(s)

maximizes the expected total reward w.r.t. ξ, where ξ →k→∞ PS if ∃i s.t.
PS ≡ Pi ∈M and w i > 0, and has

no parameters except M and w

no exploration/exploitation dilemma

Reinforcement Learning Bayesian Learning 67 / 265

Universal Learning

Universal Learning 68 / 265

Non-Markovian Environments

Recall the non-Markov setting – the most general considered in this course:

P(xa≤m) = P(x1)P(a1|x1)P(x2|x1, a1) . . .P(xm|xa<m)P(am|xm, xa<m)

Percept xk = (ok , rk) depends probabilistically on the entire history xa<k .
There is no state observability as there are no states.

Acting (maximizing rewards) clearly not possible without estimating future
percepts. This subsumes the general problem of sequence prediction which
is formulated without actions and rewards simply as:

Universal Sequence Prediction Problem

Given:
o1, o2, . . . ok

Predict ok+1.

Universal Learning Sequence Prediction 69 / 265

Sequence Prediction

Some sequences seem obvious to extend. E.g.

1, 2, 3, 4, 5

because of the pattern ok+1 = ok + 1.

But e.g.
1, 2, 3, 4, 29

could also be argued due to ok = k4 − 10k3 + 35k2 − 49k + 24.

The first pattern seems more plausible because it is simpler. Note that this
reason is not statistical/probabilistic.

Universal Learning Sequence Prediction 70 / 265

Sequence Prediction (cont’d)

Other sequences have no obvious equational pattern

3, 1, 4, 1, 5, 9

but there is still a simple extension rule: here ok is the k ’s digit in the
decimal expansion of the number π. So the extension 9 seems plausible
here.

We need to formalize these thoughts to answer questions such as

What exactly is meant by pattern?

How to measure complexity of patterns and sequences?

Are simple patterns more likely to make correct predictions?

Are there sequences that have no patterns?

Universal Learning Sequence Prediction 71 / 265

Computing a Sequence

The most general intepretation of sequence ‘pattern’ is a program that
generates the sequence.

For simplicity, let O = { 0, 1 } so O∗ denotes the set of all binary strings.
Let T : O∗ → O∗ be a partial recursive function, i.e., there is a Turing
machine computing T (p) but for some p ∈ O∗ it need not halt.

The input p to the T.M. may be interpreted as a program computing
T (p).

Intuitively, simple strings (even infinite) are those computed by short
programs p. So e.g. the decimal expansion of π, however long, is simple
because there is a short program computing it.

Denoting the length of p by |p|, this gives rise to the Kolmogorov
complexity of strings.

Universal Learning Sequence Prediction 72 / 265

Kolmogorov Complexity

The Kolmogorov complexity KT (q) of q ∈ O∗ with respect to T is

KT (q) = min { |p| ; p ∈ { 0, 1 }∗ ,T (p) = q }

So the complexity of a (possibly infinite) string is the length of the
shortest program that generates it, i.e., the shortest binary input to T that
makes it produce the string.

Dependence of KT (q) on T is not a serious problem as there is a universal
T.M. U which simulates any T.M. T given the (finite!) sequential
description 〈T 〉 ∈ O∗ of T as a distinguished part of its input, i.e.

U(〈T 〉 : p) = T (p)

The colon is a distinguished symbol delimiting 〈T 〉 and p on U’s (input) tape.

Universal Learning Sequence Prediction 73 / 265

Kolmogorov Complexity (cont’d)

Consequence: given a T , for every q ∈ O∗:

KU(q) ≤ KT (q) +O(| 〈T 〉 |)

where the rightmost term (‘translation overhead’) does not depend on q
and becomes negligible for large q. So we adopt KU as the universal
complexity measure and denote K (q) = KU(q).

Clearly, for every q ∈ O∗:

K (q) ≤ |q|+ c

since the program for computing q can simply contain the |q| symbols of q
plus some constant c number of symbols implementing the loop to print
them on the output.

Universal Learning Sequence Prediction 74 / 265

Kolmogorov Complexity - Examples

q = 0, 0, . . . , 0︸ ︷︷ ︸
n times

has K (q) = log n + c . Need log(n) symbols to encode

the integer n plus a constant-size code to print it.

q = the first n digits in the binary expansion of π also has
K (q) = log n + c : log n symbols to specify n plus a constant-size
code for calculating (and printing) the digits of π.

Are there any strings q such that K (q) ≥ |q|?
Yes, such strings exist for any length k , as there are only 2k − 1
programs (binary strings) shorter than k (you do the math), so there
must be some string of length k for which there is no shorter program
generating it. Such a string is called incompressible or random (not in
the probabilistic sense!).

Universal Learning Sequence Prediction 75 / 265

Kolmogorov Complexity - Computability

The question whether K (q) ≥ n (q ∈ O∗, n ∈ N) is undecidable, i.e., K is
not finitely computable.

Proof: Assume a deciding program p exists. Consider the first (in the
lexicographic order) string q ∈ O∗ such that K (q) ≥ n. Then q can be
generated as follows: for each q ∈ O∗ in the lexicographic order, determine
if K (q) ≥ n using p and print the first such q. This procedure can be
encoded in a program using |p|+ log(n) + c symbols, which (for a
sufficiently large n) is smaller than n, so K (q) < n. Contradiction → p
does not exist.

Proof idea intuitively: consider the shortest string than cannot be specified
with fewer than twelve words. This string has just been specified with
eleven words. This paradox implies that the property can be specified with
n words is not decidable.

Universal Learning Sequence Prediction 76 / 265

Kolmogorov Complexity - Enumerability

Recall definitions from computability courses: A function f (x) : N→ Q is
enumerable if there is a Turing machine finitely computing a function
f (x , k) such that limk→∞ f (x , k) = f (x) and f (x , k) ≤ f (x , k + 1) for ∀k .
A function f (x) is co-enumerable if −f (x) is enumerable.

K is co-enumerable.

Proof: omitted for now, the proof shown in the previously published
version was incorrect. I will try to come up with a simple yet correct proof.

Universal Learning Sequence Prediction 77 / 265

Universal Prior M

To predict ok from o<k without knowing P(ok |o<k) = P(o≤k)/P(o<k),
we can surrogate P with a probability distribution M on O∗ giving greater
probability to sequences simpler in the Kolmogorov sense.

A natural choice would be M(q) = 2−K(q) but since that would not satisfy
probability axioms, Solomonoff (1964) instead proposed the universal prior

M(q) =
∑

p:U(p)=q∗

2−|p|

where the sum is over all programs for which the universal T.M. U outputs
a string starting with q, not necessarily halting.

So all programs p generating q contribute to q’s probability but short
programs contribute exponentially more than long programs.

Universal Learning Sequence Prediction 78 / 265

Universal Prior M : Properties

M(q) is close to 2−K(q) since the shortest program generating q
contributes exponentially more to M(q) than other programs.

M is enumerable (proof omitted).

M is not a normalized probability distribution on { 0, 1 }∗. Indeed

M(q0) + M(q1) ≤ M(q)

where q0 (q1) means the extension of string q with 0 (1), since some
programs computing q may afterwards halt or loop forever without writing
0 or 1. As opposed to distribution measures, M is a semi-measure.

Normalization is not needed when M is used for sequence prediction, as we will see. Normalizing

M into a measure is possible at the price of losing enumerability.

Universal Learning Sequence Prediction 79 / 265

Universal Prior M : Properties (cont’d)

Because (1− a)2 ≤ −1
2 ln a (for 0 ≤ a ≤ 1):
∞∑
k=1

(1−M(ok |o<k))2 ≤ −1

2

∞∑
k=1

lnM(ok |o<k) =

Swap the sum with the logarithm and use the chain-rule:

= −1

2
lnM(o1) ·M(o2|o1) ·M(o3|o<3) · . . . = −1

2
lnM(o1:∞) =

Plug in the definition of M(q), then drop from the sum all p’s computing
o1:∞ except for the shortest one denoted pmin

= −1

2
ln

∑
p:U(p)=o1:∞

2−|p| ≤ −1

2
ln 2−|pmin| ≤ 1

2
ln 2 · |pmin|

If o1:∞ is computable then clearly |pmin| <∞ and so

∞∑
k=1

(1−M(ok |o<k))2 <∞

Universal Learning Sequence Prediction 80 / 265

Using M for Sequence Prediction

∑∞
k=1 (1−M(ok |o<k))2 <∞ implies

lim
k→∞

M(ok |o<k) = 1

(otherwise the sum would diverge).

M is a universal sequence predictor.

This means that after “seeing” the beginning o<k of the sequence, M
predicts the next element with probability approaching 1 with k →∞. So
M “recognizes” the environment on the only condition that the latter
produces a computable sequence, i.e., it is a Turing machine.

The condition above is not strong: all physical theories of the world are
computable, so any “reasonable” environment is a T.M. But remind the
catch: M itself is not computable, only enumerable.

Universal Learning Sequence Prediction 81 / 265

M as a Bayesian Mixture

Levin (1970) showed that M is equivalent to the Bayesian mixture

ξU(q) =
∑

P∈MU

2−K(P)P(q)

where MU is the set of all enumerable semi-measures (containing also
enumerable proper measures) and K (P) is the size of the shortest program
computing the function P. MU is the largest known class of probability
distributions resulting in an enumerable mixture.

The equivalence is in the sense that

M(q) = O(ξU(q)) and ξU(q) = O(M(q))

So ξU(q) has the same properties as M but is more convenient for
approximations (e.g. using only some subset of MU).

Universal Learning Sequence Prediction 82 / 265

Policies and Utilities in the Non-Markov Case

For bare sequence prediction, we disregarded actions and rewards. Let us
now get them back in the game. Recall the non-Markov setting:

Agent’s policy: π : (X × A)∗ × X → A, ak = π(xa<k , xk)

Policy value (for simplicity, we use the finite horizon m version):

V π = E

(
m∑

k=1

rk

)
=
∑
x≤m

P(x≤m|a<m)(r1 + r2 + . . .+ rm) (6)

The maximum value policy π∗ = arg maxπ V
π prescribes actions

ak = arg max
ak

∑
xk+1

. . .max
am−1

∑
xm

(rk+1 + . . .+ rm)P(xk+1:m|x≤k , a<m)

maximizing the total ‘reward to go’ (xk+1:m means xk+1, xk+2, . . . xm).

Universal Learning Agent-Environment Interaction 83 / 265

Policies and Utilities in the Non-Markov Case (Notes)

Note that in

ak = arg max
ak

∑
xk+1

. . .max
am−1

∑
xm

(rk+1 + . . .+ rm)P(xk+1:m|x≤k , a<m)

the sums implement the expectation w.r.t. the probability of percepts
remaining after current time k conditioned on all percepts until k and all
actions (past, current, future). Using the chain rule and removing
dependencies of xj on all xi , ai such that i ≥ j (percepts depend only on
past percepts and actions), we get

P(xk+1:m|x≤k , a<m) =
m∏

j=k+1

P(xj |xa<j)

When modeling the environment, we can thus either seek a model of
P(xk+1:m|x≤k , a<m) or of P(xj |xa<j).

Universal Learning Agent-Environment Interaction 84 / 265

The AIξ Agent

If we know P(xj |xa<j) ∈M for some distribution class M, Bayesian
inference can be applied just like we did in the Markovian case, by
replacing it with a mixture distribution, which at time k is:

ξk(xk |xa<k) =
∑

Pi∈M
w i
kPi (xk |xa<k)

The initial weights w1 =
〈
w1

1 ,w
2
1 , . . .w

|M|
1

〉
(
∑|M|

i=1 w i
1 = 1, ∀i : w i

1 > 0)

encode the prior belief in model correctness. If |M| <∞, they may be
uniform. At k + 1, each w i

k is updated to

w i
k+1 = αPi (xk |xa<k)w i

k

where α = 1/
∑|M|

i=1 w i
k+1 is a normalizer.

Universal Learning Agent-Environment Interaction 85 / 265

The AIXI Agent

The AIXI agent proposed by Hutter (2005) is the most universal AI agent
adopting the largest enumerable model class M, i.e. the class MU of all
enumerable semimeasures, and using their complexity-weighted mixture ξU
we have already seen.

We know that ξU is equivalent to the universal prior M, allowing simpler
notation. We substitute P(xk+1:m|x≤k , a<m) with M in the conditional
form

M(xk+1:m|x≤k , a<m) =
∑

U(p:x≤k :a<m)=xk+1:m∗

2−|p|

where the sum is over all programs for the universal T.M. which output
xk+1:m (followed by any suffix) given the input x≤k , a<m.

The colon under the sum delimits p and its inputs on U’s (input) tape.

Universal Learning Agent-Environment Interaction 86 / 265

The AIXI Agent (cont’d)

Note that there are no updates to the weights of (beliefs in) models done
at each time k since M(xk+1:m|x≤k , a<m) accounts for the entire history
x≤k , a<m.

In summary, with a finite time horizon m the AIXI agent has policy

ak = π(xa<k , xk) =

= arg max
ak

∑
xk+1

. . .max
am−1

∑
xm

(rk+1 + . . .+ rm)
∑

U(p:x≤k :a<m)=xk+1:m∗

2−|p|

For an infinite horizon with the discount sequence δk = γk (0 < γ < 1),
we would take the limit of the above for m→∞ and replace
rk+1 + . . .+ rm with γk+1rk+1 + . . .+ γmrm.

AIXI is the theoretical solution to the most general problem of
agent-environment interaction considered in this course.

Universal Learning Agent-Environment Interaction 87 / 265

Concept Learning

Concept Learning 88 / 265

Concept Learning

In concept learning, the agent tries to guess the environment state sk ∈ S
at each k from the observation ok ∈ O and is immediately (at k + 1)
rewarded for a correct guess. With S = { 0, 1 }, the agent makes just
yes/no decisions. To do that, it learns a representation of a concept, which
is the set of all observations in O for which the correct answer is yes.

Formally, we return to the Markovian (state-based) setting, which is
summarized below as a reminder, and which we will refine for concept
learning. At time k :

states are distributed by PS(sk+1|sk , ak).

observations are distributed by Po(ok |sk).

rewards are distributed by Pr (ok |sk), alternatively Pr (rk+1|sk , ak).

Concept Learning Introduction 89 / 265

Concepts

In reinforcement learning, we further assumed full state observability, i.e.
∀k:

sk = ok

In concept learning, we make this assumption less stringent, in particular

sk = c(ok)

for some function c : O → S unknown to the agent. For convenience, we
further assume S = { 0, 1 }, allowing to represent c also as a subset of O:

C = { o ∈ O; c(o) = 1 }

Then C is called a concept on O (c is called a concept function) and the
agent’s goal is to learn the concept so that it can make correct predictions
of states.

Concept Learning Introduction 90 / 265

Rewards

In reinforcement learning, we assumed that each reward was a function of
the current state: rk = r(sk). We carry on the function assumption,
except we make rk dependent on the previous state and action

rk+1 = r(sk , ak) (7)

Since the agent’s actions are guesses of the environment state, we set
A = S . Then rk+1 should be higher when sk = ak and lower otherwise.
We will consider only the simplest form

r(s, a) =

{
0 if s = a

−1 otherwise
(8)

Notes: The choice between rk = r(sk) and (7) is not essential for learnability results; some

formulations of reinforcement learning also use (7) . L(s, a) = −r(s, a) is called a loss function;

with (8) it is a unit loss function.

Concept Learning Introduction 91 / 265

Example

Let O consist of pairs of binary values and assume the concept

C =
{

(o1, o2) ∈ O; o1 · o2 = 1
}

Say, the agent decides by the truth-value of a formula with variables p1, p2

assigned values o1, o2. On a mistake at time k recognized by rk+1 = −1,
it changes the formula at time k + 1.

k sk ok rk agent’s formula ak
1 0 (0, 0) — ¬p1 1
2 1 (1, 1) -1 p1 1
3 0 (1, 0) 0 p1 1
4 0 (0, 1) -1 p1 ∧ p2 0

After four trials and two errors, the agent guessed a formula which will no
longer make mistakes.

Concept Learning Introduction 92 / 265

Hypotheses

The agent’s formulas in the previous example were concrete cases of
hypotheses. A hypothesis h is any finite description, from which π can
derive a 0/1 decision for an observation.

You can think of π as a Turing machine and h as a program for it, but we
will be interested in more specific cases, mainly h ≈ logical formulas, π ≈
their interpreters.

In our general agent model, we have π : T × O → A. Agent’s hypothesis
hk at time k is part of its current state tk ∈ T but since hk will be the
only part of tk influencing ak , we will write ak = π(hk , ok) (not π(tk , ok)).

Finally, define the hypothesized concept:

C (h) = { o ∈ O;π(h, o) = 1 }

Concept Learning Introduction 93 / 265

Concept vs. Hypothesis

A good concept-learning agent will find a h such that C = C (h), which
means the same as c(o) = π(h, o) ∀o ∈ O.

O

Cpositive examples negative examples

C (h)

Concept Learning Terminology
C ∩ { o1, o2, . . . } ..positive examples (O \ C) ∩ { o1, o2, . . . } ..negative examples
C ∩ C (h) ..true positives (O \ C) ∩ (O \ C (h)) ..true negatives
(O \ C) ∩ C (h) ..false positives C ∩ (O \ C (h)) ..false negatives

Concept Learning Introduction 94 / 265

Generalizing Agent

The agent in our previous example had the policy

ak = π(hk , ok) =

{
1 if ok |= hk

0 otherwise

The way it guessed the formulas hk seemed arbitrary. Can we make it
systematic?

Assume O = { 0, 1 }n and let hk be conjunctions using n propositional
variables. Then try this:

Start with the conjunction of all literals, i.e., include both p and ¬p
for each variable p.

On each error, remove from the conjunction exactly all literals
inconsistent with the previous observation (i.e. literals logically false
in it).

Concept Learning Generalizing Agent 95 / 265

Generalizing Agent Example

Again, concept C =
{

(o1, o2) ∈ O; o1 · o2 = 1
}

, same sequence of
observations but generalization strategy.

k sk ok rk hk ak
1 0 (0, 0) — p1 ∧ ¬p1 ∧ p2 ∧ ¬p2 0
2 1 (1, 1) 0 p1 ∧ ¬p1 ∧ p2 ∧ ¬p2 0
3 0 (1, 0) -1 p1 ∧ p2 1
4 0 (0, 1) 0 p1 ∧ p2 0

C (h3) = C . Hurray!

Note that the negative examples o1, o3 did not contribute to learning -
they did not trigger a change of the hypothesis. Quiz: can negative
examples ever make this agent change its hypothesis or are they useless?

Concept Learning Generalizing Agent 96 / 265

Generalizing Agent: Properties

Assume a perfect conjunction h∗ exists: C (h∗) = C , i.e. the target
concept can be expressed through a conjunction. Observe:

1 All literals of h∗ are consistent with any positive example (otherwise
h∗ would not be true for a positive example).

2 If a hypothesis misclassifies a negative example, it has all literals
consistent with the example.

3 From 1 and 2: no literal that is in h∗ is removed from the agent’s
hypothesis. Since h1 contains all literals, we have hk ⊇ h∗, ∀k ∈ N.

4 From 2 and 3: if hk misclassifies a neg. example, then h∗ (⊆ hk) is
consistent with the example → contradiction → hk never (∀k)
misclassifies negative examples (so yes, they are useless to this agent).

hk ⊇ h∗ means that all literals of h∗ are in hk . We will use set relations for conjunctions and

disjunctions this way without further warnings.

Concept Learning Generalizing Agent 97 / 265

Generalizing Agent: Mistake Bound

1 Since hk makes mistakes only on positive examples, whenever it
misclassifies some ok , it contains some literals inconsistent with ok .

2 From 1 and the fact that all inconsistent literals are deleted after each
mistake: at least one literal is deleted on each mistake.

3 From 2 and the fact that the initial hypothesis h1 has 2n literals: no
more than 2n mistakes are made before hk = h∗.

So the cumulative reward for an arbitrary horizon m ∈ N is

m∑
k=1

rk ≥ −2n

Concept Learning Generalizing Agent 98 / 265

Mistake-Bound Learning Model

Let H be a hypothesis class, i.e. any set of hypotheses. H induces the
concept class C(H) = { C (h) | h ∈ H }. Let n be the size (complexity) of
observations (usually their arity).

On-Line (Mistake-Bound) Learning

Agent learns class H on-line (in the mistake-bound model) if with any
target concept C ∈ C(H) it will make no more than a polynomial (in n)
number of mistakes. Furthermore, it learns H efficiently if it spends at
most poly-time btw. each percept and the next action. H is (efficiently)
learnable on-line if there is an agent that learns it (efficiently) on-line.

The definition only assumes C ∈ C(H) but makes no assumption about
the sequence of states sk from which observations are sampled with
PO(ok |sk). The mistake bound must hold for any such sequence.

Verify that the generalization agent learns conjunctions efficiently.

Concept Learning Mistake-Bound Learning Model 99 / 265

Generality Relation

We call concept C more general than concept C ′ if C ⊇ C ′. A hypothesis
h is more general than hypothesis h′ if

C (h) ⊇ C (h′) (9)

Assume h, h′ are logic formulas and the policy is π(h, o) = 1↔ o |= h as
in the generalizing agent. Then a sufficient condition for (9) is that o |= h′

implies o |= h for any model (valuation) o. In logic, this is written as

h′ |= h (10)

If furthermore h, h′ are conjunctions, a sufficient condition for (10) is that

h ⊆ h′ (11)

because for any o, h: o |= h iff each literal of h is consistent with o.

Concept Learning Generality and Subsumption 100 / 265

Generality vs. Subsumption

When h ⊆ h′ for conjunctions h, h′, we say that h subsumes h′. Although
h ⊆ h′ implies h′ |= h, the reverse is not true if h′ is self-resolving, i.e. it
contains a literal as well as its negation. For example

p1 ∧ ¬p1 |= p2

but
p2 * p1 ∧ ¬p1

Self-resolving propositional conjunctions are trivial, they are all
contradictions. (This will not be the case in in first-order logic.)

We call the last agent generalizing because it only deletes literals (never
adds them), so ∀k, hk+1 ⊆ hk , thus hk |= hk+1, thus C (hk+1) ⊇ C (hk).

Concept Learning Generality and Subsumption 101 / 265

Subsumption Lattice

The subsumption relation forms a lattice (partially ordered set) on conjunctions and the agent

traverses it from the bottom (e.g. along the green path). Note that all conjunctions below the

dashed line are self-resolving (contradictions). On the first positive example, the agent deletes n

literals from the initial hypothesis, making the next one satisfiable (non-contradictory).

∅

p1 ¬p1 p2 ¬p2

p1¬p1 p1p2 p1¬p2 ¬p1p2 ¬p1¬p2 p2¬p2

p1¬p1p2 p1¬p1¬p2 p1p2¬p2 ¬p1p2¬p2

p1¬p1p2¬p2

Concept Learning Generality and Subsumption 102 / 265

https://en.wikipedia.org/wiki/Lattice_(order)

Least Upper Bound

In a lattice induced by relation �, every two elements a, b have exactly
one least upper bound c = lup(a, b) such that

c � a and c � b

there is no “lesser bound” d , i.e. no d such that c � d , d � c ,
d � a, d � b.

Properties of lup:

lup(a, b) = a if a � b

lup(a, b) = lup(b, a) (commutativity)

lup(a, lup(b, c)) = lup(lup(a, b), c) (associativity)

Concept Learning Generality and Subsumption 103 / 265

Least General Generalization

A subsumption lattice is induced by the subset relation ⊆. When the
lattice members are conjunctions or disjunctions of literals, we call the lup
the least general generalization denoted lgg and clearly

lgg(a, b) = a ∩ b (12)

Due to commutativity and associativity of any lup, lgg is defined uniquely
for any finite set H of lattice elements:

lgg(H) = lgg (h1, lgg (h2, lgg (h3, . . .)) . . .) (13)

where h1, h2, h3, . . . are all elements of H in arbitrary order.

Due to (12) and (13)

lgg(H) =
⋂
h∈H

h

Concept Learning Generality and Subsumption 104 / 265

Generalizing Agent: Design

Recall our Markovian agent model with the function T updating the
agent’s state given its previous state and the new percept:

tk+1 = T (tk , xk+1)

Where for each k, the state tk contains the hypothesis hk .

When hk makes a mistake (i.e., rk+1 = −1), hk+1 should exclude all
literals of hk inconsistent with ok . This is done at time k + 1 so the agent
needs to remember ok as part of its state. So we will maintain the state in
the form of a tuple

tk = 〈hk , ok〉

Concept Learning Generality and Subsumption 105 / 265

Generalizing Agent: Design (cont’d)

The hypothesis will then be updated by

hk+1 =

{
hk if rk+1 = 0

lgg(hk , ōk) otherwise
(14)

where ō denotes a conjunction representing observation o:

ō =
∧
o i=1

pi
∧
o j=0

¬pj (15)

So e.g. for n = 3, ok = 〈1, 0, 1〉, we have ōk = p1 ∧ ¬p2 ∧ p3. Assume
hk = p1 ∧ p2 makes a mistake, i.e. rk+1 = −1. Then hk+1 = lgg(hk , ōk)
= p1, so indeed the inconsistent literal was deleted.

Verify that generally, lgg(h, ō) deletes from h exactly those literals inconsistent with o.

Concept Learning Generality and Subsumption 106 / 265

Generalizing Agent in One Line

Since negative examples are irrelevant, assume without loss of generality
that all of o1, . . . , om are positive. Since h1 contains all literals, we have
ō1 ⊆ h1 and thus

h2 = lgg(h1, ō1) = ō1

h3 = lgg(h2, ō2) = lgg(lgg(h1, ō1), ō2) = lgg(ō2, ō1)

So the agent’s output can be written as

hm = lgg(ōm−1, lgg(ōm−2, . . . lgg(ō2, ō1) . . .)) = lgg({ ō1, . . . , ōm }) (16)

The learned hypothesis is the least general generalization of all positive
examples, which gives the intuition why negative examples are not needed:
if the least general hypothesis was already too general (= covering a
negative example), it means the target concept cannot be expressed
through a conjunction.

Concept Learning Generality and Subsumption 107 / 265

Generalizing Agent for Disjunctions

Try the inverse strategy: ignore positive examples and take the lgg of the
negative examples. Assume this time that o1, . . . , om are all negative.

Say h′m = lgg({ ō1, . . . , ōm }) covers no positives (otherwise there is no
conjunction covering all negatives and no positives). Then clearly ¬h′m
covers no negatives and all positives just like hm from the previous page.

But hm and ¬h′m are not the same: hm is a conjunction while ¬h′m is the
negation of a conjunction, i.e. a disjunction. So this inverse approach is
suitable when the target concept can be expressed through a disjunction.

The agent can also compute both hm and ¬h′m and output whichever one
covers all positive and no negative examples. Such an agent learns
H = Conjunctions ∪ Disjunctions on n variables efficiently on-line.

Concept Learning Generality and Subsumption 108 / 265

Sidenote: Non-Binary Observations

We have considered learning examples o to be binary tuples for simplicity.
But what if observations are richer, e.g. tuples of rational numbers?

A practical way is to set thresholds θi ,j for o i along each axis i obtaining a
(bigger) set of binary observations tuples o ′.

o ′1,1 = 1 iff o1 > θ1,1 o ′1,2 = 1 iff o1 > θ1,2 . . .

o ′2,1 = 1 iff o2 > θ2,1 o ′2,2 = 1 iff o2 > θ2,2 . . .

.

Choosing good threshold is a task for discretization techniques which are
out of our scope and out of the scope of learnability theory.

Concept Learning Extensions of the Generalizing Agent 109 / 265

Visualizing Generalization (with Rational Features)

o1 ∈ Q

o2 ∈ Q

Concept Learning Extensions of the Generalizing Agent 110 / 265

Visualizing Generalization (with Rational Features)

o1 ∈ Q

o2 ∈ Q

h2

Concept Learning Extensions of the Generalizing Agent 111 / 265

Visualizing Generalization (with Rational Features)

o1 ∈ Q

o2 ∈ Q

h3

Concept Learning Extensions of the Generalizing Agent 112 / 265

Generalizing Agent for s-CNF, s-DNF

An s-CNF is a conjunction of s-clauses, which is a disjunction of at most
s ∈ N literals. s-CNF’s can be learned using the generalization strategy.
Given n propositional variables:

Set h1 to the conjunction of all s-clauses on these variables.

One each positive example, remove from hk all clauses false for the
example.

Reasoning just like for the conjunction-learning agent, the number of
mistakes will not be greater than the number of all s-clauses on n

variables. This number is O
[(2n

s

)]
= O(ns), i.e. polynomial. Therefore,

s-CNF’s are learnable online. Check that they are also learned efficiently .

Show the same for s-DNF, i.e. disjunctions of s-terms, which are conjunctions of at most s

literals.

Concept Learning Extensions of the Generalizing Agent 113 / 265

Separating agent

Besides generalization, another prominent learning technique is to separate
C from its complement with a hyperplane in O. We continue with
O = { 0, 1 }n. Agent’s hypothesis is a tuple of integers (‘weights’), i.e.

hk =
〈
h1
k , h

2
k , . . . , h

n
k

〉
and h1 = 〈1, 1, . . . 1〉. Decisions are:

ak = π(hk , ok) =

{
1 if hk · ok > n/2 (dot product)

0 otherwise

o1

o2

h1 = 〈1, 1〉

Example for n = 2

Concept Learning Separating agent 114 / 265

Separating agent: Design

The agent (called Winnow in literature) has a simple learning rule:

On a false negative ok , double weights hi for all i , o ik = 1

On a false positive, nullify weights of these features.

Formally:

hk+1 =


hk if rk+1 = 0 (Keep hk if it did not make a mistake.)

update(2, hk , ok) if rk+1 = −1 and hk · ok ≤ n/2

update(0, hk , ok) if rk+1 = −1 and hk · ok > n/2

where update(α, hk , ok) multiplies all features with value 1 by α, i.e.

hik+1 =

{
α · hik if o ik = 1

hik otherwise

Concept Learning Separating agent 115 / 265

https://en.wikipedia.org/wiki/Winnow_(algorithm)

Visualizing Separation

o1

o2

o1

o2

h1 = h2 = h3 = [1, 1]

Concept Learning Separating agent 116 / 265

Visualizing Separation

o1

o2

o1

o2

o3

h4 = [2, 1]

Concept Learning Separating agent 117 / 265

Visualizing Separation

o1

o2

o1

o2

o3

o4

h5 = [2, 2]

Concept Learning Separating agent 118 / 265

Separating agent: Properties

Agent’s properties, omitting proofs:

Learns efficiently any class H of linearly separable hypotheses. A
linearly separable hypothesis h is such that C (h) is separable from
O \ C (h) on O. This includes conjunctions and disjunctions.

Let the target hypothesis h∗ (C (h∗) = C) be an s-conjunction or an
s-disjunction, i.e. a conjunction (disjunction) with at most s literals.
Then the agent makes at most 2 + 2s log n mistakes. For sufficiently
small s, this is better than the generalizing agent which has a mistake
bound linear in n.

Similarly to the generalizing agent, it can be extended to learning s-CNF’s
or s-DNF’s by using the poly-size set of features corresponding to all
possible s-clauses (s-terms).

Concept Learning Separating agent 119 / 265

Sidenotes on the Separating agent

The perceptron algorithm is similar to the separating (Winnow) agent, using
real-valued weights and a gradient-based learning rule, allowing non-binary
observation vectors. Aritificial neural networks are popular machine-learning models
and they are networks of perceptrons.

Numerous machine-learning algorithms including support vector machines follow
the separation-by-hyperplane strategy. Non-linear separation (by a
hypercurve) can be achieved by a suitable expansion of the observation
vectors such as by adding to them cross-products o io j of all feature pairs.

These methods are out of our scope (find them in the Statistical ML class
instead) as we are concerned mainly with symbolic, interpretable
hypotheses.

Concept Learning Separating agent 120 / 265

https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Support-vector_machine

General Learning Agent

Consider an agent general in the sense that it applies the same strategy
using any given hypothesis class H. It keeps a set Hk of hypotheses,
rather than a single one starting with H1 = H.

At each k, the agent picks an arbitrary h from Hk and makes a decision by
it. If it makes an error, it deletes h from Hk . Formally,

Hk+1 =

{
Hk if rk+1 = 0 (Keep Hk if it did not make a mistake.)

Hk \ { h } if rk+1 = −1

If C ∈ C(H), then this agent makes at most |H| − 1 mistakes. (If all
hypotheses made a mistake, the last one must be the target.)

Concept Learning Separating agent 121 / 265

General Learning Agent

So the agent learns online (not necessarily efficiently) any H such that
|H| ≤ poly(n), including

s-conjunctions and s-disjunctions:

|H| =

(
n

s

)
+

(
n

s − 1

)
+ . . .+

(
n

0

)
≤ poly(n)

but not e.g.

unconstrained conjunctions or disjunctions:

|H| = 22n (including self-resolving)

|H| = 3n (without self-resolving).

Concept Learning Separating agent 122 / 265

Version Space

The version space agent is similar to the general agent but decides by a
majority vote among all hypotheses in Hk and deletes from Hk all
hypotheses inconsistent with the last observation. The agent’s state tk
consists of Hk and the memorized observation ok .

Specifically, when Hk contains logical formulas and ok are valuations:

ak = π(Hk , ok) =

{
1 if | { h ∈ Hk | ok |= h } | > |Hk |/2

0 otherwise

Hk+1 =

{
{ h ∈ Hk | ok |= h } if sk = 1

{ h ∈ Hk | ok 6|= h } if sk = 0

Note: sk+1 = |ak + rk+1| where ak = π(Hk , ok), so the above can indeed
be evaluated at update time.

Concept Learning Version Space Agent 123 / 265

Version Space (cont’d)

If a mistake is made, at least half of the hypotheses are Hk are deleted. In
the worst case, the last remaining hypothesis is correct.

So the agent makes at most log |H| mistakes, i.e. the cumulative reward is

m∑
k=1

rk ≥ − log |H| (17)

for any horizon m ∈ N.

Version space not efficient even for super-poly (not just super-exp) H.
Needs to verify each h ∈ H in the update step.

Concept Learning Version Space Agent 124 / 265

Version Space (cont’d)

If |H| at most exponential then log |H| polynomial and VS agent learns H
online. This includes s-clause CNF’s and s-term DNF’s.

What about H covering all possible concepts on O = { 0, 1 }n, i.e.

C(H) = 2O

We would not need to worry whether C ∈ C(H).

Since |O| = 2n, we have |H| ≥ 2|O| = 2(2n), so |H| is super-exponential.
So, nice try but no on-line learning.

Even some hypothesis classes which are more reasonable are
super-exponential (we will see later).

Concept Learning Version Space Agent 125 / 265

VC Dimension

Concept class C shatters O ′ ⊆ O if any subset of O ′ coincides with C ∩O ′

where C ∈ C. A hypothesis class H shatters O ′ if C(H) shatters O ′.

So O ′ is shattered by C (resp. H) if its elements can be classified in all
2O
′

possible ways by concepts from C (hypotheses from H).

Vapnik-Chervonenkis Dimension

The VC-dimension of C (on O) denoted VC(C) is the cardinality of the
largest subset of O shattered by C. The VC-dimension of hypothesis class
H is defined as VC(C(H)), also denoted VC(H) .

Note: the definition does not assume C or H finite.

Concept Learning Vapnik-Cervonenkis Dimension 126 / 265

Determining VC-Dimension

If some O ′ ⊆ O shattered by C then VC(C) ≥ |O ′|.
If none O ′ ⊆ O shattered by C then VC(C) < |O ′|.

Example: C = half-planes in R2 (i.e., linear separation)

Some 3 points can be shattered

so VC(C) ≥ 3.

Concept Learning Vapnik-Cervonenkis Dimension 127 / 265

Determining VC-Dimension (cont’d)

No 4 points can be shattered. Obvious if 3 in line. Otherwise two
cases possible:

One point in the middle No point in the middle

In both cases, the shown subset cannot be separated by a line. So
VC(C) < 4

We have VC(C) ≥ 3 and VC(C) < 4, thus VC(C) = 3.

Concept Learning Vapnik-Cervonenkis Dimension 128 / 265

Lower Bounds on Mistake Bounds

No general lower bound on mistake counts as the agent may simply be
lucky guessing right each time. But mistake bounds can be lower-bounded.

A mistake bound with no special assumptions cannot be lower than |O| as
each o ∈ O may have an arbitrary class.

A mistake bound assuming only C ∈ C ⊂ 2O for the target concept C
cannot be smaller than VC(C) as there is a set

{
o1, o2, . . . , oVC(C)

}
⊆ O

shattered by C. So for the observation sequence o1, o2, . . . , oVC(C) and any
sequence of agent’s decisions a1, a2, . . . , aVC(C) there is a target concept
C ∈ C by which all these decisions are wrong.

Corollary: an agent using hypothesis class H cannot be guaranteed to
make fewer than VC(H) mistakes.

Concept Learning Vapnik-Cervonenkis Dimension 129 / 265

I.I.D. Examples

So far we have maintained the general Markovian state transitions, so sk+1

was distributed according to

PS(sk+1|sk , ak)

The mistake bound model did not put any assumption on PS . Now, we
will assume that sk+1 does not depend on sk or ak , so all sk are sampled
from the same distribution

PS(s)

so the sk are identically and independently distributed, i.i.d. for short. As
a consequence, observations ok are also i.i.d from PO(o) where

PO(o) =
∑

s∈{ 0,1 }

PO(o|s)PS(s)

Concept Learning PAC Learning Model 130 / 265

Hypothesis Accuracy and Error

The i.i.d. assumption lets us define the error of a hypothesis h as the total
probability of observations, which h decides incorrectly

err(h) = PO

(
[C \ C (h)]

⋃
[C (h) \ C]

)
and the accuracy of h as

acc(h) = 1− err(h)

In this setting, a large V π is achieved when π uses a hypothesis with a
small error, so the agent should minimize it. This gives rise to a new
learning model.

Both acc and err are with respect to the distribution PO and the target concept C , which we do

not show explicitly in their notation.

Concept Learning PAC Learning Model 131 / 265

The PAC Learning Model

Informally, PAC-learning means finding a low-error hypothesis with high
probability using a polynomial number of observations.

Probably Approximately Correct (PAC) Learning

Agent probably approximately correctly (PAC) learns H if for any
C ∈ C(H) and numbers 0 < ε, δ < 1, there is a k < poly(n, 1/ε, 1/δ) such
that the agent’s hypothesis hk has err(hk) ≤ ε with probability at least
1− δ. H is PAC-learnable if there is an agent that PAC-learns it.

n is again the size of observations; with O = { 0, 1 }n, it is simply their
arity.

Note that if O is finite and ε = mino∈O PO(o), then with prob. at least
1− δ, hk is correct for all observations, i.e. err(hk) = 0.

Concept Learning PAC Learning Model 132 / 265

Efficient and Proper PAC Learning

Analogically to the mistake-bound model, we say the agent PAC-learns H
efficiently if it spends at most poly(n, 1/ε, 1/δ) time between each percept
and the subsequent action; if there is such an agent, H is efficiently
PAC-learnable.

Note that in the definition of PAC learning we do not assume that hk ∈ H.
In general, the agent may work with a hypothesis class larger than H; for
example with H =conjunctions, hk may be a 3-CNF equivalent to the
target conjunction. With the additional condition that hk ∈ H, we say
that the agent properly (efficiently) PAC-learns H, and if there is such an
agent for H, we say that H is properly (efficiently) PAC-learnable.

Concept Learning PAC Learning Model 133 / 265

Generalizing Agent in the PAC Model

Let us analyze the generalizing agent again, this time with the i.i.d.
assumption.

Let Ol ⊆ O denote the set of all observations inconsistent with a literal l .
We know already that a hypothesis h makes a mistake for an observation
only if it has a literal inconsistent with it, so

err(h) ≤
∑
l∈h

PO(Ol)

With n variables, there are at most 2n literals in h so if PO(Ol) ≤ ε/2n for
each literal l ∈ h then err(h) ≤ ε. Call literal l bad if

PO(Ol) >
ε

2n
(18)

Concept Learning PAC Learning Model 134 / 265

Generalizing Agent in the PAC Model (cont’d)

Let l be bad. At time k + 1, the probability that l ∈ hk+1 is the probability
that l is consistent with k i.i.d. observations (else it would have been
removed), i.e. (1− PO(Ol))k . Due to (18) , we have

(1− PO(Ol))k <
(

1− ε

2n

)k
Prob. that some bad literal is consistent with the k observations is upper
bounded by the above times the number of all literals so it is at most:

2n
(

1− ε

2n

)k
< 2ne−k

ε
2n

as there are at most 2n bad literals. For the right-hand side, we used
1− x < e−x , x ∈ (0; 1).

Concept Learning PAC Learning Model 135 / 265

2ne−k
ε

2n , ε = 0.1, n = 5

0 200 400 600 800 1000
k

0.0

0.2

0.4

0.6

0.8

1.0

Upper bound for probability that a bad literal remains in hk+1 of the generalizing agent with

n = 5 variables. Note the looseness of this bound: from reasoning in the mistake-bound model,

we know that h2n+1 = h11 is already correct so it has no bad literal.

Concept Learning PAC Learning Model 136 / 265

PAC-Learning with the Generalization Agent

To satisfy PAC-learning conditions, we need to make it

2ne−k
ε

2n < δ

which is equivalent to

k ≥ 2n

ε
ln

2n

δ

So for k = 2n
ε ln 2n

δ , err(hk+1) ≤ ε with probability at least δ. Since
k + 1 ≤ poly(n, 1/δ, 1/ε), the agent PAC-learns conjunctions.

It also learns them efficiently as it spends only 2n unit steps (checking
each literal’s consistency) on each observation.

Through adaptations we have discussed, it also efficiently PAC-learns
disjunctions, s-CNF’s and s-DNF’s.

Concept Learning PAC Learning Model 137 / 265

Standard On-line Agent

An on-line agent deciding by π(h, o) is standard if it changes its
hypothesis (hk+1 6= hk) if and only if hk makes an error (rk+1 = −1). This
includes the generalizing and separating agent but not e.g. version-space.

Consider any standard on-line agent with mistake bound M. Let q ∈ N
and k = Mq. In the agent’s sequence of hypotheses h1, h2, . . . hk+1, there
must be a hypothesis h retained for at least q consecutive steps, i.e.
∃K ≤ k such that h = hK = hK+1 = . . . = hK+q.

Assume for contradiction that all subsequences of identical hypotheses are
shorter than q. Then there are more than M different hypotheses among
h1, h2, . . . hk+1 because k = Mq. The agent changes its hypothesis only on
a mistake, so this means it has made more than M mistakes up to time k.
This is a contradiction because M is the error bound.

Concept Learning PAC Learning Model 138 / 265

PAC-Learning with any Standard On-Line Agent

The probability that a hypothesis h is consistent with q i.i.d. observations
is (1− err(h))q. Call a hypothesis bad if err(h) > ε. So a bad hypothesis is
consistent with q i.i.d. observations with probability at most (1− ε)q.

Consider any standard agent learning H online in the mistake-bound
model, i.e., it makes at most M < poly(n) mistakes. Let k = Mq. We
already know that until time k + 1 the agent had a hypothesis h consistent
with q consecutive observations.

This h is thus bad with probability at most (1− ε)q. With q = 1
ε ln 1

δ , this

is (1− ε)q ≤ e−qε = e−ε
1
ε

ln 1
δ = δ. Since both M and q are

≤ poly(n, 1/δ, 1/ε), so is k + 1 = Mq + 1. Thus if a standard agent
(efficiently) learns H online it also (efficiently) PAC-learns it.

Concept Learning PAC Learning Model 139 / 265

Training Set and Batch Learning

Consider concept learning in an interaction with a finite horizon m + 1.
The agent’s goal is to minimize the error of its last hypothesis err(hm+1).

Recall that in our interaction scenario, the class sk = c(ok) of ok is
determined at k + 1 as |ak + rk+1|. So at time step m + 1 the agent has
received exactly m observations with determined classes:

T = { 〈o1, s1〉 , 〈o2, s2〉 , . . . , 〈om, sm〉 } (19)

which is called the training (multi-)set.

Rather than updating the hypothesis at each k = 2, 3, . . .m + 1, the agent
can simply store the training set in its state (memory), and only at time
m + 1 compute a hypothesis from T . We will call this batch learning.

Concept Learning PAC Learning Model 140 / 265

Consistency with the Training Set

The hypothesis a PAC-learning agent computes from any training set is
consistent with it.

Let h be the hypothesis computed from T (19) and assume for
contradiction that h misclassifies some o ∈ { o1, . . . , om }. PO and
0 < δ < 1 can be arbitrary so set them such that δ <

∏m
k=1 PO(ok), i.e. T

is received with probability greater than δ. This implies that PO(ok) > 0
for 1 ≤ k ≤ m, so also PO(o) > 0. Because of that and since 0 < ε < 1
can be arbitrary, we can set ε such that ε < PO(o). Since h misclassifies
o, it follows err(h) ≥ PO(o) and because PO(o) > ε, we have err(h) > ε.
This happens when T is received, i.e. with probability greater than δ. This
contradicts PAC-learning conditions.

Concept Learning PAC Learning Model 141 / 265

Consistent Agent

Consider a general consistent agent learning H′ and equipped with some
hypothesis class H. Given a training set T of size m, it produces an
arbitrary h ∈ H consistent with T .

Note that producing a consistent hypothesis for any given T is only
possible if the target concept C is in C(H). C ∈ C(H) is arbitrary, so

C(H) ⊇ C(H′) (20)

is a necessary condition.

The probability that a hypothesis h ∈ H consistent with T is bad
(err(h) > ε) is (1− err(h))m < (1− ε)m. There are at most |H| hypotheses
so the probability that some bad hypothesis is consistent with T is at most

|H|(1− ε)m < |H|e−εm

Concept Learning PAC Learning Model 142 / 265

|H|e−εm, ε = 0.1, n = 5

0 200 400 600 800 1000
m

0.0

0.2

0.4

0.6

0.8

1.0
Consistent agent
Generalizing agent, earlier bound for comparsion

Upper bound on prob. that err(h) > ε with a consistent agent and H = conjunctions (blue).

The bound applies also to the generalizing agent, which is consistent, and is tighter than the

previous bound derived specifically for it (orange).

Concept Learning PAC Learning Model 143 / 265

PAC-Learning with any Consistent Agent

|H|e−εm is smaller than δ if

m ≥ 1

ε
ln
|H|
δ

Since m is polynomial in 1/ε and 1/δ, PAC-learns H if m is further
polynomial in n. The only factor on the right-hand side depending on n is
ln |H|, so the condition is

ln |H| ≤ poly(n)

i.e., |H| is at most exponential in n.

To learn H′ properly we further require H ⊆ H′, which together with (20)

implies H′ = H.

Concept Learning PAC Learning Model 144 / 265

Sizes of Some H (You do the math)

H |H| in increasing size

s-conjunctions, s-disjunctions O [(2n)s] (incl. self-resolv.) poly
s-depth decision trees 2(2n)2s−1 poly
conjunctions, disjunctions 22n (3n if no self-resolving) exp
s-term DNF, s-clause CNF O [(3n)s] exp

s-CNF, s-DNF O
[
2(2n

s)
]

= O
[
2(ns)

]
exp

dec. trees, DNF, CNF, ... ≥ 2(2n) (# all concepts) super-exp

Notes:
s-term DNF, s-clause CNF. At most s non-self-resolving terms (clauses)

of unlimited size.

DNF, CNF. |H| = 2(3n). There are only 2(2n) possible concepts on
O = { 0, 1 }n, so H has equivalent pairs in it.

decision trees. Can express any concept so |H| ≥ 2(2n)

s-depth decision trees. See next slide.

Concept Learning PAC Learning Model 145 / 265

Decision Trees with max depth s

p3

p5 1

1 0

0 1

0 1

Depth 3

Denote dt(s) = |H| where H contains decision trees
with maximal depth s on n variables.

dt(1) = 2

...just a vertex with 0 or 1. For s = 2, 3, . . .,

dt(s) = n · dt(s − 1)2

n choices for root, dt(s − 1) possible subtrees on
both left and right. Take a log of both sides and
solve the arithmetic series, yielding

dt(s) = 2(2n)2s−1

which is poly in n.

Concept Learning PAC Learning Model 146 / 265

Finding a Consistent 3-term DNF

The NP-complete graph 3-coloring problem can be reduced in poly-time to finding
an 3-term DNF consistent with a training set.

vertex vi ↔ pos. example o, o l =

{
0 if l = i

1 otherwise

edge eij ↔ neg. example o, o l =

{
0 if l = i or l = j

1 otherwise

v1 v2

v3

v4 v5

01111 10111

11011

11101 11110

00111

01011

01101

10101

10110

11001 11010

11100

Concept Learning PAC Learning Model 147 / 265

https://en.wikipedia.org/wiki/Graph_coloring

Finding a Consistent s-term DNF (cont’d)

Graph 3-colorable iff a 3-term DNF consistent with the training set exists.

01111 10111

11011

11101 11110

00111

01011

01101

10101

10110

11001 11010

11100

⇒∨
color ∈
{ R,G ,Y }

∧
vi not of
color

pi

⇐
color of any consistent term

p2 ∧ p3 ∧ p4∨
p1 ∧ p3 ∧ p5∨

p1 ∧ p2 ∧ p4 ∧ p5

3-colorability NP-hard → finding a consistent 3-term DNF NP-hard. Can
be generalized to s-term DNF’s. So s-term DNF’s are not efficiently
properly PAC-learnable.

Concept Learning PAC Learning Model 148 / 265

PAC-Learning s-term DNF Efficiently using s-CNF

Every k-term DNF formula can be written as a logically equivalent k-CNF
formula. Example:

(p1 ∧ p2) ∨ (p2 ∧ p3) ≡ (p1 ∨ p2) ∧ (p1 ∨ p3) ∧ p2 ∧ (p2 ∨ p3)

Therefore

C(s-term DNF’s) ⊆ C(s-CNF’s) (21)

Thus by using H = s-CNF’s, the agent efficiently PAC-learns H′ = s-term
DNF’s. Since s-CNF (O

[
2(ns)

]
) has larger cardinality than s-term DNF

(O [(3n)s]), the inclusion (21) is strict, i.e. C(H′) ⊂ C(H). Thus the agent
does not PAC-learn H′ properly as the final s-CNF hypothesis may not be
expressible as an s-term DNF.

Concept Learning PAC Learning Model 149 / 265

PAC-Learnability Due to VC-Dimension

PAC-Learnability Due to VC-Dimension

If h is consistent with

m ≥ max

{
4

ε
log2

2

δ
,

8 · VC(H)

ε
log2

13

ε

}
i.i.d. training examples, then err(h) ≤ ε with probability at least 1− δ.

So a consistent agent using H PAC-learns any H′ s.t. C(H′) ⊆ C(H) as
long as VC(H) is at most polynomial.

For infinite H, VC(H) plays a role “analogical” to ln |H| which is defined
only for finite H. The result is useful also for some finite hypothesis
classes.

Concept Learning PAC Learning Model 150 / 265

PAC-Learnability Due to VC-Dimension: Example

Consider learning a threshold hypothesis h ∈ [0; 1] with O = [0; 1].

π(h, o) =

{
1 if o > h

0 otherwise

Assume finite precision. |H| = 2b where b is the number of bits to

represent h ∈ H. Values of m = 1
ε ln |H|δ for some b and ε = δ = 0.1:

b = 64 b = 128 b = 256

m = 467 m = 911 m = 1798

whereas VC(H) = 1 independently of precision and the VC bound gives
m = 562.

Concept Learning PAC Learning Model 151 / 265

Beyond Consistent Learning / Concept Learning

Consistent learning is impossible if C(H′) * C(H), or if the very concept
assumption s = c(o) is not met (a training set T may then contain the
same observation several times with different class labels).

Then settle for the empirical risk minimization (ERM) principle:

h = arg min
h∈H

êrr(h,T) = arg min
h∈H

1

|T |
|{ 〈o, s〉 ∈ T | π(h, o) 6= s }|

where êrr(h,T) defined by the equation is called the training error or
empirical risk.

We no longer have PAC-learning guarantees but probabilistic bounds on
err(h) can be estimated from êrr(h,T) and ln |H| or VC(H). Details in the

Statistical Machine Learning class .

Concept Learning PAC Learning Model 152 / 265

https://www.fel.cvut.cz/en/education/bk/predmety/46/84/p4684906.html

Learning from Conjunctions

In (15) , we formally converted truth-value assignments o to conjunctions
ō. For example, for o = 〈1, 0, 1〉, ō = p1 ∧ ¬p2 ∧ p3. We now explore
learning from observations o which are already conjunctions. Unlike ō,
they are arbitrary, i.e. need not contain a literal for every atom
p1, p2, . . . pn.

Denote by O+ (O−) is the set of all received positive (negative)
conjunctive examples. The agent should find a conjunction h such that

o+ |= h for all o+ ∈ O+

o− 6|= h for all o− ∈ O−
(22)

Concept Learning Learning from Conjunctions and Disjunctions 153 / 265

Learning from Conjunctions (cont’d)

If none of o ∈ O+ ∪ O− is contradictory, then

h = lgg(O+) =
⋂

o+∈O+

o+ (23)

is also a non-contradictory conjunction and |= (6|=) in (22) is equivalent to
⊆ (*), so h is a solution to (22) if a solution exists.

We can compute (23) from all positive examples in the training set (19)

when working in the batch mode. In the online setting, the agent follows
(14) (ō denoting the conjunctive observations). Here h1 would be a

conjunction of all 2n literals. However, there is no need to build h1: just
make negative predictions (ak = 0) until some example ok is misclassified
(rk+1 = −1), and then set hk+1 = ok .

Concept Learning Learning from Conjunctions and Disjunctions 154 / 265

Learning from Conjunctions: Example

This learning setting is useful: it allows to learn from incomplete
conjunctive observations. For example, consider learning the wife concept
from three examples of persons.

o+
1 = woman ∧ happy ∧ married ∧ ¬rich
o+

2 = tall ∧ woman ∧ married
o−3 = ¬tall ∧ woman

The observations are incomplete in that e.g. we do not know if first person
is tall or if the other two are rich. Still, the solution

h = lgg(o+
1 , o

+
2) = woman ∧ married

is as expected, and consistent with the negative example: o−3 6|= h.

Concept Learning Learning from Conjunctions and Disjunctions 155 / 265

Learning from Disjunctions

Observe (verify, easy) that for conjunctions O+, (23) is equivalent to

¬h = lgg(
{
¬o+; o+ ∈ O+

}
)

where ¬h and ¬o+ are all disjunctions. Since o+ |= h for o+ ∈ O+ due to
(22) , we have ¬h |= ¬o+ for o+ ∈ O+.

Assume now the observations are already disjunctions, which are not
tautologies. Then (23) is a disjunction satisfying

h |= o+ for all o+ ∈ O+

h 6|= o− for all o− ∈ O−
(24)

whenever a disjunction satisfying (24) exists. We will now illustrate why
formulation (24) is also useful.

Concept Learning Learning from Conjunctions and Disjunctions 156 / 265

Learning from Disjunctions: Example

Disjunctions are convenient in machine learning because they can be easily
rewritten into implications and interpreted as rules. E.g. a ∨ b ∨ ¬c ∨ ¬d
is tautologically equivalent to a ∧ b → c ∨ b.

For example, from disjunctive examples

o+
1 = man ∧ adult ∧ young→ married ∨ bachelor
o+

2 = man ∧ adult→ married ∨ bachelor ∨ nerd

the agent can learn h = lgg(o+
1 , o

+
2) = o+

1 ∩ o+
2 =

man ∧ adult→ married ∨ bachelor

So the agent learns the correct rule from observed rules which are true but
insufficiently general.

Concept Learning Learning from Conjunctions and Disjunctions 157 / 265

Learning from Conjunctions or Disjunctions: Summary

h = lgg(O+) is a solution to (22) when observations are non-contradictory
conjunctions and to (24) when observations are non-tautological
disjunctions. Using the ⊆ relation, the task can be formulated jointly.

Learning from Subsumption

Given sets O+,O− of non-self-resolving conjunctions (disjunctions) find a
conjunction (disjunction, respectively) h such that

h ⊆ o+ for all o+ ∈ O+

h * o− for all o− ∈ O−
(25)

If a solution exists, then h = lgg(O+) is a solution. Furthermore, as we
showed here , one can also obtain a conjunctive hypothesis for disjunctive
observations (or vice versa) as h = ¬lgg(O−).

Concept Learning Learning from Conjunctions and Disjunctions 158 / 265

Example

Solutions of (25) with

o+
1 = p1 ∧ p3 ∧ p4 o−3 = p1 ∧ p2 ∧ p5

o+
2 = p3 ∧ p4 ∧ p6 o−4 = p2 ∧ p5 ∧ p6

Conjunctive: h = lgg(o+
1 , o

+
2) = ¬lgg(¬o+

1 ,¬o
+
2) = p3 ∧ p4.

(Check consistency with o−3 , o
−
4 !)

Disjunctive: h = ¬lgg(o−3 , o
−
4) = lgg(¬o−3 ,¬o

−
4) = p2 ∨ p5.

(Check consistency with o+
1 , o

+
2 !)

An analogical example can be shown for disjunctive examples: just swap
all ∧’s and ∨’s above.

While the example set above allowed both a conjunctive and a disjunctive
solution, other example sets may allow only one of them or none at all.
(lgg of all examples of one class is always defined but the result may not
be consistent with the examples of the other class.)

Concept Learning Learning from Conjunctions and Disjunctions 159 / 265

Learning Relational Concepts

Learning Relational Concepts 160 / 265

Structured Observations

o+
1 o+

2 o−3

What distinguishes the positive examples from the negative one in terms
of shapes and inclusions?

Such examples are abstractions of real-life relational structures (molecules,
social networks, GIS objects, ...). There is no obvious way to encode them
through propositional-logic formulas. We need a more expressive language.

Learning Relational Concepts Introduction 161 / 265

Relational Logic Language

Relational logic is a subset of first-order logic. The alphabet of a relational
logic language consists of two finite sets

Predicates: each with defined arity, e.g. circle/1, or inside/2

Constants: e.g. object1, object2

and a countable set of variables (e.g. x , y , z , x1, . . .). Constants and
variables are together called terms.

Using predicates and terms, we can express simple statements such as

circle(object1) or inside(object1, object2)

which are called atoms and are analogical to propositional ‘variables’ such
as p1, p2.

Learning Relational Concepts Introduction 162 / 265

Relational Logic Formulas

As in propositional logic, we can use connectives (∧,∨,→) between
literals, which are atoms or their negations, to create more complex
formulas, e.g.

¬circle(object1) ∧ inside(object1, object2)

Unlike in propositional logic, we can use quantified variables in formulas

∃x ¬circle(x) ∧ inside(x , object2)

∀x circle(x) ∨ ¬inside(x , object2)

In this course, if quantifiers are not shown, all variables in relational
conjunctions are quantified existentially, and all variables in relational
disjunctions are quantified universally.

Formulas without variables are called ground.

Learning Relational Concepts Introduction 163 / 265

Substitution

A substitution replaces all occurrences of specified variables with specified
terms. E.g. with formula

ϕ = circle(x) ∧ inside(x , y)

and substitutions

θ1 = { x → object1, y → object2 }
θ2 = { x → y }

we have

ϕθ1 = ϕθ1θ2 = circle(object1) ∧ inside(object1, object2)

ϕθ2 = circle(y) ∧ inside(y , y)

ϕθ2θ1 = circle(object2) ∧ inside(object2, object2)

Learning Relational Concepts Introduction 164 / 265

θ-Subsumption

Subsumption in relational logic is more involved than in propositional logic.

Let a, b be two relational conjunctions or disjunctions. We say that a
θ-subsumes b (written a ⊆θ b) if there is a substitution θ s.t. aθ ⊆ b.

Example for conjunctions:

inside(x , y) ⊆θ circle(c) ∧ inside(x , c)

θ = { y 7→ c }

Example for disjunctions:

inside(x , y) ∧ inside(y , z)→ inside(x , z)

⊆θ inside(x , object1) ∧ inside(object1, z)→ inside(x , z)

θ = { y 7→ object1 }

Learning Relational Concepts Introduction 165 / 265

θ-Subsumption: Properties

It is NP-complete to decide whether a ⊆θ b for two conjunctions or
disjunctions a, b.

Note that a ⊆θ b may hold even if a has more literals than b, e.g

inside(x , y) ∧ inside(w , z) ⊆θ inside(object1, object2)

θ = { x 7→ object1,w 7→ object1, y 7→ object2, y 7→ object2 }

Two different conjunctions (disjunctions) a, b may be θ-equivalent,
meaning a ⊆θ b and b ⊆θ a. Then we write a ≈θ b. For example,

circle(x) ≈θ circle(x) ∧ circle(y)

Learning Relational Concepts Introduction 166 / 265

θ-Subsumption: Properties (cont’d)

As in the propositional case, a ⊆θ b implies b |= a (a |= b) for
conjunctions (disjunctions) a, b, while the reverse implications do not
hold. For example, with disjunctions

a = ¬p(x , y) ∨ ¬p(y , z) ∨ p(x , z)

b = ¬p(a,b) ∨ ¬p(b, c) ∨ ¬p(c,d) ∨ p(a,d)

a |= b (verify by resolution) but a 6⊆θ b. This is because a is
self-resolving, i.e. contains a positive and a negative literal with the
same predicate.

Unlike in propositional logic, relational self-resolving disjunctions need not
be tautologies (e.g. a is not a tautology) and relational self-resolving
conjunctions need not be contradictions (e.g. ¬a is not a contradiction).

Learning Relational Concepts Introduction 167 / 265

Learning from θ-Subsumption

The learning task is as in (25) except ⊆ is replaced with ⊆θ, i.e.:

Learning from ⊆θ-Subsumption

Given sets O+,O− of non-self-resolving conjunctions (disjunctions) find a
conjunction (disjunction, respectively) h such that

h ⊆θ o+ for all o+ ∈ O+

h 6⊆θ o− for all o− ∈ O−
(26)

Clearly, if a solution exists then the least general generalization (i.e. the
least upper bound as defined here) of O+ with respect to ⊆θ is a solution.

So if we can define lgg for the ⊆θ order, the relational agent can work as
described in here . (While h1 is combinatorially large, its computation can
be avoided as described here .)

Learning Relational Concepts Introduction 168 / 265

Relational lgg

Unlike in the propositional case, where lgg was with respect to ⊆ and thus
simply computable (12) , relational lgg is more involved.

We first define lgg for two literals which are compatible, i.e. have the
same sign (plain or negated), predicate symbol, and arity.

The lgg of p(t1, t2, . . . ta) and p(u1, u2, . . . ua) where ti , ui are terms
(constants or variables) is

p (lgg(t1, u1), lgg(t2, u2), . . . lgg(ta, ua)) (27)

Learning Relational Concepts Relational lgg 169 / 265

Relational lgg (cont’d)

The arguments in (27) are

lgg(ti , ui) =

{
ti if ti = ui

vi otherwise

where vi is

either a new variable (different from terms t1, u1, . . . ti−1, ti−1) if
〈ti , ui 〉 have not yet been matched (i.e. the pair is different from all of
〈t1, u1〉 , . . . 〈ti−1, ti−1〉)
same as variable vj if 〈ti , ui 〉 have already been matched
(〈ti , ui 〉 = 〈tj , uj〉 for some j < i) and assigned variable vj .

Example: lgg (p (x , a, x , b, a)) , p (a, b, a, a, a)) = p (v1, v2, v1, v3, a)

Learning Relational Concepts Relational lgg 170 / 265

Anti-Unification Algorithm

The lgg of two compatible literals is computed by the Anti-unification
algorithm, which rewrites both of the input literals a, b into lgg(a, b).

Require: Literals a, b compatible with each other and not sharing a variable (if they
share a variable, just replace all occurrences of it in a with a new variable)

1: i = 0; θ := ∅; σ := ∅ . a counter and two substitutions
2: v1, v2, . . . : variables not appearing in a or b
3: while a 6= b do
4: Let p be the leftmost position where a and b differ and s and t be the terms at

this position in a and b, respectively.
5: if for some j (1 ≤ j ≤ i), vjθ = s and vjσ = t then . variable already assigned
6: put vj to position p in both a and b . replace the terms with that variable
7: else
8: i := i + 1
9: put vi to position p in both a and b . replace the terms with a new variable

10: θ := θ ∪ { vi 7→ s }, σ := σ ∪ { vi 7→ t } . store assignment of vi
11: end if
12: end while
13: return a

Learning Relational Concepts Relational lgg 171 / 265

Relational lgg (cont’d)

Finally, the lgg of two conjunctions or disjunctions a, b contains the lgg of
each pair la ∈ a, lb ∈ b of compatible literals. Importantly, when matching
some terms t, u that were already assigned a variable v in the lgg of
another pair of literals, they have to be assigned v again.

Example:

a = parent(jack, ann) ∧ female(ann)→ daughter(ann)

b = parent(tracy, sarah) ∧ female(sarah)→ daughter(sarah)

lgg(a, b) = parent(x , y) ∧ female(y)→ daughter(y)

Gordon Plotkin showed that the lgg operator we just defined indeed computes
the least upper bound with respect to the θ-subsumption order.

Learning Relational Concepts Relational lgg 172 / 265

https://en.wikipedia.org/wiki/Gordon_Plotkin

lgg Example: Non-Ground Disjunctions

lgg of

male(x) ∧ female(y) ∧ parent(x , y)→ daughter(y , x)

and
female(x) ∧ parent(ann, x)→ daughter(x , ann)

¬female(x) ¬parent(ann, x) daughter(x , ann)

¬male(x)
¬female(y) ¬female(v1)
¬parent(x , y) ¬parent(v2, v1)
daughter(y , x) daughter(v1, v2)

θ σ

y x v1

x ann v2

is
female(x) ∧ parent(y , x)→ daughter(x , y)

Learning Relational Concepts Relational lgg 173 / 265

lgg Example: Non-Ground Disjunctions (cont’d)

male(x)∧female(y)∧parent(x , y)→ daughter(y , x)
true statement - positive example

female(x) ∧ parent(ann, x)→ daughter(x , ann)
true statement - positive example

female(x) ∧ parent(y , x)→ daughter(x , y)
consistent hypothesis

⊆θ

⊆θ

lgg

parent(y , x)→ daughter(x , y)
over-general hypothesis

⊆θ

parent(jack, john)→ daughter(john, jack)
false statement - negative example

⊆θ

Learning Relational Concepts Relational lgg 174 / 265

lgg Example: Non-Ground Disjunctions (cont’d)

male(x)∧female(y)∧parent(x , y)→ daughter(y , x)
true statement - positive example

female(x) ∧ parent(ann, x)→ daughter(x , ann)
true statement - positive example

female(x) ∧ parent(y , x)→ daughter(x , y)
consistent hypothesis

⊆θ

⊆θ

lgg

parent(y , x)→ daughter(x , y)
over-general hypothesis

⊆θ

parent(jack, john)→ daughter(john, jack)
false statement - negative example

⊆θ

Learning Relational Concepts Relational lgg 175 / 265

lgg Example: Non-Ground Disjunctions (cont’d)

male(x)∧female(y)∧parent(x , y)→ daughter(y , x)
true statement - positive example

female(x) ∧ parent(ann, x)→ daughter(x , ann)
true statement - positive example

female(x) ∧ parent(y , x)→ daughter(x , y)
consistent hypothesis

⊆θ

⊆θ

lgg

parent(y , x)→ daughter(x , y)
over-general hypothesis

⊆θ

parent(jack, john)→ daughter(john, jack)
false statement - negative example

⊆θ

Learning Relational Concepts Relational lgg 176 / 265

lgg Example: Non-Ground Disjunctions (cont’d)

male(x)∧female(y)∧parent(x , y)→ daughter(y , x)
true statement - positive example

female(x) ∧ parent(ann, x)→ daughter(x , ann)
true statement - positive example

female(x) ∧ parent(y , x)→ daughter(x , y)
consistent hypothesis

⊆θ

⊆θ

lgg

parent(y , x)→ daughter(x , y)
over-general hypothesis

⊆θ

parent(jack, john)→ daughter(john, jack)
false statement - negative example

⊆θ

Learning Relational Concepts Relational lgg 177 / 265

lgg Example: Non-Ground Disjunctions (cont’d)

male(x)∧female(y)∧parent(x , y)→ daughter(y , x)
true statement - positive example

female(x) ∧ parent(ann, x)→ daughter(x , ann)
true statement - positive example

female(x) ∧ parent(y , x)→ daughter(x , y)
consistent hypothesis

⊆θ

⊆θ

lgg

parent(y , x)→ daughter(x , y)
over-general hypothesis

⊆θ

parent(jack, john)→ daughter(john, jack)
false statement - negative example

⊆θ

Learning Relational Concepts Relational lgg 178 / 265

lgg Example: Conjunctions

We return to the initial example and encode the observations as relational
conjunctions.

o+
1 =
triangle(t1) ∧ rectangle(r1)∧
circle(c1) ∧ triangle(u1)∧
inside(u1, c1)

o+
2 =
triangle(t2) ∧ circle(c2)∧
triangle(u2) ∧ inside(u2, c2)∧
inside(c2, t2) ∧ inside(u2, t2)

Learning Relational Concepts Relational lgg 179 / 265

lgg Example: Conjunctions (cont’d)

Abbreviating predicate symbols

o+
2 ⇓ o+

1 ⇒ t(t1) r(r1) c(c1) t(u1) in(u1, c1)

t(t2) t(x1) t(x4)
c(c2) c(x3)
t(u2) t(x2) t(x5)

in(u2, c2) in(x5, x3)
in(c2, t2) in(x6, x7)
in(u2, t2) in(x5, x7)

θ σ

t1 t2 x1

t1 u2 x2

c1 c2 x3

u1 t2 x4

u1 u2 x5

u1 u2 x6

c1 t2 x7

lgg(o+
1 , o

+
2) =t(x1) ∧ t(x2) ∧ c(x3) ∧ t(x4) ∧ t(x5)

∧ in(x5, x3) ∧ in(x6, x7) ∧ in(x5, x7)

Learning Relational Concepts Relational lgg 180 / 265

lgg Example: Conjunctions (cont’d)

lgg(o+
1 , o

+
2) is a complex conjunction but it is θ-equivalent to a simpler one

under substitution θ = { x1 7→ x5, x2 7→ x5, x4 7→ x5, x6 7→ x5, x7 7→ x3 }:

t(x1) ∧ t(x2) ∧ c(x3) ∧ t(x4) ∧ t(x5) ∧ in(x5, x3) ∧ in(x6, x7) ∧ in(x5, x7)

≈θ
c(x3) ∧ t(x5) ∧ in(x5, x3)

meaning “a triangle in a circle”. This is indeed a correct pattern
consistent with the observations. Hurray!

o+
1 o+

2 o−3

Learning Relational Concepts Relational lgg 181 / 265

Clause Reduction

For brevity, the following definitions and examples speak only of universally
quantified disjunctions, i.e., clauses. However, they apply analogically to
existentially quantified conjunctions (the next page provides an example).

Clause Reduction

Clause a is reduced if for no clause b, b ⊂ a, b ≈θ a. A reduced clause b is
a reduction of clause a if b ≈θ a.

Reduction principle: Given clause a, find a literal l ∈ a such that
a ⊆θ a \ { l }. If found, set a← aθ and repeat; else return a.

Remind that deciding the relation ⊆θ is NP-complete, so a clause
reduction cannot be computed efficiently.

Learning Relational Concepts Relational lgg 182 / 265

Conjunction Reduction: Example

1 h =
t(x1)∧t(x2)∧c(x3)∧t(x4)∧t(x5)∧in(x5, x3)∧in(x6, x7)∧in(x5, x7)
θ = { x1 7→ x2 }, h ⊆θ h \ { t(x1) }, so set h← hθ.

2 h = t(x2) ∧ c(x3) ∧ t(x4) ∧ t(x5) ∧ in(x5, x3) ∧ in(x6, x7) ∧ in(x5, x7)
θ = { x2 7→ x4 }, h ⊆θ h \ { t(x2) }, so set h← hθ.

3 h = c(x3) ∧ t(x4) ∧ t(x5) ∧ in(x5, x3) ∧ in(x6, x7) ∧ in(x5, x7)
θ = { x4 7→ x5 }, h ⊆θ h \ { t(x4) }, so set h← hθ.

4 h = c(x3) ∧ t(x5) ∧ in(x5, x3) ∧ in(x6, x7) ∧ in(x5, x7)
θ = { x6 7→ x5, x7 7→ x3 }, h ⊆θ h \ { in(x6, x7) }, so set h← hθ

5 h = c(x3) ∧ t(x5) ∧ in(x5, x3) ∧ in(x6, x7) ∧ in(x5, x7)
θ = { x6 7→ x5, x7 7→ x3 }, h ⊆θ h \ { in(x6, x7) }, so set h← hθ

6 h = c(x3) ∧ t(x5) ∧ in(x5, x3). h is reduced.

Learning Relational Concepts Relational lgg 183 / 265

Learnability of Relational Clauses

The proof from here , which applied only to the propositional-logic agent
can easily be extended to any lgg based agent, including the relational
one. Let h∗ be the target clause.

1 h∗ ⊆θ ok for all positive observations ok , so h∗ ⊆θ h1 = o1.

2 If hk−1 misclassifies a negative example ok−1, i.e. hk−1 ⊆θ ok−1, then
hk = lgg(hk−1, ok−1) ≈θ hk−1, so h∗ ⊆θ hk−1 implies h∗ ⊆θ hk .

3 If hk−1 misclassifies a positive example ok−1, i.e. hk−1 6⊆θ ok−1, then
h∗ ⊆θ hk−1 implies h∗ ⊆θ hk = lgg(hk−1, ok−1), because h∗ ⊆θ ok−1

and hk is a least generalization

4 By induction from the blue assertions above: h∗ ⊆θ hk , ∀k ∈ N.

5 From 4: mistakes are made only on positive examples and after each
mistake, hk ⊂θ hk−1 (because hk−1 6⊆θ ok−1 and hk ⊆θ ok−1).

Learning Relational Concepts Learnability of Relational Hypotheses 184 / 265

Learnability of Relational Clauses (cont’d)

We have shown the agent makes a strict generalization after each mistake,
and never over-generalizes. Enough for an error bound in the
mistake-bound model?

Consider the infinite sequence of clauses ak (k = 2, 3, . . .):

ak =
∨

1≤i ,j≤k,i 6=j

p(xi , xj)

a2 = p(x1, x2) ∨ p(x2, x1)

a3 = p(x1, x2) ∨ p(x2, x1) ∨ p(x1, x3) ∨ p(x3, x1) ∨ p(x2, x3) ∨ p(x3, x2)

etc.

Observe that

p(x1, x2) ⊆θ a2 ⊂θ a3 ⊂θ . . . ⊆θ p(x1, x1)

.
Learning Relational Concepts Learnability of Relational Hypotheses 185 / 265

Learnability of Relational Clauses (cont’d)

So in the subsumption lattice, two finite clauses such as p(x1, x1) and
p(x1, x2) are connected by an infinite path of strict generalizations.

Thus for any M ∈ N, the sequence o1 = aM+1, o2 = aM , . . . , oM+1 = a1 of
positive examples causes M + 1 errors. Therefore, we cannot establish a
finite error bound in the mistake-bound model for lgg-based learning of
relational clauses /.

Observe that in the propositional generalization agent, we had hk+1 ⊂ hk
after each error. Thus infinite chains of generalizations were not possible
as eventually the hypothesis will be empty. But in the relational agent, we
only have a weaker guarantee: hk+1 ⊂θ hk wherein hk+1 may have more
literals than hk .

Learning Relational Concepts Learnability of Relational Hypotheses 186 / 265

Learnability of Relational Clauses (cont’d)

Lattices with respect to the ⊆θ order.

Propositional Relational
∅

p1 ¬p1 p2 ¬p2

p1¬p1 p1p2 p1¬p2 ¬p1p2 ¬p1¬p2 p2¬p2

p1¬p1p2 p1¬p1¬p2 p1p2¬p2 ¬p1p2¬p2

p1¬p1p2¬p2

Finite Infinite, infinitely dense

“Infinitely dense” = infinite-length paths between finite elements as
exemplified on the previous page.

Learning Relational Concepts Learnability of Relational Hypotheses 187 / 265

Learnability of Relational Clauses (cont’d)

We have failed to establish a bound in the mistake-bound model. Not
surprisingly.

In literature, unconstrained relational disjunctions or conjunctions were
proven non-learnable in the PAC model, and thus they are neither
learnable in the mistake-bound model.

This is in contrast to propositional disjunctions or conjunctions, which
(remind) are learnable in both settings.

However, learnability of relational formulas even beyond conjunctions and
disjunctions can be achieved by imposing size bounds.

Learning Relational Concepts Learnability of Relational Hypotheses 188 / 265

Learnability of Relational st-Clauses

Consider H = non-self-resolving st-clauses, i.e. clauses with no more than
s literals and no more than t occurrences of constant and variable symbols
in each literal. For example,

father(x , y)→ parent(x , y)

is a (non-self-resolving) 2, 2-clause.

Define the learning task size as 〈n, |P|, |C |〉, where

n is the number of literals in the largest observation (analogical to the
dimension n in the propositional case)

|P| (|C |)is the number of predicates (constants) in the used language.

We will now calculate |H|.

Learning Relational Concepts Learnability of Relational Hypotheses 189 / 265

Learnability of Relational st-Clauses (cont’d)

An st-clause has no more that st different variables. So the maximum
number of different terms in an st-clause is |C |+ st.

An atom consists of a single predicate (|P| different choices) and at most
t terms (each from from |C |+ st choices). So there are |P|(|C |+ st)t

different atoms, i.e. 2|P|(|C |+ st)t different literals.

An st-clause combines at most s literals so there are at most

O
(

2|P|(|C |+ st)t

s

)
= poly(|P|, |C |) = poly(n, |P|, |C |)

different st-clauses.

Learning Relational Concepts Learnability of Relational Hypotheses 190 / 265

Learnability of Relational st-Clauses (cont’d)

Since |H| is polynomial, it is properly learnable online in the
mistake-bound model e.g. with the version-space agent using H. It is also
PAC-learnable e.g. with the consistent agent using H. However, we cannot
prove efficient learnability in either case, as the consistency check h ⊆θ o
is NP-complete, taking time exponential in n.

Alternatively, H can be learned with the generalization agent producing
h = lgg (O+). Since lgg is a poly-time procedure, H is learnable efficiently
(both online and PAC) but not properly because h need not be an
st-clause even though all of o+ ∈ O+ are.

Note: The dilemma btw. efficient and proper learning is the same as with H = propositional

s-term DNF’s. Efficient proper learning of st-clauses can be achieved with a further syntactical

restriction, in particular, that observations o are non-self-resolving ground, range-restricted

st-clauses, as then h ⊆θ o can be checked efficiently. A clause is range-restricted if each variable

in a positive literal also occurs in some negative literal.

Learning Relational Concepts Learnability of Relational Hypotheses 191 / 265

Learnability of st-CNF’s

Let ai (1 ≤ i ≤ n) and o be non-self-resolving clauses and

h =
∧

1≤i≤n
ai

i.e., h is a CNF. Clearly, h |= o iff ai ⊆θ o for all 1 ≤ i ≤ n.

So learning a CNF from relational non-self-resolving clauses is defined as in
(26) , except the conditions read

∀o+ ∈ O+ ∀ai ∈ h ai ⊆θ o+

∀o− ∈ O− ∃ai ∈ h ai 6⊆θ o−

Learning Relational Concepts Learnability of Relational Hypotheses 192 / 265

Learnability of st-CNF’s (cont’d)

Let H = st-CNF’s, i.e. conjunctions of non-self-resolving st-clauses.

Since there are only poly(n, |P|, |C |) number of st-clauses,
|H| = 2poly(n,|P|,|C |), so ln |H| is polynomial.

Thus st-CNF’s are also learnable both online and PAC. In the online
setting, they can be learned for example with this strategy , in which h1 is the
conjunction of all st-clauses.

As a trivial consequence, non-self-resolving st-conjunctions and st-DNF’s
are also learnable, with the same caveats we discussed for st-clauses and
st-CNF’s.

Learning Relational Concepts Learnability of Relational Hypotheses 193 / 265

Background Knowledge

lgg of
female(x) ∧ father(y , x)→ daughter(x , y)

and
female(x) ∧ mother(y , x)→ daughter(x , y)

is
female(x)→ daughter(x , y)

Intuitively, an over-generalization. We really want to generalize towards

female(x) ∧ parent(y , x)→ daughter(x , y)

But father/2 and mother/2 are incompatible and the agent does not
know about their (semantic) joint generalization parent/2.

Learning Relational Concepts Learning with Background Knowledge 194 / 265

Background Knowledge (cont’d)

Perhaps it could?

female(x) ∧ father(y , x)→ daughter(x , y)

female(x) ∧ mother(y , x)→ daughter(x , y)

female(x) ∧ parent(y , x)→ daughter(x , y)

father(x , y)→ parent(x , y)
mother(x , y)→ parent(x , y)

Background knowledge

We aim at generalization with respect to background knowledge.

Learning Relational Concepts Learning with Background Knowledge 195 / 265

Background Knowledge (cont’d)

An agent equipped with background knowledge B, here

B = (father(x , y)→ parent(x , y)) ∧ (mother(x , y)→ parent(x , y))

should find a hypothesis h such that B ∧ h |= o+ for all o+ ∈ O+, here

B ∧ h |= female(x) ∧ father(y , x)→ daughter(x , y)

B ∧ h |= female(x) ∧ mother(y , x)→ daughter(x , y)

and B ∧ h 6|= o− for all o− ∈ O−.

To find a solution through lgg, we need a subsumption relation ⊆B
θ such

that for (non-self-resolving) clauses a, b, a ⊆B
θ b coincides with B ∧ a |= b.

Learning Relational Concepts Learning with Background Knowledge 196 / 265

Relative θ-Subsumption

This is possible only for a limited class of background knowledge, which
does not include the previous example.

Let a, b be clauses and B a conjunction of ground relational literals. We
say that a θ-subsumes b relative to B (written a ⊆B

θ b) if a ⊆θ b ∨ ¬B.
(The ⊂B

θ and ≈B
θ relations are then defined in the obvious way.)

Verify that b ∨ ¬B is a clause so the definition makes sense.

Main property: a ⊆B
θ b implies B ∧ a |= b. Furthermore, for

non-self-resolving a, b, the two relations are equivalent.

Learning Relational Concepts Learning with Background Knowledge 197 / 265

Relative Subsumption: Example

m/1, f/1, p/2, d/2 ≈ male, female, parent, daughter

Assume

B = m(axel) ∧ p(axel,brenda) ∧ f(brenda) ∧ p(brenda, clara) ∧ f(clara)

Show that

f(y) ∧ p(x , y)→ d(y , x) ⊆B
θ d(brenda, axel)

f(y) ∧ p(x , y)→ d(y , x) |=|¬f(y) ∨ ¬p(x , y) ∨ d(y , x)

d(brenda, axel) ∨ ¬B |=| d(brenda, axel) ∨ ¬m(axel) ∨ ¬p(axel,brenda)

∨ ¬f(brenda) ∨ ¬p(brenda, clara)¬f(clara)

Learning Relational Concepts Learning with Background Knowledge 198 / 265

Relative Subsumption: Example (cont’d)

With
θ = { x 7→ axel, y 7→ brenda }

we have

{ ¬f(brenda),¬p(axel, brenda), d(brenda, axel) }
⊆{

d(brenda, axel),¬m(axel),¬p(axel,brenda),
¬f(brenda),¬p(brenda, clara),¬f(clara)

}
So indeed

f(y) ∧ p(x , y)→ d(y , x) ⊆B
θ d(brenda, axel)

Learning Relational Concepts Learning with Background Knowledge 199 / 265

Learning from Relative θ-Subsumption

The learning task is as in (26) except ⊆θ is replaced with ⊆B
θ , i.e.:

Learning from Relative ⊆θ-Subsumption

Given sets O+,O− of non-self-resolving relational clauses and a
conjunction B of ground relational literals, find a clause h such that

h ⊆B
θ o+ for all o+ ∈ O+

h 6⊆B
θ o− for all o− ∈ O−

(28)

Clearly, if a solution exists then rlggB(O+) = lgg({ o+ ∨ ¬B; o+ ∈ O+ })
is a solution. rlgg is called the relative least general generalization.

Learning Relational Concepts Learning with Background Knowledge 200 / 265

rlgg Example

B = m(axel) ∧ p(axel,brenda) ∧ f(brenda) ∧ p(brenda, clara) ∧ f(clara)

o1 = d(brenda, axel)

o2 = d(clara, brenda)

rlggB(o1, o2) = lgg(o1 ∨ ¬B, o2 ∨ ¬B)

o1 ∨ ¬B = d(brenda, axel) ∨ ¬m(axel) ∨ ¬p(axel, brenda)

∨ ¬f(brenda) ∨ ¬p(brenda, clara) ∨ ¬f(clara)

o2 ∨ ¬B = d(clara,brenda) ∨ ¬m(axel) ∨ ¬p(axel,brenda)

∨ ¬f(brenda) ∨ ¬p(brenda, clara) ∨ ¬f(clara)

Learning Relational Concepts Learning with Background Knowledge 201 / 265

rlgg Example (cont’d)

a,b, c ≈ axel,brenda, clara
d(c,b) ¬m(a) ¬p(a,b) ¬f(b) ¬p(b, c) ¬f(c)

d(b, a) d(v1, v2)
¬m(a) ¬m(a)
¬p(a, b) ¬p(a,b) ¬p(v2, v1)
¬f(b) ¬f(b) ¬f(v1)
¬p(b, c) ¬p(v3, v4) ¬p(b, c)
¬f(c) ¬f(v4) ¬f(c)

θ σ new variable

b c v1

a b v2

b a v3

c b v4

h = rlggB(o1, o2) = d(v1, v2)←m(a) ∧ p(a, b) ∧ p(v2, v1) ∧ f(b)∧
f(v1) ∧ p(v3, v4) ∧ p(b, c) ∧ f(v4) ∧ f(c)

This is θ-equivalent (relative to B) to

h′ = d(v1, v2)← p(v2, v1) ∧ f(v1)

Learning Relational Concepts Learning with Background Knowledge 202 / 265

rlgg Example (cont’d)

Show h ≈B
θ h′:

h′ ⊆B
θ h because h′ ⊆θ h because h′ ⊆ h. Indeed:

{ d(v1, v2),¬p(v2, v1),¬f(v1) } ⊆
{

d(v1, v2),¬m(a),¬p(a, b),¬p(v2, v1),¬f(b),
¬f(v1),¬p(v3, v4),¬p(b, c),¬f(v4),¬f(c)

}

h ⊆B
θ h′ because with θ = { v3 7→ v2, v4 7→ v1 }, hθ ⊆ h′ ∨ ¬B:
d(v1, v2),¬m(a),¬p(a,b),
¬p(v2, v1),¬f(b),¬f(v1),

�����¬p(v2, v1),¬p(b, c),����¬f(v1),¬f(c)

 ⊆


d(v1, v2),¬p(v2, v1),
¬f(v1),¬m(a),¬p(a,b),
¬f(b),¬p(b, c),¬f(c)



Learning Relational Concepts Learning with Background Knowledge 203 / 265

Relative Clause Reduction

Relative Clause Reduction

Clause a is reduced relative to B if for no clause b, b ⊂ a, b ≈B
θ a. A

clause b which is reduced relative to B is a reduction of a relative to B if
b ≈B

θ a.

Reduction principle: As in here where ⊆θ is replaced by ⊆B
θ . (Literals from

¬B can be safely removed as the first step - verify why).

h = d(v1, v2)←
m(a)∧p(a,b)∧p(v2, v1)∧f(b)∧f(v1)∧p(v3, v4)∧p(b, c)∧f(v4)∧f(c)
Remove from h all literals from ¬B
h = d(v1, v2)← p(v2, v1) ∧ f(v1) ∧ p(v3, v4) ∧ f(v4)
θ = { v3 7→ v2, v4 7→ v1 }, h ⊆B

θ h \ { ¬p(v3, v4),¬f(v4) }, set h to hθ

h = d(v1, v2)← p(v2, v1) ∧ f(v1) is reduced relative to B.

Learning Relational Concepts Learning with Background Knowledge 204 / 265

First-Order Language and lgg

First-order logic (FOL) is a superset of relational logic. It has one more
term type in addition to constants and variables: functions.

A function has a symbol (‘functor’), e.g. f, and arity a ≥ 1. A function
term consists of a functor and a terms in argument places, e.g. with a = 3

f(x , a, y)

Substitution and θ-Subsumption in FOL are defined as in relational logic.

For two FOL literals, the anti-unification algorithm yields their lgg as
exemplified on the next page. Observe that for functions with same
functor and arity, we take the lgg of the terms in corresponding
arguments. So for functions f(t1, t2, t3), f(u1, u2, u3), we get
f(lgg(t1, u1), lgg(t2, u2), lgg(t3, u3)).

Learning Relational Concepts Inductive Logic Programming 205 / 265

Anti-Unification of FOL Literals: Example

i atom a θ atom b σ

0 p(x , f(a, b, g(b, a)),h(a)) ∅ p(y , f(b, a, g(a, a)), s(a)) ∅
1 p(v1, f(a, b, g(b, a)),h(a)) {v1 7→ x} p(v1, f(b, a, g(a, a)), s(a)) {v1 7→ y}
2 p(v1, f(v2, b, g(b, a)),h(a)) {v1 7→ x ,

v2 7→ a}
p(v1, f(v2, a, g(a, a)), s(a)) {v1 7→ y ,

v2 7→ b}
3 p(v1, f(v2, v3, g(b, a)),h(a)) {v1 7→ x ,

v2 7→ a,
v3 7→ b}

p(v1, f(v2, v3, g(a, a)), s(a)) {v1 7→ y ,
v2 7→ b,
v3 7→ a}

4 p(v1, f(v2, v3, g(v3, a)),h(a)) {v1 7→ x ,
v2 7→ a,
v3 7→ b}

p(v1, f(v2, v3, g(v3, a)), s(a)) {v1 7→ y ,
v2 7→ b,
v3 7→ a}

5 p(v1, f(v2, v3, g(v3, a)), v4) {v1 7→ x ,
v2 7→ a,
v3 7→ b,

v4 7→ h(a))}

p(v1, f(v2, v3, g(v3, a)), v4) {v1 7→ y ,
v2 7→ b,
v3 7→ a

v4 7→ s(a)}

Learning Relational Concepts Inductive Logic Programming 206 / 265

First-Order Language and lgg (cont’d)

The lgg of two FOL clauses (or conjunctions) is again defined as in here .

In FOL, we can learn e.g. from clausal examples

o+
1 = odd(x)→ even(sum(x , x))

o+
2 = odd(1) ∧ odd(3)→ predeven(sum(1, 3))

the hypothesis h = lgg(o+
1 , o

+
2) = (verify!)

odd(v1) ∧ odd(v2)→ even(sum(v1, v2))

Verify that st-clauses and st-CNF’s remain learnable even in the FOL setting. Here, t bounds
the number of occurrences of constant, variable, and function symbols; and the task size is the
tuple 〈n, |P|, |C |, |F |〉 where F is the set of all functions symbols in the language.

Note that when learning conjunctions or disjunction online as described in here , we cannot
compute h1 that contains all literals of the FOL language as there is an infinity of them. So the

alternative approach from here is necessary.

Learning Relational Concepts Inductive Logic Programming 207 / 265

More on Functions

Note that using functions, we can express statements about an infinite
number of objects, e.g.

natural(0)
∧

(natural(x)→ natural(successor(x)))

means that all of 0, successor(x), successor(successor(x)), . . . are natural.

Through functions, terms can be aggregated into more complex terms.
E.g. the succession of terms

[t1, t2, . . .] (29)

can be represented as

f(t1, f(t2, f(. . . , end))) (30)

where f/2 (end) is an auxiliary function (constant).

Learning Relational Concepts Inductive Logic Programming 208 / 265

Logic Program

We will call terms (30) lists and we will use the shorter notation (29) for
them. So the empty list [] corresponds to the special constant end.

For any term t0 and any list t = [t1, t2, . . .], [t0|t] is an abbreviation for
[t0, t1, t2, . . .].

A Horn clause is a FOL clause with at most one positive literal. A logic
program is a conjunction of Horn clauses (i.e., a CNF). For example

ϕ =
member(x , [x |y]) ∧
member(x , [y |z])← member(x , z)

(31)

Observe that e.g
ϕ |= member(b, [a,b, c])

as can be shown by the resolution method.

Learning Relational Concepts Inductive Logic Programming 209 / 265

Logic Program (cont’d)

Furthermore, given a logic program ϕ and a non-ground conjunction a, the
resolution method computes the set of substitutions θ such that ϕ |= aθ.

For example, with ϕ from (31) and a = member(x , [a,b, c]), we get the set
of answer substitions

x 7→ a, x 7→ b, x 7→ c

Therefore, ϕ can be viewed as a declarative program which answers the
input query a. In the present example, it outputs all elements of the list
given by a.

Hence the name logic program.

Learning Relational Concepts Inductive Logic Programming 210 / 265

Learning a Logic Program

Since ϕ (31) is a CNF of FOL clauses, we should be able to learn (i.e.,
“induce”) it from examples, such as

o+
1 = member(a, [a,b, c]) o−2 = member(d, [a,b, c])

o+
3 = member(b, [a,b, c]) o−4 = member(e, [a,b, c])

etc.

i.e., find a logic program h such that

h |= o+ for all o+ ∈ O+

h 6|= o− for all o− ∈ O−

Learning Relational Concepts Inductive Logic Programming 211 / 265

Learning a Logic Program with Backround Knowledge

Even more ambitiously, we may want to learn using background knowledge
B. For example, given

B =
append(x , [], [x]) ∧
append(x , [y |z], [y |w])← append(x , z ,w)

and

o+
1 = reverse([a,b, c], [c,b, a]) o−2 = reverse([a,b, c], [a, a])

o+
3 = reverse([a,b], [b, a]) o−4 = reverse([b, c], [a, a, a])

etc.

learn

h =
reverse([], []) ∧
reverse([x |y], z)← reverse(y ,w) ∧ append(x ,w , z)

(32)

Learning Relational Concepts Inductive Logic Programming 212 / 265

Inductive Logic Programming

Inductive Logic Programming (ILP)

Given sets O+,O− of Horn clauses and a logic program B (background
knowledge), find a logic program h such that

h ∧ B |= o+ for all o+ ∈ O+

h ∧ B 6|= o− for all o− ∈ O−
(33)

Note that the lgg method of learning we have studied assumes the
formulation (28) to which (33) cannot be reduced:

1 In (28) , h is a single clause and B is a set of ground literals. In (33)
both h and B are logic programs, i.e. conjunctions of Horn clauses.

2 (28) assumes non-self-resolving observations implying h is also
non-self-resolving. In logic programs, self-resolving clauses in h are
important as they facilitate recursion. See e.g. (31) , (32) .

Learning Relational Concepts Inductive Logic Programming 213 / 265

ILP Algorithms

Inductive operators other than lgg have been proposed that allow learning
(from) self-resolving clauses. They do not provide as strong guarantees as
lgg, namely producing the lup with respect to the generality order. For
details, see e.g. this theoretical ILP book, this newer monograph, or
Chapter 19.5 of the AIMA Book . The ILP wiki page provides a brief overview.

(Hyperlinked material not part of exam.)

Alternatively, a first-order DNF can be learned by a fully heuristic
approach adopting the covering strategy from the rule learning subfield of AI.
This approach does not provide any theoretical guarantees although it is
often effective in practice. We will demonstrate it on a slight restriction of
the ILP task: learning a predicate definition.

Learning Relational Concepts Inductive Logic Programming 214 / 265

https://link.springer.com/book/10.1007/3-540-62927-0
https://link.springer.com/book/10.1007/978-3-540-68856-3
http://aima.cs.berkeley.edu/
https://en.wikipedia.org/wiki/Inductive_logic_programming
https://en.wikipedia.org/wiki/Rule-based_machine_learning

Learning a Predicate Definition

A predicate definition is a logic program where all clauses have the same
predicate in their positive atom (called head), such as member/2 in (31) .

Using the equality predicate =/2, the terms in the heads can be also
unified

member(x , y)← y = [x |z]
member(x , y)← y = [z |w] ∧ member(x ,w)

and the definition can be expressed as

member(x , y)← y = [x |z] ∨ (y = [z |w] ∧ member (x ,w))

and thus learning the definition reduces to learning the right-hand side,
which is a monotone DNF. It can be learned heuristically using the
covering algorithm.

Learning Relational Concepts Inductive Logic Programming 215 / 265

Covering Algorithm for First-Order Logic DNF

procedure LearnDNF(O+, O−, B)
h = empty DNF.
while O+ not empty do

h = h ∨ FindConjunction(O+, O−, B, h)
Remove from O+ all o+ such that h ∧ B |= o+.

end while
return h
end procedure

procedure FindConjunction(O+, O−, B, h)
a = empty conjunction.
while (h ∨ a) ∧ B |= o− for some o− ∈ O− do . negative example covered

a = a ∧ FindLiteral(O+, O−, B, h)
end while

return a
end procedure

procedure FindLiteral(O+, O−, B, h, a)
Finds a literal such that when added to a, (h ∨ a)∧B |= o for as many as possible

(at least one) o ∈ O+, and as few as possible o ∈ O−.
end procedure

Learning Relational Concepts Inductive Logic Programming 216 / 265

Covering Algorithm: Example

+ +

+ + +

- -

-

- - - -

reverse(x , y)

Learning Relational Concepts Inductive Logic Programming 217 / 265

Covering Algorithm: Example

+ +

+ + +

- -

-

- - - -

x = []

reverse(x , y)← x = []

Learning Relational Concepts Inductive Logic Programming 218 / 265

Covering Algorithm: Example

+ +

+ + +

- -

-

- - - -

x = [] ∧ y = []

reverse(x , y)← x = [] ∧ y = []

Learning Relational Concepts Inductive Logic Programming 219 / 265

Covering Algorithm: Example

+ +

+ + +

- -

-

- - - -

x = [] ∧ y = []

reverse(x , y)← x = [] ∧ y = []
∨

Learning Relational Concepts Inductive Logic Programming 220 / 265

Covering Algorithm: Example

+ +

+ + +

- -

-

- - - -

x = [] ∧ y = []

x = [z |w]

reverse(x , y)← x = [] ∧ y = []
∨
x = [z |w]

Learning Relational Concepts Inductive Logic Programming 221 / 265

Covering Algorithm: Example

+ +

+ + +

- -

-

- - - -

x = [] ∧ y = []

x = [z |w] ∧ reverse(w , v)

reverse(x , y)← x = [] ∧ y = []
∨
x = [z |w] ∧ reverse(w , v)

Learning Relational Concepts Inductive Logic Programming 222 / 265

Covering Algorithm: Example

+ +

+ + +

- -

-

- - - -

x = [] ∧ y = []

x = [z |w] ∧ reverse(w , v) ∧ append(x , v , y)

reverse(x , y)← x = [] ∧ y = []
∨
x = [z |w] ∧ reverse(w , v) ∧ append(x , v , y)

Learning Relational Concepts Inductive Logic Programming 223 / 265

Application Example: Predicting Mutagenicity

positive (mutagenic) examples o+ negative (inactive) examples o−

encoded as Horn clauses

Learning Relational Concepts Inductive Logic Programming 224 / 265

Application Example: Predicting Mutagenicity (cont’d)

B defines known biochemical concepts.

(etc.)

The ILP system Progol learned
a logic program h satisfying

(33) .
One of its clauses encodes a
previously unknown motif
strongly predictive of
mutagenicity.

Learning Relational Concepts Inductive Logic Programming 225 / 265

https://www.doc.ic.ac.uk/~shm/progol.html

Structured Output Prediction

Consider an ILP agent learning or having learned the definition for
reverse/2.

In the concept-learning setting, the agent responds with binary actions, so
the interaction is e.g. as in the left column:

ok ak
reverse([a,b, c], [c,b, a]) 1
reverse([a,b], [c]) 0

ok ak
[a,b, c] [c,b, a]
[a,b] [b, a]

The logic program is generative, i.e., for any list given in the first argument
of query reverse([a,b, c], x), it computes the answer x 7→ [c,b, a]. Thus
the agent can also interact with the environment as exemplified in the
right column. This scenario is known as structured output prediction.

Learning Relational Concepts Inductive Logic Programming 226 / 265

Bayesian Networks

Bayesian Networks 227 / 265

Structured Output Prediction in the Binary Setting

We have seen a logic-programming method which facilitates structured
output prediction. We will now study the latter in the more basic, binary
setting.

The environment’s state sk at each k is a binary tuple. We assume sk are
sampled i.i.d. from the distribution PS on S = { 0, 1 }n. (That does not mean

the components of sk are independent of each other!)

The agent receives a subset of the sk components through observations
ok . Formally, O = { 0, 1, ? }n and PO(ok |sk) generates ok by replacing a
random subset of sk components with the ? symbol.

The components of ok with the ? value are called unobserved variables,
the other components are observed variables.

Bayesian Networks Structured Output Predictiong 228 / 265

Structured Output Prediction: Rewards and Policy

As in concept learning, we have A = S and we keep (8) . So the policy
value (6) is maximized by policy

ak = π(ok) = arg max
sk∈S

PS(sk |ok)

Let Ik = {1 ≤ i ≤ n|ok 6=?}, i.e. Ik are indexes of the observed variables in
ok . Clearly, aik = o ik for i ∈ Ik , while the tuple

〈
aik
〉
i /∈Ik

of unobserved
variables maximizes PS conditioned on the observed variables:〈

aik
〉
i /∈Ik

= arg max
s i∈S

PS(
〈
s i
〉
i /∈Ik
|
〈
o ik
〉
i∈Ik

) (34)

Since the agent does not know PS , it has to learn a model P̂S of it.
Graphical probabilistic models (GPM) are an important class of methods
to learn distribution models. We will study a particular GPM method,
called Bayesian Networks.

Bayesian Networks Structured Output Predictiong 229 / 265

Tractability due to Independence

Recall a similar task earlier in reinforcement learning, where we learned a model

of PS(s ′|s, a) computed from an array N[s ′, s, a] of frequencies. This was
feasible as the number of states was low.

Now we have 2n states so an analogical array N[s ′] would take memory
exponential in n, unless the components s i were pair-wise independent.
Then only n probability estimates P i ∈ [0; 1] (one of each s i) would be
needed to maintain as

P̂S(s) =
∏
s i=1

P i
∏
s j=0

(1− P j)

But the assumption is too strong. More realistically, the PS may exhibit
patterns of conditional independence between some pairs of variables.

Bayesian Networks Conditional Independence 230 / 265

Conditional Independence

Conditional Independence

Let I ⊆ { 1, 2, . . . n }, i , j ∈ { 1, 2, . . . n } \ I . We say that s i , s j are
conditionally independent given s I =

{
s i
∣∣ i ∈ I

}
if PS(s i , s j |s I) =

PS(s i |s I)PS(s j |s I).

Example with 3 binary variables:

s1 = T outdoor temperature high
s2 = I ice-cream sales high
s3 = H heart-attack rates high

We will abbreviate T = 1 (T = 0)

with t (¬t, respectively.) So ¬t
means outdoor temperature is not

high. Same convention for other

binary random variables.

I and H are not independent:

P(I ,H) 6= P(I)P(H)

but they are conditionally
independent:

P(I ,H|{T}) =

P(I |{T})P(H|{T})

Bayesian Networks Conditional Independence 231 / 265

Conditional Independence in Cause-Effect Graphs

Note: dropping set delimiters for singletons in the conditional parts.

Heart attack and ice-cream eating independent if temperature known:

T
I H P(I ,H|T) = P(I |T)P(H|T)

Son and grandfather’s high IQ independent if same known for father:

F
G

S
P(S ,G |F) = P(S |F)P(G |F)

In both cases: any vertex is conditionally independent of all of its
non-descendants given all its parents.

Bayesian Networks Conditional Independence 232 / 265

Bayes Graph

Denote parG (v) the set of all parents of vertex v in an oriented graph G .

Bayes Graph

A Bayes Graph for a distribution P on variables s1, s2, . . . sn is an acyclic
directed graph G with vertices

{
s1, s2, . . . sn

}
such that any s i is

conditionally independent (w.r.t. P) of all its non-descendants in G given
parG (s i).

Note: “given parG (s i)” means that all the variables in parG (s i), and no other variables are in

the conditional part of the probability query.

So a Bayes Graph is similar to cause-effect graphs but edges need not
correspond to cause-effect directions. A Bayes graph for P indicates pairs
of variables conditionally independent under P. There may by multiple
BG’s for one P. The fewer edges a BG has, the more independent pairs
can be inferred (verify!).

Bayesian Networks Bayes Networks 233 / 265

Bayes Graph: Example (from AIMA)

Burglary Earthquake

Alarm

John calls Mary calls

From this Bayes graph, we can infer:

P(B,E) = P(B)P(E)

P(J|X ,A) = P(J|A) for all of
X ∈ { B,E ,M }
P(M|X ,A) = P(M|A) for all of
X ∈ { B,E , J }

By the ‘chain rule’ of probability

P(B,E ,A,M, J) = P(J|B,E ,A,M)P(M|B,E ,A)P(A|B,E)P(B,E)

but this simplifies using the inferred equalities:

P(B,E ,A, J,M) = P(J|A)P(M|A)P(A|B,E)P(B)P(E)

Multiplying right-to-left corresponds to going down the graph.

Bayesian Networks Bayes Networks 234 / 265

Conditional Probability Table

To specify P(B,E ,A, J,M) with a probability table using no independence
assumption, we need 25 − 1 = 31 parameters.

To specify P(J|A)P(M|A)P(A|B,E)P(B)P(E), we need a conditional
probability table (CPT) for each of the factors. E.g. for P(A|B,E)

P(a|B,E) E B

0.001 0 0
0.940 0 1
0.290 1 0
0.950 1 1

Of course, P(¬a|B,E) = 1− P(a|B,E). Altogether, the BN’s CPT’s have
2 + 2 + 4 + 1 + 1 = 10 parameters.

Bayesian Networks Bayes Networks 235 / 265

Bayes Network

Bayes Network

A Bayes Network for a distribution P consists of a Bayes graph G for P,
and a conditional probability table for each vertex v of G , specifying
P(v |parG (v)).

Burglary Earthquake

Alarm

John calls Mary calls
P(m|A) A

0.05 0
0.90 1

P(j |A) A

0.01 0
0.70 1

P(a|B,E) B E

0.00 0 0
0.29 0 1
0.94 1 0
0.95 1 1

P(e)

0.02
P(b)

0.01

A BN fully specifies P. There are in general multiple BN’s specifying the
same P. More edges → more parameters.

Bayesian Networks Bayes Networks 236 / 265

A Different Graph for the Same Example

Burglary Earthquake

Alarm

John calls Marry calls

P(m|B,E ,A) B E A
0.00 0 0 0
0.30 0 0 1
0.05 0 1 0
0.25 0 1 1

(. . . 4 more rows)

This Bayes graph does not imply any conditional independence. For each
vertex, all non-descendants are parents. Joint distribution calculated as

P(B,E ,A,M, J) = P(J|B,E ,A,M)P(M|B,E ,A)P(A|B,E)P(E |B)P(B)

CPT’s for the BN with this BG have 24 + 23 + 22 + 2 + 1 = 31
parameters, same as the table for P(B,E ,A,M, J).

Bayesian Networks Bayes Networks 237 / 265

Computing Marginal Probabilities

So far we know how to compute the full joint distribution
from CPT’s:

P(B,E ,A, J,M) = P(J|A)P(M|A)P(A|B,E)P(B)P(E)

Burglary Earthquake

Alarm

John calls Mary calls

A straightforward way to compute marginals, e.g. P(A, J) is to sum out
the remaining variables

P(A, J) =
∑
B

∑
E

∑
M

P(J|A)P(M|A)P(A|B,E)P(B)P(E)

= P(J|A)
∑
M

P(M|A)
∑
B

∑
E

P(A|B,E)P(B)P(E)

B under summation symbol means summing over b and ¬b. Same for other variables.

Bayesian Networks Inference in Bayes Networks 238 / 265

Computing Conditional Probabilities

Conditional probabilities are just fractions of marginals, e.g.

P(A, J|B,E) =
P(A, J,B,E)

P(B,E)

Instead of calculating the denominator, we can evaluate the numerator for
all assignments to A, J and normalize, since

∑
A

∑
J P(A, J|B,E) = 1. So

α [P(¬a,¬j ,B,E) + P(¬a, j ,B,E) + P(a,¬j ,B,E) + P(a, j ,B,E)] = 1

After computing the summands, we compute α = 1/P(B,E) from the
equation above. Then we can get the conditional probability for any
〈A, J〉; e.g. for 〈¬a, j〉

P(¬a, j |B,E) = α · P(¬a, j ,B,E)

Bayesian Networks Inference in Bayes Networks 239 / 265

Evidence and Query Variables

In BN terminology, the variables (‘vars’, for short) whose joint conditional
probability is computed are called query vars; the vars in the condition part
are evidence vars.

Example query: probability that neither John nor Mary will call during a
burglary and no earthquake:

P(¬j ,¬m︸ ︷︷ ︸
query

| b,¬e︸ ︷︷ ︸
evidence

)

Burglary Earthquake

Alarm

John calls Mary calls

In (34) , the query vars include all unobserved vars and evidence includes
all observed vars. But BN’s enable more general queries: query vars and
evidence vars can be arbitrary subsets of all vars.

Bayesian Networks Inference in Bayes Networks 240 / 265

Removing Irrelevant Variables

Consider P(J|b) = αP(b)
∑

E P(E)
∑

A P(A|b,E)P(J,A)
∑

M P(M|A)∑
M P(M|A) = 1 so it can be left out, i.e. remove the corresponding

vertex from the BN.

Burglary Earthquake

Alarm

John calls Mary calls

⇒

Burglary Earthquake

Alarm

John calls

In general, any vertex that is not an ancestor to a query or evidence
variable of a query can be removed from the graph when computing the
query.

Bayesian Networks Inference in Bayes Networks 241 / 265

Redundant Computation

Consider P(b|j ,m) = αP(b)
∑

E P(E)
∑

A P(A|b, e)P(j |A)P(m|A).
Observe the repeated sub-summing (branches) in its computation:

P(j|a)
.90

P(m|a)
.70 .01

P(m|¬a)

.05
P(j|¬a) P(j|a)

.90

P(m|a)
.70 .01

P(m|¬a)

.05
P(j|¬a)

P(b)
.001

P(e)
.002

P(¬e)
.998

P(a|b,e)
.95 .06

P(¬a|b,¬e)
.05
P(¬a|b,e)

.94
P(a|b,¬e)

The variable elimination method removes this redundancy by using factors,
which are arrays storing intermediate sums.

Bayesian Networks Inference in Bayes Networks 242 / 265

Computing Probabilities with Factors

Factors are arrays computed from CPT’s and other factors. Example:

P(B|j ,m) = αP(B)︸ ︷︷ ︸
f1(B)

∑
E

P(E)︸ ︷︷ ︸
f2(E)

∑
A

P(A|B,E)︸ ︷︷ ︸
f3(A,B,E)

P(j |A)︸ ︷︷ ︸
f4(A)

P(m|A)︸ ︷︷ ︸
f5(A)

f1 . . . f5 are the initial factors derived from CPT’s. E.g. f4 is just a CPT

f4(A) =

[
P(j |¬a)
P(j |a)

]
=

[
0.05
0.90

]
f4 has no dimension for j since the latter is fixed j = 1. Same for f5 and m.

Factors have an entry for each value of their arguments, which are the
non-evidence (upper-case) vars in the corresponding probability expression.
So e.g. f3 has 8 entries unlike the corresponding CPT which has 4 entries.

Bayesian Networks Inference in Bayes Networks 243 / 265

Computing Probabilities with Factors (cont’d)

Same equation rewritten with factors and point-wise multiplication ×:

P(B|j ,m) = αf1(B)×
∑
E

f2(E)×
∑
A

f3(A,B,E)× f4(A)× f5(A)

Example of point-wise multiplication f3(A,B,E)× f4(A)× f5(A) =

1.00 (¬a,¬b,¬e)

0.71 (¬a,¬b,e)

0.06 (¬a,b,¬e)

0.05 (¬a,b,e)

0.00 (a,¬b,¬e)

0.29 (a,¬b,e)

0.94 (a,b,¬e)

0.95 (a,b,e)


×
[

0.05 (¬a)

0.90 (a)

]
×
[

0.01 (¬a)

0.70 (a)

]
=



1.00 · 0.05 · 0.01
0.71 · 0.05 · 0.01
0.06 · 0.05 · 0.01
0.05 · 0.05 · 0.01
0.00 · 0.90 · 0.70
0.29 · 0.90 · 0.70
0.94 · 0.90 · 0.70
0.95 · 0.90 · 0.70


Blue text = our labels, not part of the arrays!

Bayesian Networks Inference in Bayes Networks 244 / 265

Computing Probabilities with Factors (cont’d)

The multiplication is computed only when a var is summed out and
involves only factors depending on the var. The operation yields a new
factor:

f6(B,E) =
∑
A

f3(A,B,E)× f4(A)× f5(A)

so f6 is computed as

f6(B,E) = f3(a,B,E)× f4(a)× f5(a) + f3(¬a,B,E)× f4(¬a)× f5(¬a) =

=


1.00 · 0.05 · 0.01 + 0.00 · 0.90 · 0.70 (¬b,¬e)

0.71 · 0.05 · 0.01 + 0.29 · 0.90 · 0.70 (¬b,e)

0.06 · 0.05 · 0.01 + 0.94 · 0.90 · 0.70 (b,¬e)

0.05 · 0.05 · 0.01 + 0.95 · 0.90 · 0.70 (b,e)


Now the equation is

P(B|j ,m) = αf1(B)×
∑
E

f2(E)× f6(B,E)

Bayesian Networks Inference in Bayes Networks 245 / 265

Computing Probabilities with Factors (cont’d)

Continue analogically:

f7(B) =
∑
E

f2(E)× f6(B,E) = f2(e)× f6(B, e) + f2(¬e)× f6(B,¬e)

so finally we have
P(B|j ,m) = αf1(B)× f7(B)

where α = 1/(f1(b)× f7(b) + f1(¬b)× f7(¬b)).

Inferring probabilities from a BN takes exponential time (in n, the number
of vars) in the worst case even with variable elimination.

Efficiency depends on the network structure as well as the order of
variables in the product of probabilities made out of the BN.

Bayesian Networks Inference in Bayes Networks 246 / 265

MAP-inference

Remind the agent’s goal (34) to find the most probable values of the
unobserved variables given all observed values.

In the present example, this can e.g. mean: given no earthquake and
no-one calls, what is the most probable joint state of alarm and burglary?

So we want the joint state with maximum aposteriori probability:

arg max
A,B

P(A,B|¬e,¬j ,¬m)

This is called the MAP-state and the task is called MAP-inference.

We want to find the MAP state of n (binary) variables without computing
the probabilities of all 2n

′
possible states with n′ unobserved variables.

Bayesian Networks Inference in Bayes Networks 247 / 265

MAP-inference (cont’d)

Note that the joint MAP state need not consist of the states maximizing
the marginals!

Consider e.g.

A B
P(a)
0.6

P(b|A) A
0.90 0
0.55 1

arg max
A

P(A) = 1

but
arg max

A,B
P(A,B) = (0, 1)

Bayesian Networks Inference in Bayes Networks 248 / 265

MAP-inference: Example

Principle similar to probability inference. Example:

Burglary Earthquake

Alarm

John calls Mary calls

First compute the maximum value:

max
A,B

P(A,B|¬e,¬j ,¬m) =

αmax
A,B

P(B)P(¬e)P(A|B,¬e)P(¬j |A)P(¬m|A) =

αP(¬e) max
B

P(B) max
A

P(A|B,¬e)P(¬j |A)P(¬m|A) = (next page)

We won’t need to evaluate the normalizing constant α to compute the arg max.

Bayesian Networks Inference in Bayes Networks 249 / 265

MAP-inference by Variable Elimination

= αP(¬e) max
B

f ′2 (B)︷ ︸︸ ︷
P(B) max

A
P(A|B,¬e)P(¬j |A)P(¬m|A)︸ ︷︷ ︸

f ′1 (A,B)︸ ︷︷ ︸
f1(B)

(Initial factors not shown).

f ′1(A,B) and f ′2(B) are intermediate factors (before maximizing out A resp.
B).

Intermediate factors were not needed in probability inference, but in MAP
inference they are stored for later retrieval of the maximizing argument.

Bayesian Networks Inference in Bayes Networks 250 / 265

MAP-inference by Variable Elimination (cont’d)

Using CPT’s from the running example :

f ′1(A,B) =


1 ·(1− 0.01) ·(1− 0.05) (¬a,¬b)

(1− 0.94) ·(1− 0.01) ·(1− 0.05) (¬a,b)

0.00 ·(1− 0.7) ·(1− 0.9) (a,¬b)

0.94 ·(1− 0.7) ·(1− 0.9) (a,b)

 ≈


0.94
0.06
0.00
0.09


f1(B) = max

A
f ′1(A,B) ≈

[
0.94 (¬b)

0.09 (b)

]
f ′2(B) ≈

[
0.99 · 0.94 (¬b)

0.01 · 0.09 (b)

]
≈
[

0.93
0.00

]
First: arg maxB f ′2(B) = ¬b. Then: arg maxA f ′1(A,¬b) = ¬a. So if no
earthquake and no-one calls, the most probable state is no burglary, no
alarm.

Bayesian Networks Inference in Bayes Networks 251 / 265

MAP-inference with Don’t-Care Variables

Consider a case where query vars are not the full complement to evidence
vars (as in here):

Burglary Earthquake

Alarm

John calls Mary calls

We want to find the most probable state of B,E when both John and
Mary call; alarm is irrelevant. Now we have both maximization and
summation:

max
B,E

P(B,E |j ,m) = αmax
B,E

∑
A

P(B)P(E)P(A|B,E)P(j |A)P(m|A) (35)

Bayesian Networks Inference in Bayes Networks 252 / 265

MAP-inference with Don’t-Care Variables (cont’d)

Still can push operators before the first occurrence of their arguments but
never swap max with

∑
since

∑
Y maxX P(X ,Y) 6= maxX

∑
Y P(X ,Y).

So (35) rewrites to

αmax
B

P(B) max
E

f ′2 (B,E)︷ ︸︸ ︷
P(E)

f1(B,E)︷ ︸︸ ︷∑
A

P(A|B,E)P(j |A)P(m|A)︸ ︷︷ ︸
f2(B)︸ ︷︷ ︸

f ′3 (B)

Bayesian Networks Inference in Bayes Networks 253 / 265

MAP-inference with Don’t-Care Variables (cont’d)

f1(B,E) =


1.00 · 0.01 · 0.95 + 0.00 · 0.70 · 0.09 (¬b,¬e)

0.79 · 0.01 · 0.95 + 0.29 · 0.70 · 0.09 (¬b,e)

0.06 · 0.01 · 0.95 + 0.94 · 0.70 · 0.09 (b,¬e)

0.05 · 0.01 · 0.95︸ ︷︷ ︸
a

+ 0.95 · 0.70 · 0.09︸ ︷︷ ︸
¬a

(b,e)

 ≈


0.0095
0.0258
0.0598
0.0603



f ′2(B,E) ≈


0.98 · 0.0095
0.02 · 0.0258
0.98 · 0.0598
0.02 · 0.0603

 ≈


0.0093 (¬b,¬e)

0.0005 (¬b,e)

0.0059 (b,¬e)

0.0012 (b,e)


f2(B) = max

E
f2(B,E) ≈

[
0.0093 (¬b)

0.0059 (b)

]
f ′3(B) ≈

[
0.99 · 0.0093 (¬b)

0.01 · 0.0059 (b)

]
First: arg maxB f ′3(B) = ¬b. Then: arg maxE f ′2(E ,¬b) = ¬e. So even if J
and M call, the most probable state is no burglary, no earthquake.

Bayesian Networks Inference in Bayes Networks 254 / 265

Learning a Bayes Network

A Bayes-Network model P̂G ,w of distribution P consists of a Bayes graph

G and the entries of all its CPT’s, jointly denoted w. Two kinds of P̂
learning:

1 Estimating G from data,

2 Given G , estimating w from data

In both cases, learning is based on maximizing the likelihood L(G ,w),
which is the probability of the m received observations according to the
model:

L(G ,w) = P̂G ,w(o1, o2, . . . om)

but 1 is computationally much harder.

We will study only 2, i.e. assume that G is agent’s background knowledge
and write LG (w).

Bayesian Networks Parameter Learning 255 / 265

Likelihood Maximization

Given m observations and G with n vertices denoted 1, 2, . . . n, find w
maximizing

LG (w) = P̂G ,w(o1, o2, . . . om)
i.i.d.
=

m∏
j=1

P̂G ,w(oj) =
m∏
j=1

n∏
i=1

P̂G ,w(o ij |parG (i))

Parameters w consist of CPT tables w =
〈
w1,w2, . . .wn

〉
. Let w i (o) be

the probability stored in the row of CPT w i for which the values of o
apply. E.g. if w i is the right-most CPT here and o = (B,E ,A, J,M) is
such that B = 1 and E = 0 then w i (o) = 0.94. With this notation:

P̂G ,w(o i |parG (i)) =


1 if o i =? or o j =? for some j ∈ parG (i)

w i (o) if o i = 1

1− w i (o) if o i = 0

Value 1 in the last case drops from the product above a term whose value
cannot be determined due to missing values in data.

Bayesian Networks Parameter Learning 256 / 265

Likelihood Maximization (cont’d)

Denote m+
i [j] the number of observations o from o1, o2, . . . om that satisfy

conditions of line j in CPT w i and o i = 1. Similarly define m−i [j], except
with o i = 0.

Example:

Burglary Earthquake

Alarm

John calls Mary calls

P(a|B,E) B E

wA[1] 0 0
wA[2] 0 1
wA[3] 1 0
wA[4] 1 1

B E A J M
o1 0 1 1 0 0
o2 ? 1 1 1 1
o3 0 1 1 1 0
o4 0 1 0 ? 0
o5 1 0 0 0 ?
o6 ? ? 1 1 1

m+
A [2] = 2, m−A [2] = 1.

Bayesian Networks Parameter Learning 257 / 265

Likelihood Maximization (cont’d)

Reformulate the likelihood using the counts m+
i [j], m−i [j]:

L(w) =
n∏

i=1

2|parG (i)|∏
j=1

w i [j]m
+
i [j](1− w i [j])m

−
i [j]︸ ︷︷ ︸

def.
= L(w i [j])

L(w) is maximized by maximizing separately the likelihood L(w i [j]) of
each parameter w i [j]. From

∂L(w i [j])

∂w i [j]
= 0

we get for m+
i [j] + m−i [j] > 0

w i [j] =
m+

i [j]

m+
i [j] + m−i [j]

(36)

which is the relative frequency estimate.

Bayesian Networks Parameter Learning 258 / 265

Likelihood Maximization (cont’d)

Example:

Burglary Earthquake

Alarm

John calls Mary calls

P(a|B,E) B E

wA[1] 0 0
wA[2] 0 1
wA[3] 1 0
wA[4] 1 1

B E A J M
o1 0 1 1 0 0
o2 ? 1 1 1 1
o3 0 1 1 1 0
o4 0 1 0 ? 0
o5 1 0 0 0 ?
o6 ? ? 1 1 1

arg max L(wA[2]) =
2

2 + 1
arg max L(wA[3]) =

0

0 + 1

wA[1],wA[4] cannot be determined due to zero-denominator. Need to wait
for more observations.

Bayesian Networks Parameter Learning 259 / 265

BN Agent: Design

Design principles for and agent learning a BN model in the online setting,
given Bayes graph G as background knowledge:

Keep the counts m+
i [j],m−i [j] for i = 1 . . . n, j = 1 . . . 2parG (i) in the

agent’s state. Initially all zero.

On each observation, increment the appropriate counts

Set probabilities in all CPT’s w i by (36) . If denominator zero, default
to e.g. 1/2.

Decide by (34) replacing PS with its model P̂G ,w.

Bayesian Networks Parameter Learning 260 / 265

BN Agent: Design (con’t)

An improvement is possible in the batch learning setting analogical to that

we defined for concept learning.

i.e., agent first collects a training set and then calculates its model w
from it.

This allows to use the EM algorithm to handle missing observation values
in parameter estimation:

1 Replace missing values in observations with random initial values

2 E step: Compute w with the resulting data by (36) .

3 M step: Replace the initially missing values with their MAP states
according to PG ,w.

4 Repeat from 2 until convergence.

Bayesian Networks Parameter Learning 261 / 265

Non-Boolean Variables: Example

Extension from S = { 0, 1 }n to arbitrary finite S is straightforward.
Example: learning a model of PS(sk+1|sk , ak) in the grid world from
reinforcement learning. |S | = 3 · 4− 1 = 11.

sk

ak

sk+1

P(〈1, 1〉) P(〈1, 2〉) . . . P(〈4, 2〉) sk ak
Probabilities of 3 · 4− 1 = 10 states 〈1, 1〉 left
for each of 11 · 4 = 44 values of 〈sk , ak 〉 〈1, 1〉 right
.

CPT not needed for the observed variables sk and ak to evaluate
P̂S(sk+1|sk , ak). Model has 10 · 44 = 440 parameters. Same as

the model we used with the ADP agent.

Bayesian Networks Extensions 262 / 265

Non-Boolean Variables: Example

Now assume that actions left, right never cause vertical movement and
action up, down never cause horizontal movement. This makes s1

k+1

(horizontal coordinate) independent of s2
k and s2

k+1 (vertical coordinate)
independent of s1

k allowing for a more BN with only 3 · 16 + 2 · 12 = 72
parameters.

s1
k

s1
k+1

ak

s2
k+1

s2
k

P(1) P(2) P(3) s1
k ak

Probs of 3 vals of s1
k+1 1 left

for each of 4 · 4 = 16 1 right
values of

〈
s1
k , ak

〉
1 up

.

P(1) P(2) s2
k ak

Probs of 2 vals of s2
k+1 1 left

for each of 3 · 4 = 12 1 right
values of

〈
s2
k , ak

〉
1 up

.

Bayesian Networks Extensions 263 / 265

Temporal Bayesian Networks

Bayesian networks generalize some well known temporal models.

sk sk+1 Markov process (1st order)

sk sk+1 sk+2
Markov process (2nd order)

sk sk+1 sk+2

ok ok+1 ok+2

Markov hidden process (1st order, 3
observations)

Bayesian Networks Extensions 264 / 265

BN Encoding Logical Rules

Bayesian networks generalize propositional logical rules.

Cold Flu Malaria

Fever

P(fever|C ,F ,M) C F M
1 1 1 1
0 all other cases

P(fever|C ,F ,M) C F M
0 0 0 0
1 all other cases

fever← cold ∧ flu ∧ malaria fever← cold ∨ flu ∨ malaria

Bayesian Networks Extensions 265 / 265

	A General Framework
	Percepts and Actions
	Rewards and Goals
	Markovian Settings

	Reinforcement Learning
	Introduction
	Passive Reinforcement Learning
	Active Reinforcement Learning
	State Representation
	Examples
	More Ways to Learn in R/L
	Bayesian Learning

	Universal Learning
	Sequence Prediction
	Agent-Environment Interaction

	Concept Learning
	Introduction
	Generalizing Agent
	Mistake-Bound Learning Model
	Generality and Subsumption
	Extensions of the Generalizing Agent
	Separating agent
	Version Space Agent
	Vapnik-Cervonenkis Dimension
	PAC Learning Model
	Learning from Conjunctions and Disjunctions

	Learning Relational Concepts
	Introduction
	Relational lgg
	Learnability of Relational Hypotheses
	Learning with Background Knowledge
	Inductive Logic Programming

	Bayesian Networks
	Structured Output Predictiong
	Conditional Independence
	Bayes Networks
	Inference in Bayes Networks
	Parameter Learning
	Extensions

