
KO Lab 5 - Catering

March 16, 2020

1 The Catering Problem

1.1 Motivation

A catering company to cook n dishes, but has only one available oven. At most a single dish can
be inside the oven at one time.
Each dish i has its earliest time when it can be put into the oven ri (since it needs to be prepared
before it is put into the oven), the latest time it should be taken from the oven di (since the
customers do not want to wait too long), and the time it needs to stay in the oven pi. The goal
is to find the vector of times s = (s0, . . . , sn−1) (denoting the times when each dish is put into the
oven) such that the finish time of the last dish is minimal.

1.2 Input

You are given the following: * number of dished n * parameters ri, di and pi for each dish i

For the testing purposes, you can experiment with the following instance:

[1]: n = 5
params = {

0: {'r': 20, 'd': 45, 'p': 15},
1: {'r': 4, 'd': 30, 'p': 19},
2: {'r': 5, 'd': 80, 'p': 20},
3: {'r': 17, 'd': 70, 'p': 8},
4: {'r': 27, 'd': 66, 'p': 7}

}

Note: parameter d_1 can be obtained by params[1]["d"]

1.3 Output

You are expected to find the vector s = (s0, . . . , sn−1) denoting the times when each dish should
be put into the oven.

The optimal solution vector for the given instance is s = (23, 4, 53, 38, 46).

1

1.4 Exercise

Your task is to formulate the ILP model of the catering problem, solve it, and extract the vector
s. The example solution follows:

Hint: to ensure that any two dishes i and j are not overlapping in the oven, you need to ensure
that one of the following constraints holds: si + pi ≤ sj or sj + pj ≤ si. This might be perhaps
done using big-M…

[5]: import gurobipy as grb # import Gurobi module

model ---
model = grb.Model()

- ADD VARIABLES
TODO

- ADD CONSTRAINTS
TODO

- SET OBJECTIVE
TODO

call the solver ---
model.optimize()

print the solution --
print('\nSOLUTION:')
TODO

Optimize a model with 0 rows, 0 columns and 0 nonzeros
Coefficient statistics:

Matrix range [0e+00, 0e+00]
Objective range [0e+00, 0e+00]
Bounds range [0e+00, 0e+00]
RHS range [0e+00, 0e+00]

Presolve time: 0.01s
Presolve: All rows and columns removed
Iteration Objective Primal Inf. Dual Inf. Time

0 0.0000000e+00 0.000000e+00 0.000000e+00 0s

Solved in 0 iterations and 0.01 seconds
Optimal objective 0.000000000e+00

SOLUTION:

2

1.5 Solution visualization

[6]: import matplotlib.pyplot as plt

def plot_solution(s, p):
"""
s: solution vector
p: processing times
"""
fig = plt.figure(figsize=(10,2))
ax = plt.gca()
ax.set_xlabel('time')
ax.grid(True)
ax.set_yticks([2.5])
ax.set_yticklabels(["oven"])
eps = 0.25 # just to show spaces between the dishes
ax.broken_barh([(s[i], p[i]-eps) for i in range(len(s))], (0, 5),

facecolors=('tab:orange', 'tab:green', 'tab:red', 'tab:
↪→blue', 'tab:gray'))

TODO: plot your solution
plot_solution([23.0, 4.0, 53.0, 38.0, 46.0], [params[i]["p"] for i in range(n)])

[]:

3

	The Catering Problem
	Motivation
	Input
	Output
	Exercise
	Solution visualization

