9.3.4 Note on homographies that are rotations

First notice that homogeneous coordinats of points and lines constructed as combinations of joins and meets indeed behave under a homography as homogeneous coordinates constructed from affine coordinates of points.

Secondly, when the homography is a rotation and homogeneous coordinates are unit vecors, all λ 's become equal to one, the determinant of H is one and $H^{-\top} = H$. Therefore, all homogeneous coordinates in the previous formulas become related just by H.

9.4 Vanishing points

When modeling perspective projection in the affine space with affine projection planes, we meet somewhat unpleasant situations. For instance, imagine a projection of two parallel lines *K*, *L*, which are in a plane τ in the space into the projection plane π through the center *C*, Figure 9.10

The lines *K*, *L* project to image lines *k*, *l*. As we go with two points *X*, *Y* along the lines *k*, *l* away from the projection plane, their images *x*, *y* get closer and closer to the point *v* in the image but they do not reach point *v*. We shall call this point of convergence of lines *K*, *L* the *vanishing point*.

9.5 Vanishing line and horizon

If we take all sets of parallel lines in τ , each set with a different direction, then all the points of convergence in the image will fill a complete line *h*.

The line *h* is called the *vanishing line* or the *horizon*⁸ when τ is the ground plane.

Now, imagine that we project all points from τ to π using the affine geometrical projection model. Then, no point from τ will project to *h*.

⁷Úběžník in Czech.

⁸Horizont in Czech

T Pajdla. Elements of Geometry for Computer Vision and Graphics 2020-4-13 (pajdla@cvut.cz)

Figure 9.11: Vanishing line (horizon) *h* is the line of vanishing points.

Similarly, when projecting in the opposite direction, i.e. π to τ , line *h* has no image, i.e. it does not project anywhere to τ .

When using the affine geometrical projection model with the real projective plane to model the perspective projection (which is equivalent to the algebraic model in \mathbb{R}^3), all points of the projective plane τ (obtained as the projective completion of the affine plane τ) will have exactly one image in the projective plane π (obtained as the projective completion of the affine plane π) and vice versa. This total symmetry is useful and beautiful.

10 Projective space

10.1 Motivation – the union of ideal points of all affine planes

Figure 10.1(a) shows a perspective image of three sets of parallel lines generated by sides of a cube in the three-dimensional real affine space. The images of the three sets of parallel lines converge to vanishing points V_1 , V_2 and V_3 . The cube has six faces. Each face generates two pairs of parallel lines and hence two vanishing points. Each face generates an affine plane which can be extended into a projective plane by adding the line of ideal points of that plane. The projection of the three ideal lines are vanishing lines $l_{12} = V_1 \vee V_2$, $l_{23} = V_2 \vee V_3$ and $l_{31} = V_3 \vee V_1$. Imagine now all possible affine planes of the three-dimensional affine space and their corresponding ideal points. Let us take the union V of the sets of ideal points of all such planes. There is exactly one ideal point for every set of parallel lines in V, i.e. there is a one-to-one correspondence between elements of V (ideal points) and directions in the three-dimensional affine space. Notice also that every plane π generates one ideal line l_{∞} of its ideal points and that all other planes parallel with π generate the same l_{∞} , Figure 10.1

It suggests itself to extend the three-dimensional affine space by adding the set *V* to it, analogically to how we have extended the affine plane. In this new space, all parallel lines will intersect. We will call this space the *three-dimensional real projective space* and denote it \mathbb{P}^3 . Let us develop an algebraic model of \mathbb{P}^3 . It is practical to require this model to encompass the model of the real projective plane. The real projective plane is modeled

algebraically by subspaces of \mathbb{R}^3 . Let us observe that subspaces of \mathbb{R}^4 will be a convenient algebraic model of \mathbb{P}^3 .

We start with the three-dimensional real affine space \mathbb{A}^3 and fix a coordinate system (O, δ) with $\delta = (\vec{d_1}, \vec{d_2}, \vec{d_3})$. An affine plane π is a set of points of \mathbb{A}^3 represented in (O, δ) by the set of vectors

$$\pi = \{ [x, y, z]^\top \mid a \, x + b \, y + c \, z + d = 0, \, a, b, c, d \in \mathbb{R}, \, a^2 + b^2 + c^2 \neq 0 \}$$
(10.1)

We see that the point of π represented by vector $[x, y, z]^{\top}$ can also be represented by one-dimensional subspace $\{\lambda [x, y, z, 1]^{\top} | \lambda \in \mathbb{R}\}$ of \mathbb{R}^4 and hence π can be seen as the set

$$\pi = \{\{\lambda [x, y, z, 1]^\top | \lambda \in \mathbb{R}\} | [a, b, c, d] [x, y, z, 1]^\top = 0, a, b, c, d \in \mathbb{R}, a^2 + b^2 + c^2 \neq 0\}$$
(10.2)

of one-dimensional subspaces of \mathbb{R}^4 .

Notice that we did not require $\lambda \neq 0$ in the above definition. This is because we establish the correspondence between a vector [x, y, z] and the corresponding complete one-dimensional subspace $\{\lambda [x, y, z, 1]^{\top}, \lambda \in \mathbb{R}\}$ of \mathbb{R}^4 and since every linear space contains zero vector, we admit zero λ .

Every $[x, y, z]^{\top} \in \mathbb{R}^3$ represents in (O, δ) a point of \mathbb{A}^3 and hence the subset

$$\mathbb{A}^{3} = \{\{\lambda [x, y, z, 1]^{\top} | \lambda \in \mathbb{R}\} | x, y, z \in \mathbb{R}\}$$
(10.3)

of one-dimensional subspaces of \mathbb{R}^4 represents \mathbb{A}^3 .

We observe that we have not used all one-dimensional subspaces of \mathbb{R}^4 to represent \mathbb{A}^3 . The subset

$$\pi_{\infty} = \{ \{ \lambda [x, y, z, 0]^{\top} | \lambda \in \mathbb{R} \} | x, y, z \in \mathbb{R}, x^{2} + y^{2} + z^{2} \neq 0 \}$$
(10.4)

of one-dimensional subspaces of \mathbb{R}^4 is in one-to-one correspondence with all non-zero vectors of \mathbb{R}^3 , i.e. in one-to-one correspondence with the set of directions in \mathbb{A}^3 . This is the set of ideal points which we add to \mathbb{A}^3 to get the three-dimensional real projective space

$$\mathbb{P}^{3} = \{\{\lambda [x, y, z, w]^{\top} | \lambda \in \mathbb{R}\} | x, y, z, w \in \mathbb{R}, x^{2} + y^{2} + z^{2} + w^{2} \neq 0\}$$
(10.5)
168

which is the set of all one-dimensional subspaces of \mathbb{R}^4 . Notice that $\mathbb{P}^3 = \mathbb{A}^3 \cup \pi_\infty$.

§**1 Points** Every non-zero vector of \mathbb{R}^4 generates a one-dimensional subspace and thus represents a point of \mathbb{P}^3 . The zero vector $[0,0,0,0]^{\top}$ does not represent any point.

§**2 Planes** Affine planes π_{A^3} , Equation 10.2 are in one-to-one correspondence to the subset

$$\pi_{\mathbb{A}^3} = \{ \{ \lambda [a, b, c, d]^\top | \lambda \in \mathbb{R} \} | a, b, c, d \in \mathbb{R}, a^2 + b^2 + c^2 \neq 0 \}$$
(10.6)

of the set of one-dimensional subspaces of \mathbb{R}^4 . There is only one onedimensional subspace of \mathbb{R}^4 , $\{\lambda [0,0,0,1]^\top | \lambda \in \mathbb{R}\}$ missing in $\pi_{\mathbb{A}^3}$. It is exactly the one-dimensional subspace corresponding to the set π_∞ of ideal points of \mathcal{P}^3

$$\pi_{\infty} = \{\{\lambda [x, y, z, w]^{\top} | \lambda \in \mathbb{R}\} | x, y, z, w \in \mathbb{R}, x^{2} + y^{2} + z^{2} \neq 0, [0, 0, 0, 1] [x, y, z, w]^{\top} = 0\}$$
(10.7)

We can take another view upon planes and observe that affine planes are in one-to-one correspondence with the three-dimensional subspaces of \mathbb{R}^4 . The set π_{∞} also corresponds to a three-dimensional subspace of \mathbb{R}^4 . Hence π_{∞} can be considered another plane, *the ideal plane* of \mathbb{P}^3 .

The set of planes of \mathbb{P}^3 can be hence represented by the set of one-dimensional subspaces of \mathbb{R}^4

$$\pi_{\mathbb{P}^3} = \{ \{ \lambda [a, b, c, d]^\top | \lambda \in \mathbb{R} \} | a, b, c, d \in \mathbb{R}, a^2 + b^2 + c^2 + d^2 \neq 0 \}$$
(10.8)

but can also be viewed as the set of three-dimensional subspaces of \mathbb{R}^4 .

We see that there is a duality between points and planes of \mathbb{P}^3 . They both are represented by one-dimensional subspaces of \mathbb{R}^4 and we see that point

Ploues in P³ Determined by ×₁Y₁Z varie = 3 Phones in $P^3 \equiv$ 1D subja

X represented by vector $\vec{X} = [x, y, x, w]^{\top}$ is incident to plane π represented by vector $\vec{\pi} = [a, b, c, d]^{\top}$, i.e. $X \circ \pi$, when

$$\vec{\pi}^{\top}\vec{X} = \begin{bmatrix} a & b & c & d \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = ax + by + cz + dw = 0$$
(10.9)

§**3 Lines** Lines in \mathbb{P}^3 are represented by two-dimensional subspaces of \mathbb{R}^4 . Unlike in \mathbb{P}^2 , lines are not dual to points.

Lines in
$$\mathcal{B}^{3}$$
 are a new kind of animals.
 $l \neq X$
 $l \neq k$
 $\mathcal{E} \neq 3 \rightarrow \mathcal{B}^{3}$
 $\mathcal{E} \neq 1$
 $\mathcal{E} \neq 1$
 $\mathcal{E} \neq 2$
 $\mathcal{E} \neq 3 \rightarrow \mathcal{B}^{3}$
 $\mathcal{E} \neq 1$
 $\mathcal{E} \neq 1$
 $\mathcal{E} \neq 1$
 $\mathcal{E} \neq 1$
 $\mathcal{E} \neq 2$
 $\mathcal{E} \neq 2$

How to find k? 1) 6 pts in spoce -> P -> [KR]-KRÇ] 11 Camera auto-calibration

Camera auto-calibration is a process when the parameters of image formation are determined from properties of the observed scene or knowledge of camera motions. We will study camera auto-calibration methods and tasks related to metrology in images. We have seen in Chapter 7 that to measure the angle between projection rays we needed only matrix K. Actually, it is enough to know matrix¹

symmetric
$$\omega_{35} = \mathbf{K}^{-\top}\mathbf{K}^{-1} \in \mathbb{R}^{3\times 5}$$
 vank 3

to measure the angle between the rays corresponding to image points $\vec{x}_{1\beta}$, $\vec{x}_{2\beta}$ as

$$\sum_{k=1}^{\infty} \cos \angle (\vec{x}_{1}, \vec{x}_{2}) = \frac{\vec{x}_{1\beta}^{\top} \mathbf{K}^{-\top} \mathbf{K}^{-\top} \vec{x}_{2\beta}}{\|\mathbf{K}^{-1} \vec{x}_{1\beta}\| \|\mathbf{K}^{-1} \vec{x}_{2\beta}\|} = \frac{\vec{x}_{1\beta}^{\top} \omega \vec{x}_{2\beta}}{\sqrt{\vec{x}_{1\beta}^{\top} \omega \vec{x}_{1\beta}} \sqrt{\vec{x}_{2\beta}^{\top} \omega \vec{x}_{2\beta}}}$$
(11.1)

Knowing ω is however (almost) equivalent to knowing K since K can be recovered from ω up to two signs as follows.

§ **1 Recovering** K from ω Let us give a procedure for recovering K from ω . Assuming

¹In **15**, ω is called the image of the absolute conic.

171

d. $d = \zeta(\vec{x})$ EDAG . orthonormal orthogonal Los d = XIE VE $\|\tilde{\mathbf{x}}_{12}^{\prime}\| \|\tilde{\mathbf{x}}_{22}^{\prime}\|$

we get

$$K^{-1} = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ 0 & k_{22} & k_{23} \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{k_{11}} & \frac{-k_{12}}{k_{11}k_{22}} & \frac{k_{12}k_{23}-k_{13}k_{22}}{k_{11}k_{22}} \\ 0 & \frac{1}{k_{22}} & \frac{-k_{23}}{k_{22}} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ 0 & m_{22} & m_{23} \\ 0 & 0 & 1 \end{bmatrix}$$
(11.3)
for some real $m_{11}, m_{12}, m_{13}, m_{22}$ and m_{23} . Equivalently, we get

$$K = \begin{bmatrix} \frac{1}{m_{11}} & \frac{-m_{12}}{m_{11}m_{22}} & \frac{m_{12}m_{23}-m_{13}m_{22}}{m_{11}m_{22}m_{23}} \\ 0 & \frac{1}{m_{22}} & \frac{-m_{23}}{m_{22}} \\ 0 & 0 & 1 \end{bmatrix}$$
(11.4)

Introducing the following notation

$$\omega = \mathbf{K}^{-\top} \mathbf{K}^{-1} = \begin{bmatrix} \omega_{11} & \omega_{12} & \omega_{13} \\ \omega_{12} & \omega_{22} & \omega_{23} \\ \omega_{13} & \omega_{23} & \omega_{33} \end{bmatrix}$$
(11.5)

yields

$$\begin{bmatrix} \omega_{11} & \omega_{12} & \omega_{13} \\ \omega_{12} & \omega_{22} & \omega_{23} \\ \omega_{13} & \omega_{23} & \omega_{33} \end{bmatrix} = \begin{bmatrix} m_{11}^2 & m_{11}m_{12} & m_{11}m_{13} \\ m_{11}m_{12} & m_{12}^2 + m_{22}^2 & m_{12}m_{13} + m_{22}m_{23} \\ m_{11}m_{13} & m_{12}m_{13} + m_{22}m_{23} & m_{13}^2 + m_{23}^2 + 1 \end{bmatrix}$$
(11.6)
$$\omega = M^{T}M$$

172

T Pajdla. Elements of Geometry for Computer Vision and Graphics 2020-4-13 (pajdla@cvut.cz)

From w to K which can be solved for K^{-1} up to the sign of the rows of K^{-1} as follows. Equation 11.6 provides equations $\omega_{11} = m_{11}^2 \quad \stackrel{1}{\Rightarrow} \quad m_{11} = s_1 \sqrt{\omega_{11}}$ Equations by compating elements $\omega_{12} = m_{11} m_{12} \implies m_{12} = \omega_{12}/(s_1 \sqrt{\omega_{11}}) = s_1 \omega_{12}/\sqrt{\omega_{11}}$ m_{11}^2 ω_{11} ω_{12} ω_{13} $m_{11} m_{12}$ $m_{12}^2 + m_{22}^2$ $m_{11} m_{12}$ ω_{12} ω_{22} ω_{23} $\omega_{13} = m_{11} m_{13} \implies m_{13} = \omega_{13}/(s_1 \sqrt{\omega_{11}}) = s_1 \omega_{13}/\sqrt{\omega_{11}}$ $m_{13}^2 + m_{23}^2 + 1$ W13 W23 W33 $m_{11} m_{13} m_{12} m_{13} + m_{22} m_{23}$ $\omega_{22} = m_{12}^2 + m_{22}^2 \implies m_{22} = s_2 \sqrt{\omega_{22} - m_{12}^2} = s_2 \sqrt{\omega_{22} - \omega_{12}^2/\omega_{11}}$ hTh $\widetilde{()}$ $\omega_{23} = m_{12} m_{13} + m_{22} m_{23} \implies m_{23} = s_2 (\omega_{23} - \omega_{12} \omega_{13}/\omega_{11}) / \sqrt{\omega_{22} - \omega_{12}^2/\omega_{11}}$ $= s_2 \left(\omega_{11} \, \omega_{23} - \omega_{12} \, \omega_{13} \right) / \sqrt{\omega_{11}^2 \omega_{22} - \omega_{11} \, \omega_{12}^2}$ 3x3=9 elements which can be solved for m_{ii} with $s_1 = \pm 1$ and $s_2 = \pm 1$. Hence only 6 indep. equs. $\mathbf{K} = \begin{bmatrix} s_1 \sqrt{\omega_{11}} & s_1 \omega_{12} / \sqrt{\omega_{11}} & s_1 \omega_{13} / \sqrt{\omega_{11}} \\ 0 & s_2 \sqrt{\omega_{22} - \omega_{12}^2 / \omega_{11}} & s_2 (\omega_{23} - \omega_{12} \omega_{13} / \omega_{11}) / \sqrt{\omega_{22} - \omega_{12}^2 / \omega_{11}} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ => 5 unkuonna W ___ M (11.7) Signs s_1 , s_2 are determined by the choice of the image coordinate system $S_1 = t \langle S_1 = t \rangle$ $S_2 = t \rangle$ $S_3 = t \rangle$ The standard choice is $s_1 = s_2 = 1$, which corresponds to $k_{11} > 0$ and $k_{22} > 0.$ Notice that $\sqrt{\omega_{11}}$ is never zero for a real camera since $m_{11} = \frac{1}{k_{11}} \neq 0$. There also holds true $K = \begin{bmatrix} > 0 & k_{12} & \cdot \\ 0 & > D & \cdot \\ 0 & 0 & n \end{bmatrix}$ $\sqrt{\omega_{22} - \omega_{12}^2 / \omega_{11}} = \sqrt{m_{11}^2 - m_{12}^2} = \sqrt{\frac{1}{k_{11}^2} - \frac{k_{12}^2}{k_{11}^2 k_{22}^2}} = \frac{1}{k_{11} k_{22}} \sqrt{k_{22}^2 - k_{12}^2} \neq 0$ since $|k_{12}|$ is much smaller than $|k_{22}|$ for all real cameras.

11.1 Constraints on ω

Matrix ω is a 3 \times 3 symmetric matrix and by this it has only six independent elements $\omega_{11}, \omega_{12}, \omega_{13}, \omega_{22}, \omega_{23}$ and ω_{33} . Let us next investigate additional constratints on ω , which follow from different choices of K.

§1 Constraints on ω for a general K Even a general K yields a constraint on ω . Equation 11.6 relates the six parameters of ω to only five parameters m_{11} , m_{12} , m_{13} , m_{22} and m_{23} and hence the six parameters of ω can't be independent. Indeed, let us see that the following identity holds true

$$(\omega_{23}^{2} - \frac{\omega_{13}^{2} \omega_{11}^{2}}{\omega_{11}^{2}} - (\omega_{22} - \frac{\omega_{12}^{2}}{\omega_{11}}) (\omega_{33} - \frac{\omega_{13}^{2}}{\omega_{11}} - 1))^{2} - 4 \frac{\omega_{13}^{2} \omega_{12}^{2}}{\omega_{11}^{2}} (\omega_{22} - \frac{\omega_{12}^{2}}{\omega_{11}}) (\omega_{33} - \frac{\omega_{13}^{2}}{\omega_{11}} - 1)$$

$$= \left((m_{12}m_{13} + m_{22}m_{23})^{2} - \frac{(m_{11}m_{13})^{2}(m_{11}m_{12})^{2}}{m_{11}^{4}} - (m_{12}^{2} + m_{22}^{2} - \frac{(m_{11}m_{12})^{2}}{m_{11}^{2}}) (m_{13}^{2} + m_{23}^{2} + 1 - \frac{(m_{11}m_{13})^{2}}{m_{11}^{4}} - 1) \right)^{2} - 4 \frac{(m_{11}m_{13})^{2}(m_{11}m_{12})^{2}}{m_{11}^{4}} (m_{12}^{2} + m_{22}^{2} - \frac{(m_{11}m_{12})^{2}}{m_{11}^{2}}) (m_{13}^{2} + m_{23}^{2} + 1 - \frac{(m_{11}m_{13})^{2}}{m_{11}^{4}} - 1) \right)^{2} - 4 \frac{(m_{12}m_{13} + m_{22}m_{23})^{2} - (m_{12}m_{13})^{2} - (m_{22}m_{23})^{2} - 4 (m_{12}m_{13})^{2} (m_{22}m_{23})^{2} - 4 (m_{12}m_{13})^{2} (m_{22}m_{23})^{2} - 4 (m_{12}m_{13})^{2} (m_{22}m_{23})^{2} - 4 (m_{12}m_{13})^{2} (m_{22}m_{23})^{2} = 0$$

$$(11.9)$$
Since $\omega_{11} \neq 0$, we get the following equivalent identity
$$(\omega_{11}^{2}\omega_{23}^{2} - \omega_{13}^{2}\omega_{12}^{2} - (\omega_{11}\omega_{22} - \omega_{12}^{2}) (\omega_{11}\omega_{33} - \omega_{13}^{2} - \omega_{11}))^{2} - 4 \omega_{13}^{2}\omega_{12}^{2} (\omega_{11}\omega_{22} - \omega_{12}^{2}) (\omega_{11}\omega_{33} - \omega_{13}^{2} - \omega_{11}) = 0 \quad (11.10)$$

skip

Since $\omega_{11} \neq 0$, we get the following equivalent identity

$$(\omega_{11}^2\omega_{23}^2 - \omega_{13}^2\omega_{12}^2 - (\omega_{11}\omega_{22} - \omega_{12}^2)(\omega_{11}\omega_{33} - \omega_{13}^2 - \omega_{11}))^2 - 4\,\omega_{13}^2\,\omega_{12}^2(\omega_{11}\omega_{22} - \omega_{12}^2)(\omega_{11}\omega_{33} - \omega_{13}^2 - \omega_{11}) = 0 \quad (11.10)$$

which is a polynomial equation of degree eight in elements of ω .

We see that we get the following three identities

$$\begin{array}{rcl}
\omega_{12} &= 0 & (11.18) \\
\omega_{22} - \omega_{11} &= 0 & (11.19) \\
\omega_{13}^2 + \omega_{23}^2 - \omega_{11}\omega_{33} + \omega_{11} &= 0 & (11.20) \end{array}$$

We also get simpler

and use Equation 11.21 to get

$$k_{11}^{2} = o_{33} - o_{13}^{2} - o_{23}^{2}$$
(11.22)

$$k_{13} = -o_{13}$$
(11.23)

$$k_{23} = -o_{23}$$
(11.24)

11.2 Camera calibration from angles between projection rays

We will now show how to calibrate a camera by finding the matrix $\omega = \mathbf{K}^{-\top}\mathbf{K}^{-1}.$

In general, matrix ω is constrained by knowing angles contained between pairs of projection rays. Consider two projection rays with direction vectors $\vec{x_{1}}, \vec{x_{2}}$. Then the <u>angle between</u> them is related to ω and Ω by

$$\cos \angle (\vec{x}_{1}, \vec{x}_{2}) = \frac{\vec{x}_{1\beta}^{\top} \,\omega \,\vec{x}_{2\beta}}{\sqrt{\vec{x}_{1\beta}^{\top} \,\omega \,\vec{x}_{1\beta}} \,\sqrt{\vec{x}_{2\beta}^{\top} \,\omega \,\vec{x}_{2\beta}}} = \frac{\vec{x}_{1\beta}^{\top} \,\Omega \,\vec{x}_{2\beta}}{\sqrt{\vec{x}_{1\beta}^{\top} \,\Omega \,\vec{x}_{1\beta}} \,\sqrt{\vec{x}_{2\beta}^{\top} \,\Omega \,\vec{x}_{2\beta}}} \tag{1}$$

$$176$$

1. 0

Known & gres one gradon or - L y2

21

1.25)

 $con < (\vec{x_1}, \vec{x_2}) =$

5 undrowns in SL -

... deg 2

solvohl

us

algebroic

(11.27)

$$(\cos \angle (\vec{x}_1, \vec{x}_2))^2 (\vec{x}_{1\beta}^\top \,\mathbf{\Omega} \,\vec{x}_{1\beta}) \, (\vec{x}_{2\beta}^\top \,\mathbf{\Omega} \,\vec{x}_{2\beta}) = (\vec{x}_{1\beta}^\top \,\mathbf{\Omega} \,\vec{x}_{2\beta})^2 \tag{11.26}$$

which is a second order equation in elements of Ω . To find Ω , which has five independent parameters for a general K, we need to be able to establish five pairs of rays with known angles and solve a system of five quadratic equations 11.26 above.

§1 **Camera with square pixels** A simpler situation arises when the camera has square pixels. Then, we can use constraints from §2 to recover ω and K from three pairs of rays containing known angles. That amounts to solving three second order equations 11.26 in o_{13} , o_{23} , o_{33} .

However, this is actually exactly the same problem as we have already solved in Section 7.3. Figure 11.2 shows an image plane π with a coordinate system (o, δ') with $\delta' = (\vec{b}_1, \vec{b}_2, \vec{b}'_3)$ derived from the image coordinate system (o, α) . Having square pixels, vectors \vec{b}_1, \vec{b}_2 can be complemented with \vec{b}'_3 to form an orthogonal coordinates system $(O = o, \delta')$. Next, we choose the global orthonormal coordinate system, $(O = o, \delta), \delta = (\vec{d}_1, \vec{d}_2, \vec{d}_3)$, such that

$$\vec{d_1} = \frac{\vec{b_1}}{||\vec{b_1}||}, \quad \vec{d_2} = \frac{\vec{b_2}}{||\vec{b_1}||}, \quad \text{and} \quad \vec{d_3} = \frac{\vec{b_3}}{||\vec{b_1}||}$$

and hence

$$\vec{x}_{\delta} = \begin{bmatrix} ||\vec{b}_{1}|| & 0 & 0\\ 0 & ||\vec{b}_{1}|| & 0\\ 0 & 0 & ||\vec{b}_{1}|| \end{bmatrix} \vec{x}_{\delta'}$$
(11.28)

We know angles $\angle(\vec{x}_1, \vec{x}_2), \angle(\vec{x}_2, \vec{x}_3)$ and $\angle(\vec{x}_3, \vec{x}_1)$. We also know image points $\vec{u}_{1\alpha} = \vec{X}_{1\delta'}, \ \vec{u}_{2\alpha} = \vec{X}_{2\delta'}, \ \vec{u}_{3\alpha} = \vec{X}_{3\delta'}$ and thus we can compute

distances $d_{12} = ||\vec{X}_{2\delta'} - \vec{X}_{1\delta'}||, d_{23} = ||\vec{X}_{3\delta'} - \vec{X}_{2\delta'}||$ and $d_{31} = ||\vec{X}_{3\delta'} - \vec{X}_{1\delta'}||$. Having that, we can find the pose $\vec{C}_{\delta'} = [c_1, c_2, c_3]^{\top}$ of the camera center *C* in (O, δ') by solving the absolute pose problem from Chapter 7.3 We will select a solution with $c_3 < 0$ and, if necessary, use a fourth point in π to choose the right solution among them. To find K, we can form the following equation

$$\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \frac{1}{f} \begin{bmatrix} \mathbf{K} \, \mathbf{R} \, | \, -\mathbf{K} \, \mathbf{R} \, \vec{C}_{\delta} \end{bmatrix} \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$
(11.29)

since point *o* is represented by $[0,0,1]^{\top}$ in β and by $[0,0,0]^{\top}$ in δ . Coordinate system (O, δ) is chosen such that $\mathbf{R} = \mathbf{I}$ and $\vec{C}_{\delta} = ||\vec{b}_1||\vec{C}_{\delta'}$ and thus we get

$$\mathbf{K}^{-1}\begin{bmatrix}\mathbf{0}\\\mathbf{0}\\\mathbf{1}\end{bmatrix} = -\frac{||\vec{b}_1||}{f}\vec{C}_{\delta'}$$
(11.30)

Now, let us consider matrix K as in Equation 11.16 and use the intepretation of elements of K from Chapter 7 Equations 7.16 7.17 We can write

$$\mathbf{K} = \begin{bmatrix} \frac{f}{\|\vec{b}_1\|} & 0 & k_{13} \\ 0 & \frac{f}{\|\vec{b}_1\|} & k_{23} \\ 0 & 0 & 1 \end{bmatrix} \quad \text{an thus} \quad \mathbf{K}^{-1} = \begin{bmatrix} \frac{\|\vec{b}_1\|}{f} & 0 & -\frac{\|\vec{b}_1\|}{f}k_{13} \\ 0 & \frac{\|\vec{b}_1\|}{f} & -\frac{\|\vec{b}_1\|}{f}k_{23} \\ 0 & 0 & 1 \end{bmatrix}$$
(11.31)

178

and use it in Equation 11.30 to get

$$\begin{bmatrix} k_{13} \\ k_{23} \\ -\frac{f}{\|\vec{b}_1\|} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$
(11.32)

2	h	Y	2
2	-		

and thus

$$\mathbf{K} = \begin{bmatrix} -c_3 & 0 & c_1 \\ 0 & -c_3 & c_2 \\ 0 & 0 & 1 \end{bmatrix}$$
(11.33)

11.3 Camera calibration from vanishing points

Let us first make an interesting observation about parallel lines in space an its corresponding vanishing point in an image. Let us consider a pair of parallel lines K, L in space as shown in Figure 11.1(a). There is an affine plane σ containing the lines. The lines K, L are projected to image plane π into lines k, l, respectively.

Now, first extend affine plane σ to a projective plane Σ using the camera center *C*. Then, define a coordinate system (*C*, δ) with orthonormal basis $\delta = (\vec{d_1}, \vec{d_2}, \vec{d_3})$ such that vectors $\vec{d_1}, \vec{d_2}$ span affine plane σ .

Let \vec{K}_{δ} , \vec{L}_{δ} be homogeneous coordinates of lines *K*, *L* w.r.t. $\bar{\delta}$. Then

$$\vec{w}_{\delta} = \vec{K}_{\bar{\delta}} \times \vec{L}_{\bar{\delta}} \tag{11.34}$$

are homogeneous coordinates of the intersection of lines K, L in Σ .

Next, extend the affine plane π to a projective plane Π using the camera center *C* with the (camera) coordinate system (*C*, β).

Let $\vec{k}_{\bar{\beta}}$, $\vec{l}_{\bar{\beta}}$ be homogeneous coordinates of lines k, l w.r.t. $\bar{\beta}$. Then

$$\vec{v}_{\beta} = \vec{k}_{\bar{\beta}} \times \vec{l}_{\bar{\beta}}$$
(11.35)

are homogeneous coordinates of the intersection of lines k, l in Π .

Now, consider Equation 8.14 for planes Σ and Π . Since δ is orthonormal, we have K' = I and thus that there is a homoghraphy

 $\mathbf{H} = \mathbf{K} \, \mathbf{R} \tag{11.36}$

which maps plane Σ to plane Π . Matrices K and R of the camera are here w.r.t. the world coordinate system (*C*, δ).

We see that there is a real λ such that there holds

$$\lambda \, \vec{v}_{\beta} = \mathbf{K} \, \mathbf{R} \, \vec{w}_{\delta} \tag{11.37}$$

true.

§1 Pairs of "orthogonal" vanishing points and camera with square **pixels** Let us have two pairs of parallel lines in space, Figure 11.1(b), such that they are also orthogonal, i.e. let K_1 be parallel with L_1 and K_2 be parallel with L_2 and at the same time let K_1 be orthogonal to K_2 and L_1 be orthogonal to L_2 . This, for instance, happens when lines K_1, L_1, K_2, L_2 form a rectangle but they also may be arranged in the three-dimensional space as non-intersecting.

Let lines k_1 , l_1 , k_2 , l_2 be the projections of K_1 , L_1 , K_2 , L_2 , respectively, represented by the corresponding vectors $\vec{k}_{1\beta}$, $\vec{l}_{1\beta}$, $\vec{k}_{2\beta}$, $\vec{l}_{2\beta}$ in the camera coordinates system with (in general non-orthogonal) basis β . Lines k_1 and l_1 , resp. k_2 and l_2 , generate vanishing points

$$ec{v}_{1eta} = ec{k}_{1ar{eta}} imes ec{l}_{1ar{eta}} \ ec{v}_{1ar{eta}} \ ec{v}_{2ar{eta}} = ec{k}_{2ar{eta}} imes ec{l}_{2ar{eta}} \ ec{k}_{2ar{eta}} \ ec{v}_{2ar{eta}} \ ec{k}_{2ar{eta}} \ ec{k}_{2ar{eta$$

The perpendicularity of $\vec{w_1}$ to $\vec{w_2}$ is, in the camera orthogonal basis δ , modeled by

We therefore get from Equation 11.37

$$\vec{v}_{1\delta}^{\top} \vec{w}_{2\delta} = 0 \qquad (11.38)$$

$$\vec{v}_{1\beta}^{\top} \mathbf{K}^{\top \top} \mathbf{R}^{-\top} \mathbf{K}^{-1} \vec{v}_{2\beta} = 0 \qquad (11.39)$$

$$\vec{v}_{1\beta}^{\top} \mathbf{K}^{-\top} \mathbf{K}^{-1} \vec{v}_{2\beta} \neq 0 \qquad (11.40)$$

$$\vec{v}_{1\beta}^{\top} \omega \vec{v}_{2\beta} = 0 \qquad (11.41)$$

$$\mathbf{R} \mathbf{R} \mathbf{R}^{\top} \mathbf{R$$

which is a linear homogeneous equation in ω . Assuming further square pixels, we get, §2,

Now, we need only 3 pairs of perpendicular vanishing points, e.g. to observe 3 rectangles not all in one plane to compute o_{13} , o_{23} , o_{33} and then

D:

321

0

3×3

T Pajdla. Elements of Geometry for Computer Vision and Graphics 2020-4-13 (pajdla@cvut.cz)

which is a linear homogeneous equation in ω . Assuming further square pixels, we get, §2. $\vec{v}_{1\beta}^{\top} \omega \vec{v}_{2\beta} = 0$

$$\vec{v}_{1\beta}^{\dagger} \Omega \vec{v}_{2\beta} = 0$$

$$\begin{bmatrix} v_{11} & v_{12} & v_{13} \end{bmatrix} \begin{bmatrix} 1 & 0 & o_{13} \\ 0 & 1 & o_{23} \\ o_{13} & o_{23} & o_{33} \end{bmatrix} \begin{bmatrix} v_{21} \\ v_{22} \\ v_{23} \end{bmatrix} = 0$$

$$\begin{bmatrix} v_{23} v_{11} + v_{21} v_{13} & v_{23} v_{12} + v_{22} v_{13} & v_{23} v_{13} \end{bmatrix} \begin{bmatrix} o_{13} \\ o_{23} \\ o_{33} \end{bmatrix} = -(v_{21} v_{11} + v_{22} v_{12})$$

Now, we need only 3 pairs of perpendicular vanishing points, e.g. to observe 3 rectangles not all in one plane to compute o_{13} , o_{23} , o_{33} and then

 $k_{13} = -o_{13}$ $k_{23} = -o_{23}$ $k_{11} = \sqrt{o_{33} - k_{13}^2 - k_{23}^2}$

11.4 Camera calibration from images of squares

Let us exploit the relationship between the coordinates of points *X*, which all lie in a plane σ and are measured in a coordinate system $(O, \vec{d_1}, \vec{d_2})$ in σ , Figure 8.2 The points *X* are projected by a perspective camera with the camera coordinate system is $(C, \beta), \beta = (\vec{b_1}, \vec{b_2}, \vec{b_3})$ and projection matrix P into image coordinates $\begin{bmatrix} u & v \end{bmatrix}^T$, w.r.t. an image coordinate system $(o, \vec{b_1}, \vec{b_2})$, Equation 8.16 See paragraph §1 to recall that the columns of P can be writen as

$$\mathbf{P} = \begin{bmatrix} \mathbf{K} \, \mathbf{R} \, | \, -\mathbf{K} \, \mathbf{R} \, \vec{C}_{\delta} \end{bmatrix} = \begin{bmatrix} \vec{d}_{1\nu} & \vec{d}_{2\nu} & \vec{d}_{3\nu} & -\vec{C}_{\nu} \end{bmatrix}$$
(11.42)

on ω in terms of estimated λ H

$$\mathbf{h}_{1}^{\top} \, \mathbf{\Omega} \, \mathbf{h}_{2} = 0 \qquad (11.56)$$

$$\mathbf{h}_{1}^{\top} \, \mathbf{\Omega} \, \mathbf{h}_{1} - \mathbf{h}_{2}^{\top} \, \mathbf{\Omega} \, \mathbf{h}_{2} = 0 \qquad (11.57)$$

One square provides two equations and therefore three squares in two planes in a general position suffice to calibrate full K. Actually, such three squares provide one more equations than necessary since Ω has only five parameters. Hence, it is enough observe two squares and one rectangle to get five constraints. Similarly, one square and one rectangle in a plane then suffice to calibrate K when pixels are square.

Notice also that we have never used the special choice of coordinates of \vec{X}_{δ} . Indeed, point X_4 could be anywhere provided that we know how to assign it coordinates in $(O, \vec{d_1}, \vec{d_2})$.

To calibrate the camera, we first assign coordinates to the corners of the square as above, then find the homography H from the plane to the image

$$\lambda_i \, \vec{x}_{i\beta} = \mathbf{H} \, \vec{X}_{i\delta} \tag{11.58}$$

for $\alpha_i = 1, \ldots, 4$ and finally use columns of H the find Ω .