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9.3.4 Note on homographies that are rotations

First notice that homogeneous coordinats of points and lines constructed
as combinations of joins and meets indeed behave under a homography as
homogeneous coordinates constructed from a�ne coordinates of points.

Secondly, when the homography is a rotation and homogeneous coor-
dinates are unit vecors, all �’s become equal to one, the determinant of H is
one and H´J

“ H. Therefore, all homogeneous coordinates in the previous
formulas become related just by H.

9.4 Vanishing points

When modeling perspective projection in the a�ne space with a�ne pro-
jection planes, we meet somewhat unpleasant situations. For instance,
imagine a projection of two parallel lines K,L, which are in a plane ⌧ in
the space into the projection plane ⇡ through the center C, Figure 9.10.

The lines K,L project to image lines k, l. As we go with two points X,Y
along the lines k, l away from the projection plane, their images x, y get
closer and closer to the point v in the image but they do not reach point v.
We shall call this point of convergence of lines K, L the vanishing point7.

9.5 Vanishing line and horizon

If we take all sets of parallel lines in ⌧, each set with a di↵erent direction,
then all the points of convergence in the image will fill a complete line h.

The line h is called the vanishing line or the horizon8 when ⌧ is the ground
plane.

Now, imagine that we project all points from ⌧ to ⇡ using the a�ne
geometrical projection model. Then, no point from ⌧ will project to h.

7Úběžnı́k in Czech.
8Horizont in Czech
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Figure 9.10: Vanishing point v is the point towards projections x an y tend
as X and Y move away from ⇡ but which they never reach.
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Figure 9.11: Vanishing line (horizon) h is the line of vanishing points.
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Similarly, when projecting in the opposite direction, i.e. ⇡ to ⌧, line h has
no image, i.e. it does not project anywhere to ⌧.

When using the a�ne geometrical projection model with the real pro-
jective plane to model the perspective projection (which is equivalent to
the algebraic model in R3), all points of the projective plane ⌧ (obtained
as the projective completion of the a�ne plane ⌧) will have exactly one
image in the projective plane ⇡ (obtained as the projective completion
of the a�ne plane ⇡) and vice versa. This total symmetry is useful and
beautiful.
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10 Projective space

10.1 Motivation – the union of ideal points of all
affine planes

Figure 10.1(a) shows a perspective image of three sets of parallel lines
generated by sides of a cube in the three-dimensional real a�ne space.
The images of the three sets of parallel lines converge to vanishing points
V1, V2 and V3. The cube has six faces. Each face generates two pairs
of parallel lines and hence two vanishing points. Each face generates an
a�ne plane which can be extended into a projective plane by adding the
line of ideal points of that plane. The projection of the three ideal lines are
vanishing lines l12 “ V1 _ V2, l23 “ V2 _ V3 and l31 “ V3 _ V1. Imagine
now all possible a�ne planes of the three-dimensional a�ne space and
their corresponding ideal points. Let us take the union V of the sets of
ideal points of all such planes. There is exactly one ideal point for every
set of parallel lines in V, i.e. there is a one-to-one correspondence between
elements of V (ideal points) and directions in the three-dimensional a�ne
space. Notice also that every plane ⇡ generates one ideal line l8 of its
ideal points and that all other planes parallel with ⇡ generate the same l8,
Figure 10.1.

It suggests itself to extend the three-dimensional a�ne space by adding
the set V to it, analogically to how we have extended the a�ne plane. In
this new space, all parallel lines will intersect. We will call this space the
three-dimensional real projective space and denote it P3. Let us develop an
algebraic model of P3. It is practical to require this model to encompass
the model of the real projective plane. The real projective plane is modeled
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(a) (b)

Figure 10.1: (a) A perspective image of a cube generates three vanishing
points V1, V2 and V3 and hence also three vanishing lines l12,
l23 and l31. (b) Every plane adds one line of ideal points to the
three-dimensional a�ne space. Every ideal point corresponds
to one direction, i.e. to a set of parallel lines. Each ideal line
corresponds to a set of parallel planes.
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algebraically by subspaces ofR3. Let us observe that subspaces ofR4 will
be a convenient algebraic model of P3.

We start with the three-dimensional real a�ne space A3 and fix a co-
ordinate system pO, �q with � “ p~d1, ~d2, ~d3q. An a�ne plane ⇡ is a set of
points ofA3 represented in pO, �q by the set of vectors

⇡ “ trx, y, zs
J

| a x ` b y ` c z ` d “ 0, a, b, c, d P R, a2
` b2

` c2
‰ 0u (10.1)

We see that the point of ⇡ represented by vector rx, y, zs
J can also be

represented by one-dimensional subspace t� rx, y, z, 1s
J

|� P Ru ofR4 and
hence ⇡ can be seen as the set

⇡ “ tt� rx, y, z, 1s
J

|� P Ru | ra, b, c, ds rx, y, z, 1s
J

“ 0, a, b, c, d P R, a2
`b2

`c2
‰ 0u

(10.2)
of one-dimensional subspaces of R4.

Notice that we did not require � ‰ 0 in the above definition. This is
because we establish the correspondence between a vector rx, y, zs and the
corresponding complete one-dimensional subspace t� rx, y, z, 1s

J,� P Ru

of R4 and since every linear space contains zero vector, we admit zero �.
Every rx, y, zs

J
P R3 represents in pO, �q a point of A3 and hence the

subset
A3

“ tt� rx, y, z, 1s
J

|� P Ru | x, y, z P Ru (10.3)

of one-dimensional subspaces of R4 representsA3.
We observe that we have not used all one-dimensional subspaces of R4

to representA3. The subset

⇡8 “ tt� rx, y, z, 0s
J

|� P Ru | x, y, z P R, x2
` y2

` z2
‰ 0u (10.4)

of one-dimensional subspaces ofR4 is in one-to-one correspondence with
all non-zero vectors of R3, i.e. in one-to-one correspondence with the set
of directions in A3. This is the set of ideal points which we add to A3 to
get the three-dimensional real projective space

P3
“ tt� rx, y, z,ws

J
|� P Ru | x, y, z,w P R, x2

` y2
` z2

` w2
‰ 0u (10.5)
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which is the set of all one-dimensional subspaces of R4. Notice that
P3

“ A3
Y ⇡8.

§1 Points Every non-zero vector of R4 generates a one-dimensional
subspace and thus represents a point of P3. The zero vector r0, 0, 0, 0s

J

does not represent any point.

§2 Planes A�ne planes ⇡A3 , Equation 10.2, are in one-to-one corre-
spondence to the subset

⇡A3 “ tt� ra, b, c, ds
J

|� P Ru | a, b, c, d P R, a2
` b2

` c2
‰ 0u (10.6)

of the set of one-dimensional subspaces of R4. There is only one one-
dimensional subspace of R4, t� r0, 0, 0, 1s

J
|� P Ru missing in ⇡A3 . It is

exactly the one-dimensional subspace corresponding to the set⇡8 of ideal
points of P3

⇡8 “ tt� rx, y, z,ws
J

|� P Ru | x, y, z,w P R, x2
`y2

`z2
‰ 0, r0, 0, 0, 1s rx, y, z,ws

J
“ 0u

(10.7)
We can take another view upon planes and observe that a�ne planes are
in one-to-one correspondence with the three-dimensional subspaces of
R4. The set ⇡8 also corresponds to a three-dimensional subspace of R4.
Hence ⇡8 can be considered another plane, the ideal plane of P3.

The set of planes of P3 can be hence represented by the set of one-
dimensional subspaces of R4

⇡P3 “ tt� ra, b, c, ds
J

|� P Ru | a, b, c, d P R, a2
` b2

` c2
` d2

‰ 0u (10.8)

but can also be viewed as the set of three-dimensional subspaces of R4.
We see that there is a duality between points and planes ofP3. They both

are represented by one-dimensional subspaces ofR4 and we see that point
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X represented by vector ~X “ rx, y, x,ws
J is incident to plane ⇡ represented

by vector ~⇡ “ ra, b, c, ds
J, i.e. X ˝ ⇡, when

~⇡J ~X “
“

a b c d
‰

»

——–

x
y
z
w

fi

��fl “ a x ` b y ` c z ` d w “ 0 (10.9)

§3 Lines Lines in P3 are represented by two-dimensional subspaces of
R4. Unlike in P2, lines are not dual to points.
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11 Camera auto-calibration

Camera auto-calibration is a process when the parameters of image forma-
tion are determined from properties of the observed scene or knowledge
of camera motions. We will study camera auto-calibration methods and
tasks related to metrology in images. We have seen in Chapter 7 that
to measure the angle between projection rays we needed only matrix K.
Actually, it is enough to know matrix1

! “ K´JK´1

to measure the angle between the rays corresponding to image points ~x1�,
~x2� as

cos =p~x1, ~x2q “

~xJ
1� K

´JK´1~x2�

}K´1~x1�}}K´1~x2�}
“

~xJ
1� ! ~x2�

b
~xJ

1� ! ~x1�

b
~xJ

2� ! ~x2�

(11.1)

Knowing ! is however (almost) equivalent to knowing K since K can be
recovered from ! up to two signs as follows.

§1 Recovering K from ! Let us give a procedure for recovering K from
!. Assuming

K “

»

–
k11 k12 k13
0 k22 k23
0 0 1

fi

fl (11.2)

1In [15], ! is called the image of the absolute conic.
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we get

K´1
“

»

–
k11 k12 k13
0 k22 k23
0 0 1

fi

fl
´1

“

»

——–

1
k11

´k12
k11k22

k12 k23´k13 k22
k11 k22

0 1
k22

´k23
k22

0 0 1

fi

��fl “

»

–
m11 m12 m13

0 m22 m23
0 0 1

fi

fl

(11.3)
for some real m11,m12,m13,m22 and m23. Equivalently, we get

K “

»

——–

1
m11

´m12
m11m22

m12 m23´m13 m22
m11 m22 m23

0 1
m22

´m23
m22

0 0 1

fi

��fl (11.4)

Introducing the following notation

! “ K´JK´1
“

»

–
!11 !12 !13
!12 !22 !23
!13 !23 !33

fi

fl (11.5)

yields
»

–
!11 !12 !13
!12 !22 !23
!13 !23 !33

fi

fl “

»

–
m2

11 m11 m12 m11 m13
m11 m12 m2

12 ` m2
22 m12 m13 ` m22 m23

m11 m13 m12 m13 ` m22 m23 m2
13 ` m2

23 ` 1

fi

fl

(11.6)
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which can be solved for K´1 up to the sign of the rows of K´1 as follows.
Equation 11.6 provides equations

!11 “ m2
11 ñ m11 “ s1

?
!11

!12 “ m11 m12 ñ m12 “ !12{ps1
?
!11q “ s1!12{

?
!11

!13 “ m11 m13 ñ m13 “ !13{ps1
?
!11q “ s1!13{

?
!11

!22 “ m2
12 ` m2

22 ñ m22 “ s2

b
!22 ´ m2

12 “ s2

b
!22 ´ !2

12{!11

!23 “ m12 m13 ` m22 m23 ñ m23 “ s2 p!23 ´ !12!13{!11q{

b
!22 ´ !2

12{!11

“ s2 p!11!23 ´ !12!13q{

b
!2

11!22 ´ !11!2
12

which can be solved for mij with s1 “ ˘1 and s2 “ ˘1. Hence

K “

»

——–

s1
?
!11 s1!12{

?
!11 s1!13{

?
!11

0 s2

b
!22 ´ !2

12{!11 s2 p!23 ´ !12!13{!11q{

b
!22 ´ !2

12{!11

0 0 1

fi

��fl

´1

(11.7)

Signs s1, s2 are determined by the choice of the image coordinate system.
The standard choice is s1 “ s2 “ 1, which corresponds to k11 ° 0 and
k22 ° 0.

Notice that
?
!11 is never zero for a real camera since m11 “

1
k11

‰ 0.
There also holds true

b
!22 ´ !2

12{!11 “

b
m2

11 ´ m2
12 “

gffe 1
k2

11

´

k2
12

k2
11 k2

22

“
1

k11 k22

b
k2

22 ´ k2
12 ‰ 0

(11.8)
since |k12| is much smaller than |k22| for all real cameras.
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11.1 Constraints on !

Matrix! is a 3ˆ3 symmetric matrix and by this it has only six independent
elements !11,!12,!13,!22,!23 and !33. Let us next investigate additional
constratints on !, which follow from di↵erent choices of K.

§1 Constraints on ! for a general K Even a general K yields a con-
straint on !. Equation 11.6 relates the six parameters of ! to only five
parameters m11,m12,m13,m22 and m23 and hence the six parameters of !
can’t be independent. Indeed, let us see that the following identity holds
true

p!2
23 ´

!2
13 !

2
12

!2
11

´ p!22 ´

!2
12

!11
q p!33 ´

!2
13

!11
´ 1qq

2
´ 4
!2

13 !
2
12

!2
11

p!22 ´

!2
12

!11
q p!33 ´

!2
13

!11
´ 1q

“

˜

pm12m13 ` m22m23q
2

´
pm11m13q

2
pm11m12q

2

m4
11

´pm2
12 ` m2

22 ´
pm11m12q

2

m2
11

qpm2
13 ` m2

23 ` 1 ´
pm11m13q

2

m4
11

´ 1q

¸2

´ 4
pm11m13q

2
pm11m12q

2

m4
11

pm2
12 ` m2

22 ´
pm11m12q

2

m2
11

qpm2
13 ` m2

23 ` 1 ´
pm11m13q

2

m4
11

´ 1q

“
`
pm12m13 ` m22m23q

2
´ pm12m13q

2
´ pm22m23q

2˘2
´ 4 pm12m13q

2
pm22m23q

2

“ p2 pm12m13qpm22m23qq
2

´ 4 pm12m13q
2
pm22m23q

2

“ 0 (11.9)

Since !11 ‰ 0, we get the following equivalent identity

p!2
11!

2
23 ´ !2

13!
2
12 ´ p!11!22 ´ !2

12q p!11!33 ´ !2
13 ´ !11qq

2

´ 4!2
13!

2
12 p!11!22 ´ !2

12q p!11!33 ´ !2
13 ´ !11q “ 0 (11.10)

which is a polynomial equation of degree eight in elements of !.
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We shall see next that it makes sense to introduce a new matrix

⌦ “

»

–
1 o12 o13

o12 o22 o23
o13 o23 o33

fi

fl “

»

——–

1 !12
!11

!13
!11

!12
!11

!22
!11

!23
!11

!13
!11

!23
!11

!33
!11

fi

��fl (11.11)

which contains only five unknowns, and use Equation 11.10 to get the
positive !11 from ⌦ by solving the following quadratic equation

a2!2
11 ` a1!11 ` a0 “ 0 (11.12)

with

a2 “ ´4 o23
2o13

2o12
2

` o23
4

´ 2 o23
2o22 o33 ` 2 o13

2o12
2o22 o33(11.13)

´2 o22
2o33o13

2
` o12

4o33
2

` 2 o23
2o22 o13

2
` 2 o23

2o12
2o33

`o22
2 o13

4
` o22

2o33
2

´ 2 o22 o33
2o12

2

a1 “ 2 o13
2o12

2 o22 ` 2 o23
2o22 ´ 2 o22

2 o33 ´ 2 o12
4 o33 (11.14)

`4 o22 o33o12
2

´ 2 o23
2o12

2
` 2 o22

2o13
2

a0 “ ´2 o22 o12
2

` o22
2

` o12
4 (11.15)

§2 Constraints on ! for K from square pixels Cameras have often
square pixels, i.e. }~b1} “ |~b2} “ 1 and =p~b1,~b2q “ ⇡{2, which implies,
Equations 7.13, 7.15, 7.16, a simplified

K “

»

–
k11 0 k13
0 k11 k23
0 0 1

fi

fl (11.16)

This gives also simpler

! “
1

k2
11

»

–
1 0 ´k13
0 1 ´k23

´k13 ´k23 k2
11 ` k2

13 ` k2
23

fi

fl (11.17)
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We see that we get the following three identities

!12 “ 0 (11.18)
!22 ´ !11 “ 0 (11.19)

!2
13 ` !2

23 ´ !11!33 ` !11 “ 0 (11.20)

We also get simpler

⌦ “

»

–
1 0 o13
0 1 o23

o13 o23 o33

fi

fl “ k2
11! “

»

–
1 0 ´k13
0 1 ´k23

´k13 ´k23 k2
11 ` k2

13 ` k2
23

fi

fl (11.21)

and use Equation 11.21 to get

k2
11 “ o33 ´ o2

13 ´ o2
23 (11.22)

k13 “ ´o13 (11.23)
k23 “ ´o23 (11.24)

11.2 Camera calibration from angles between
projection rays

We will now show how to calibrate a camera by finding the matrix
! “ K´JK´1.

In general, matrix ! is constrained by knowing angles contained be-
tween pairs of projection rays. Consider two projection rays with direc-
tion vectors ~x1, ~x2. Then the angle between them is related to ! and ⌦
by

cos =p~x1, ~x2q “

~xJ
1� ! ~x2�

b
~xJ

1� ! ~x1�

b
~xJ

2� ! ~x2�

“

~xJ
1� ⌦ ~x2�

b
~xJ

1� ⌦ ~x1�

b
~xJ

2� ⌦ ~x2�

(11.25)
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Squaring the above and clearing the denominators gives

pcos =p~x1, ~x2qq
2
p~xJ

1� ⌦ ~x1�q p~xJ
2� ⌦ ~x2�q “ p~xJ

1� ⌦ ~x2�q
2 (11.26)

which is a second order equation in elements of ⌦. To find ⌦, which has five
independent parameters for a general K, we need to be able to establish
five pairs of rays with known angles and solve a system of five quadratic
equations 11.26 above.

§1 Camera with square pixels A simpler situation arises when the
camera has square pixels. Then, we can use constraints from § 2 to recover
! and K from three pairs of rays containing known angles. That amounts
to solving three second order equations 11.26 in o13, o23, o33.

However, this is actually exactly the same problem as we have already
solved in Section 7.3. Figure 11.2 shows an image plane⇡with a coordinate
system po, � 1

q with � 1
“ p~b1,~b2,~b 1

3q derived from the image coordinate
system po,↵q. Having square pixels, vectors ~b1, ~b2 can be complemented
with ~b 1

3 to form an orthogonal coordinates system pO “ o, � 1
q. Next,

we choose the global orthonormal coordinate system, pO “ o, �q, � “

p~d1, ~d2, ~d3q, such that

~d1 “

~b1

||~b1||

, ~d2 “

~b2

||~b1||

, and ~d3 “

~b 1
3

||~b1||

(11.27)

and hence

~x� “

»

—–
||~b1|| 0 0

0 ||~b1|| 0
0 0 ||~b1||

fi

�fl ~x� 1 (11.28)

We know angles =p~x1, ~x2q, =p~x2, ~x3q and =p~x3, ~x1q. We also know image
points ~u1↵ “ ~X1� 1 , ~u2↵ “ ~X2� 1 , ~u3↵ “ ~X3� 1 and thus we can compute
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distances d12 “ ||~X2� 1 ´ ~X1� 1 ||, d23 “ ||~X3� 1 ´ ~X2� 1 || and d31 “ ||~X3� 1 ´ ~X1� 1 ||.
Having that, we can find the pose ~C� 1 “ rc1, c2, c3s

J of the camera center
C in pO, � 1

q by solving the absolute pose problem from Chapter 7.3. We
will select a solution with c3 † 0 and, if necessary, use a fourth point in
⇡ to choose the right solution among them. To find K, we can form the
following equation

»

–
0
0
1

fi

fl “
1
f

”
K R | ´ K R ~C�

ı
»

——–

0
0
0
1

fi

��fl (11.29)

since point o is represented by r0, 0, 1s
J in � and by r0, 0, 0s

J in �. Coordi-
nate system pO, �q is chosen such that R “ I and ~C� “ ||~b1|| ~C� 1 and thus
we get

K´1

»

–
0
0
1

fi

fl “ ´
||~b1||

f
~C� 1 (11.30)

Now, let us consider matrix K as in Equation 11.16 and use the intepretation
of elements of K from Chapter 7, Equations 7.16, 7.17. We can write

K “

»

——–

f
}~b1} 0 k13

0 f
}~b1} k23

0 0 1

fi

��fl an thus K´1
“

»

——–

}~b1}
f 0 ´

}~b1}
f k13

0 }~b1}
f ´

}~b1}
f k23

0 0 1

fi

��fl (11.31)

and use it in Equation 11.30 to get
»

—–
k13
k23

´
f

}~b1}

fi

�fl “

»

–
c1
c2
c3

fi

fl (11.32)
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and thus

K “

»

–
´c3 0 c1

0 ´c3 c2
0 0 1

fi

fl (11.33)

11.3 Camera calibration from vanishing points

Let us first make an interesting observation about parallel lines in space
an its corresponding vanishing point in an image. Let us consider a pair
of parallel lines K, L in space as shown in Figure 11.1(a). There is an a�ne
plane � containing the lines. The lines K, L are projected to image plane ⇡
into lines k, l, respectively.

Now, first extend a�ne plane � to a projective plane ⌃ using the camera
center C. Then, define a coordinate system pC, �q with orthonormal basis
� “ p~d1, ~d2, ~d3q such that vectors ~d1, ~d2 span a�ne plane �.

Let ~K�̄, ~L�̄ be homogeneous coordinates of lines K, L w.r.t. �̄. Then

~w� “ ~K�̄ ˆ~L�̄ (11.34)

are homogeneous coordinates of the intersection of lines K, L in ⌃.
Next, extend the a�ne plane ⇡ to a projective plane⇧ using the camera

center C with the (camera) coordinate system pC, �q.
Let ~k�̄,~l�̄ be homogeneous coordinates of lines k, l w.r.t. �̄. Then

~v� “ ~k�̄ ˆ~l�̄ (11.35)

are homogeneous coordinates of the intersection of lines k, l in ⇧.
Now, consider Equation 8.14 for planes⌃ and⇧. Since � is orthonormal,

we have K 1
“ I and thus that there is a homoghraphy

H “ K R (11.36)
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which maps plane ⌃ to plane ⇧. Matrices K and R of the camera are here
w.r.t. the world coordinate system pC, �q.

We see that there is a real � such that there holds

�~v� “ K R ~w� (11.37)

true.

§1 Pairs of “orthogonal” vanishing points and camera with square
pixels Let us have two pairs of parallel lines in space, Figure 11.1(b),
such that they are also orthogonal, i.e. let K1 be parallel with L1 and K2 be
parallel with L2 and at the same time let K1 be orthogonal to K2 and L1
be orthogonal to L2. This, for instance, happens when lines K1,L1,K2,L2
form a rectangle but they also may be arranged in the three-dimensional
space as non-intersecting.

Let lines k1, l1, k2, l2 be the projections of K1,L1,K2,L2, respectively, rep-
resented by the corresponding vectors ~k1�̄,~l1�̄,~k2�̄,~l2�̄ in the camera coor-
dinates system with (in general non-orthogonal) basis �. Lines k1 and l1,
resp. k2 and l2, generate vanishing points

~v1� “ ~k1�̄ ˆ~l1�̄
~v2� “ ~k2�̄ ˆ~l2�̄

The perpendicularity of ~w1 to ~w2 is, in the camera orthogonal basis �,
modeled by

~wJ
1� ~w2� “ 0 (11.38)

We therefore get from Equation 11.37

~vJ
1� K

´JR´JR´1K´1~v2� “ 0 (11.39)

~vJ
1� K

´JK´1~v2� “ 0 (11.40)

~vJ
1� ! ~v2� “ 0 (11.41)
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which is a linear homogeneous equation in !. Assuming further square
pixels, we get, § 2,

~vJ
1� ! ~v2� “ 0

~vJ
1�⌦ ~v2� “ 0

“
v11 v12 v13

‰
»

–
1 0 o13
0 1 o23

o13 o23 o33

fi

fl

»

–
v21
v22
v23

fi

fl “ 0

“
v23 v11 ` v21 v13 v23 v12 ` v22 v13 v23 v13

‰
»

–
o13
o23
o33

fi

fl “ ´pv21 v11 ` v22 v12q

Now, we need only 3 pairs of perpendicular vanishing points, e.g. to
observe 3 rectangles not all in one plane to compute o13, o23, o33 and then

k13 “ ´o13

k23 “ ´o23

k11 “

b
o33 ´ k2

13 ´ k2
23

11.4 Camera calibration from images of squares

Let us exploit the relationship between the coordinates of points X, which
all lie in a plane � and are measured in a coordinate system pO, ~d1, ~d2q

in �, Figure 8.2. The points X are projected by a perspective camera
with the camera coordinate system is pC, �q, � “ p~b1,~b2,~b3q and projection
matrixP into image coordinates

“
u v

‰J, w.r.t. an image coordinate system
po,~b1,~b2q, Equation 8.16. See paragraph § 1 to recall that the columns of P
can be writen as

P “

”
K R | ´ K R ~C�

ı
“

”
~d1⌫ ~d2⌫ ~d3⌫ ´~C⌫

ı
(11.42)
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and therefore we get the columns

h1 “ p1 “ ~d1⌫ (11.43)

h2 “ p2 “ ~d2⌫ (11.44)

h3 “ p4 “ ´~C⌫ (11.45)

of the homography Hmapping � to ⇡ as defined in Equation 8.17.
Now imagine that we are observing a square with 4 corner points X1,

X2, X3 and X4 in the plane � and we construct the coordinate system in �
by assigning coordinates to the corners as

~X1� “
“

0 0 0
‰

(11.46)
~d1� “ ~X2� “

“
1 0 0

‰
(11.47)

~d2� “ ~X3� “
“

0 1 0
‰

(11.48)
~X4� “

“
1 1 0

‰
(11.49)

We see that we get two constraints on ~d1�, ~d2�

~dJ
1�
~d2� “ 0 (11.50)

~dJ
1�
~d1� ´ ~dJ

2�
~d2� “ 0 (11.51)

which lead to

~dJ
1⌫ K

´J K´1 ~d2⌫ “ 0 (11.52)
~dJ

1� K
´J K´1 ~d1� ´ ~dJ

2⌫ K
´J K´1 ~d2⌫ “ 0 (11.53)

by using ~di⌫ “ K R ~di� for i “ 1, 2, and RJ R “ I.
These are two linear equations on ! and hence also, see § 1, on ⌦

~dJ
1⌫ ⌦
~d2⌫ “ 0 (11.54)

~dJ
1⌫ ⌦
~d1⌫ ´ ~dJ

2⌫ ⌦
~d2⌫ “ 0 (11.55)
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on ! in terms of estimated � H

hJ
1 ⌦ h2 “ 0 (11.56)

hJ
1 ⌦ h1 ´ hJ

2 ⌦ h2 “ 0 (11.57)

One square provides two equations and therefore three squares in two
planes in a general position su�ce to calibrate full K. Actually, such three
squares provide one more equations than necessary since ⌦ has only five
parameters. Hence, it is enough observe two squares and one rectangle
to get five constraints. Similarly, one square and one rectangle in a plane
then su�ce to calibrate Kwhen pixels are square.

Notice also that we have never used the special choice of coordinates of
~X�. Indeed, point X4 could be anywhere provided that we know how to
assign it coordinates in pO, ~d1, ~d2q.

To calibrate the camera, we first assign coordinates to the corners of the
square as above, then find the homography H from the plane to the image

�i ~xi� “ H ~Xi� (11.58)

for ↵i “ 1, . . . , 4 and finally use columns of H the find ⌦.
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