T Pajdla. Elements of Geometry for Computer Vision and Graphics 2020-4-13 (pajdla@cvut.cz)

9.3.4 Note on homographies that are rotations

First notice that homogeneous coordinats of points and lines constructed
as combinations of joins and meets indeed behave under a homography as
homogeneous coordinates constructed from affine coordinates of points.

Secondly, when the homography is a rotation and homogeneous coor-
dinates are unit vecors, all A’s become equal to one, the determinant of His
oneand H™ " = H. Therefore, all homogeneous coordinates in the previous
formulas become related just by H.

9.4 Vanishing points

When modeling perspective projection in the affine space with affine pro-
jection planes, we meet somewhat unpleasant situations. For instance,
imagine a projection of two parallel lines K, L, which are in a plane 7 in
the space into the projection plane 7 through the center C, Figure[9.10]
The lines K, L project to image lines k,[. As we go with two points X, Y
along the lines k,/ away from the projection plane, their images x, y get
closer and closer to the point v in the image but they do not reach point v.
We shall call this point of convergence of lines K, L the vanishing poin

9.5 Vanishing line and horizon

If we take all sets of parallel lines in 7, each set with a different direction,
then all the points of convergence in the image will fill a complete line /.
The line / is called the vanishing line or the horizowhen 7 is the ground
plane.
Now, imagine that we project all points from 7 to 7 using the affine
geometrical projection model. Then, no point from 7 will project to h.

7UbéZnik in Czech.
8Horizont in Czech
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Figure 9.10: Vanishing point v is the point towards projections x an y tend
as X and Y move away from 7t but which they never reach.
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Figure 9.11: Vanishing line (horizon) / is the line of vanishing points.
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Similarly, when projecting in the opposite direction, i.e. 7 to 7, line / has
no image, i.e. it does not project anywhere to 7.

When using the affine geometrical projection model with the real pro-
jective plane to model the perspective projection (which is equivalent to
the algebraic model in IR®), all points of the projective plane 7 (obtained
as the projective completion of the affine plane 7) will have exactly one
image in the projective plane 7 (obtained as the projective completion
of the affine plane 1) and vice versa. This total symmetry is useful and
beautiful.
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10 Projective space

10.1 Motivation — the union of ideal points of all
affine planes

Figure a) shows a perspective image of three sets of parallel lines
generated by sides of a cube in the three-dimensional real affine space.
The images of the three sets of parallel lines converge to vanishing points
V1, V2 and V3. The cube has six faces. Each face generates two pairs
of parallel lines and hence two vanishing points. Each face generates an
affine plane which can be extended into a projective plane by adding the
line of ideal points of that plane. The projection of the three ideal lines are
vanishing lines l1p = V1 v Vp, b3 = Vo v V3 and I3 = V3 v V1. Imagine
now all possible affine planes of the three-dimensional affine space and
their corresponding ideal points. Let us take the union V of the sets of
ideal points of all such planes. There is exactly one ideal point for every
set of parallel lines in V, i.e. there is a one-to-one correspondence between
elements of V' (ideal points) and directions in the three-dimensional affine
space. Notice also that every plane 7 generates one ideal line I, of its
ideal points and that all other planes parallel with 7t generate the same I,
Figure[10.1}

It suggests itself to extend the three-dimensional affine space by adding
the set V to it, analogically to how we have extended the affine plane. In
this new space, all parallel lines will intersect. We will call this space the
three-dimensional real projective space and denote it IP>. Let us develop an
algebraic model of IP%. It is practical to require this model to encompass
the model of the real projective plane. The real projective plane is modeled
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Figure 10.1: (a) A perspective image of a cube generates three vanishing / u

v t
points V1, V5 and V3 and hence also three vanishing lines [y, . _ g‘«L aus oqﬂ W\
I3 and I31. (b) Every plane adds one line of ideal points to the ?ﬁ\"’\x‘g = 1D SF

three-dimensional affine space. Every ideal point corresponds a X = ¥ e
to one direction, i.e. to a set of parallel lines. Each ideal line ‘? ) X = o ;" % 8 % 0 é’j b )&3
z

corresponds to a set of parallel planes. Nl
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algebraically by subspaces of R®. Let us observe that subspaces of R* will
be a convenient algebraic model of IP2.
We start with the three-dimensional real affine space A% and fix a co-

ordinate system (O, 6) with 6 = (d_i,d_;, d_;) An affine plane 7 is a set of
points of A3 represented in (O, §) by the set of vectors

= {[x,y,z]T lax+by+cz+d=0,a,b,c,deR, P+ 4P 0} (10.1)
We see that the point of 7 represented by vector [x,y,z]" can also be
represented by one-dimensional subspace {A [x,y,2z,1]"| A € R} of R* and

hence 7t can be seen as the set

T = {{A[x, y,z,l]T| AeR}[a,b,c,d][x Y,z 1]T =0,a,b,c,deR, a>+b*+c* # 0}
(10.2)
of one-dimensional subspaces of R*.

Notice that we did not require A # 0 in the above definition. This is
because we establish the correspondence between a vector [x, y,z] and the
corresponding complete one-dimensional subspace {A [x,y,z,1]T,A € R}
of R* and since every linear space contains zero vector, we admit zero A.

Every [x,y,z]" € R represents in (O, ) a point of A3 and hence the
subset

A’ ={{A[x,v,21]"|AeR}|x,y,ze R} (10.3)

of one-dimensional subspaces of R* represents AS.
We observe that we have not used all one-dimensional subspaces of R*
to represent A3. The subset

Tl = {{A [x,y,z,O]TM eR}|xy,zeRR, X%+ yz + 22 # 0} (10.4)

of one-dimensional subspaces of R* is in one-to-one correspondence with
all non-zero vectors of R, i.e. in one-to-one correspondence with the set
of directions in A3. This is the set of ideal points which we add to A3 to
get the three-dimensional real projective space

P> = {{A[x,y,z,w]"|A e R} |x,y,z,weR, x> + y* + 2% + w* # 0} (10.5)
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which is the set of all one-dimensional subspaces of R*. Notice that

§1 Points Every non-zero vector of R* generates a one-dimensional
subspace and thus represents a point of IP>. The zero vector [0,0,0,0]"
does not represent any point.

§2 Planes Affine planes mps, Equation are in one-to-one corre-
spondence to the subset

nps = {{A[a,bcd]"|AeR}|abcdeR, a*+b* +c* #0}  (10.6)

of the set of one-dimensional subspaces of R*. There is only one one-
dimensional subspace of R*, {1[0,0,0,1]"| A € R} missing in 1ps. It is
exactly the one-dimensional subspace corresponding to the set 7, of ideal
points of P3

Weorts ien ?fb

) ({5 2]
Y2 Y3 2,
7‘!} ‘117 %}
XA 24

)

-~
Y b %

\
—_
o = {{A [x, 1,2, w]T| AeR}x,y,z,weR, 9{2—1—]/2—1—22 #0,[0,0,0,1][x,y,z, w]T =0} B ‘x'cf

(10.7)
We can take another view upon planes and observe that affine planes are
in one-to-one correspondence with the three-dimensional subspaces of
R*. The set 7., also corresponds to a three-dimensional subspace of R*.
Hence 7, can be considered another plane, the ideal plane of P3.
The set of planes of IP? can be hence represented by the set of one-
dimensional subspaces of R*

nps = {{A[a,b,c,d]"|A e R} |a,b,c,de R, a® + b* + 2 +d> #0} (10.8)

but can also be viewed as the set of three-dimensional subspaces of R*.
We see that there is a duality between points and planes of IP°. They both
are represented by one-dimensional subspaces of R* and we see that point

169

Wors) @ P?

~_ =0

.-"(}T#;— )L$

24 el o£<¢"§>
e
\/M’?} :/l

AD Msp

m

of ¢



T Pajdla. Elements of Geometry for Computer Vision and Graphics 2020-4-13 (pajdla@cvut.cz)

X represented by vector X = [x,y,x, w]T is incident to plane 7 represented

by vector 7 = [a,b,c,d]", i.e. X o T, when

g N R

]ax+by+cz+dw0 (10.9)

A X=[a b c d][

§3 Lines Lines in IP? are represented by two-dimensional subspaces of
R*. Unlike in IP?, lines are not dual to points.

Lirty j% e o s kind o} W/woﬂs :
e >§( }( 6)2 . y%
N
N /@ N A = ¢
K"’VWSM"\“"* \ Ioanso ?E = &D c“/fstraw_s ()(f I’K‘*

PRSI Q’%W‘ = <% '¢> AYA
Thodkn womdiedy (L) Cﬂs W) 20 ¢<W>:x<3v 2o
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11 Camera| autoTcallbratlon

Camera auto-calibration is a process when the parameters of image forma- 5 )9’ y/L

tion are determined from properties of the observed scene or knowledge ¢
of camera motions. We will study camera auto-calibration methods and g 5 0

tasks related to metrology in images. We have seen in Chapterthat
to measure the angle between projection rays we needed only matrix K. =,
Actually, it is enough to know matrl /

spoikie g om0 e 1 s 87T 7

to measure the angle between the rays corresponding to image points X1,
)E)zﬁ as ol —)

@ olon BE G e

cos Z(x1,X3) = =
| R=25 ][R~ T | X w2 0
\/ 1 Py f .- o\/—"bvaM/nM-OE- l“ﬂq‘;

Knowing w is however (almost) equivalent to knowing K since K can be

recovered from w up to two signs as follows. V\ . OV-\/LW ar_/gn"'\**(_ Lo s ( S . \

— T —
1 Recovering K from w Let us give a procedure for recovering K from X,
§ /ering giveap 8 Lo ol = ,, ¢ JLO v):_ﬁﬁf\y;

. Assuming
t ki ki klg} 13, Lol l/f)%/n ”{%d“n

’\)"90\3 —> K = [0 ko ko (11.2) _
0 0 1

In [15], w is called the image of the absolute conic.
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we get - \ -1
1 1 —kio  kipkss—kizkn K
kin kik ki1 ka2 mi1 Mip M3
K1=|0 =10 L ko =10 mzz m23 C—\/M
0 . kao kao 0
0. O,
(11.3)
for some real my1, m1p, my3, my and my3. Equivalently, we get
1 —mip nyp Ma3 —1y3 Moo
m my1mo2 My Moo M3
K=]0 L —In v (11.4)
22 ma2
0 0 1

Introducing the following notation

w11 W12 @13
w=K Tk = w12 W2 @3 (11.5)
w13 W23 @33

yields
2
w11 W12 @13 miq mi1 M2 My mi3
2 2
w12 W W23 | = [ MM mi, + my, M2 M3 + Mo M3
2 2
W13 W3 W33 Mi1iM3 Mg M3 + My Mp3 My, + My, + 1

(11.6)

\\

Lo e
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which can be solved for K~! up to the sign of the rows of K™! as follows.  Frowe €I 1o &
Equation provides equations ~

/ -~ = N Co \- . f_w
w11 = mfl my = 81 /@11 : a\m‘i\\r\tf 5;)/ W’Y"& ‘”ZB S
= .
w12 = M1 M2 Mz = w12/(s1 Vi) = s1 w12/ Von (1) o @D
w13 = M1 M3 miz = wiz/(s1 Vo) = s1w1s/ Von ‘ w2 (0 | =
Mz = 52 4/ W22 — mfz =52 4/W22 — wfz/wn

(e
my3 = s (w23 — w12 w13/w11)/ A/ W22 — wiz/“)ﬂ

I s

2 2
W = My, + M5,

b

W23 = M1 M3 + Moo M23

2 2
= 52 (w11 W23 — W12 W13)/ \/wllwzz — W11 W,

which can be solved for m;; with s; = £1and s; = +1. Hence

51 y/on s1 w12/ /o1 51 w13/ /011

K = 0 52 AJwn — wl,/on sy (w3 — w2 wiz/w11)/
—
1

2
w2 — 6012/ w11

~ Y —

0 0

1s never zero for a real camera since my; = " # 0.
> 0
"\
k2
\/“)22 — wh,/on = \/mi —mi, = k% T2 1;2 = k111k22 Y k5, — k3, #0 /K-:
11 1122
“ (11.8)
since |kip| is much smaller than |ky;| for all real cameras. i 0 \<\ 2 L \(( 11
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11.1 Constraints on w

Matrix w is a 3 x 3 symmetric matrix and by this it has only six independent
elements w11, w12, w13, W22, w23 and wsz3. Let us next investigate additional
constratints on w, which follow from different choices of K.

§1 Constraints on w for a general K Even a general K yields a con-
straint on w. Equation relates the six parameters of w to only five
parameters mq1, mip, M3, My and mp3 and hence the six parameters of w

can’t be independent. Indeed, let us see that the following identity holds
true
W2 w2 W2 W2 W2 w2 W2 W2
2 13 Y12 12 13 2 13 Y12 12 13
- — (wp — 2 — B )24 -2 — B
(@33 2 (w22 wn) (w33 . ) ) (w2 wu) (w33 . )
2 2
my1113 )~ (Mq17112
= ((m12m13 + Mypiins)? — (i zs) i )
my S\ .
2
— (2 + m%, — —(m“mn)z)(m2 oy 41— () 1) A
12 2 2 13 23 -
11 1
(77111W113)2(771117”V112)2 (mnmlz)z (7711177113)2
- 4 n (m3, +m3, — - )(mis + My + 1 — — 1)
my, mi, my
2

= ((mlzmls + mzzmza)2 - (m12m13)2 - (m22m23)2) —4 (7111277713)2(7712277123)2

= (2 (miama3)(mapmaz))? — 4 (mipmaz)?* (manmys)?

-0 (11.9)
Since w11 # 0, we get the following equivalent identity T

W} w3 — @l @, — (Wnwe — wf,) (Enws — ©j; — o))’

(

— 40} 0}, (wnwn — wh,) (w1103 — @1, —w11) =0 (11.10)
which is a polynomial equation of degree eight in elements of w.
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We shall see akes sense to introduce a new matrix
’ 1 w2 el _ W
Lo o op wom enm | U
Q= (012 022 03| =3, oy on (11.11)
013 023 033 @13 @3 W33

@11 @11 w11

unknowns, and use Equation[11.10|to get the
he following quadratic equation

contains only fi
ifive w11 from Q by solv

a» a)%l + a1 w11 = (11.12)

with

2 2 4 2 2 2 2. 2
—20227033013° + 0127033° + 20237022 013° N2 02370127033

2 4 2.2 2 2
+022° 013" + 022°033° — 2022 0337012

a = 2 01320122 022 + 2 0232022 -2 0222 033 — 2 0124 o0 (11.14)
2 2.2 2.2
+4 022 033012 — 2023°012” + 20227013
= —20» 0122 + 0222 + 0124 (11.15)

§2 Con§traints on w for K from square pixels Cameraq have often g Ve
square pixels, i.e. [|b1| = |b2] = 1 and Z(b1,b2) = m/2, whiich implies, P
Equations a simplified

-

J |
ki1 @ ki3 a
K=| 0Nk knp (11.16)
0O 0 1
This gives also simgler [ KT|Q'

I
»

1 0 ki3

1
w=—1 0 1 —ko3 (11.17) \<“ w — K
kll ki3 —kos k%l + k%S + k%3
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We see that we get the following three identities

wpp = 0 (11.18)
wp—wyg = 0 (11.19) \oh/u/?r\“t\\cg &)vx U F‘J’O'QS
Wiy + 03y — wnwss + @y = 0 (11.20) e 0O

79>

We also get simpler

10 10 ki3 o{i reol/
@ 0 1 0p|=kw=| 0 1 —k3 (11.21)
013 023 033 —kiz  —ko3 k%l + k%?) + k%3 "ngg\ -)/L,( fw
and use Equation11.21to get

2 v > 2 eou o0
ki; = 033 — 075 — 033 (11.22)

kiz = —o13 (11.23)
k23 = —023 (11.24)
11.2 Camera calibration from angles between o = sz% s $)
projection rays / |

We will now show how to calibrate a camera by finding the matrix
w = K TKL

In general, matrix @ is constrained by knowing angles contained be-
tween pairs of projection rays. Consider two projection rays with direc-
tion vectors ¥}, X. Then the an etween them is related to w and Q

by OZX‘M W
M J?Iﬁ w fzﬁ f;l—ﬁ Qx2p A VN &
cos Z(x1,%2) = — —
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Squaring the above and clearing the mators gi CoO < ( )( ) > L2

S 2o, (703,
/5

B -
which is a second order equation in elements of Q. ind Q, which has five
independent parameters for a general K, we need to baable to establish
five pairs of rays with known angles and solve a system ofjve quadratic

equations|11.26/above.

§1 Camera with square pixels A simpler situation arises when
camera has square pixels. Then, we can use constraints from[§ 2to recover
@ and K from three pairs of rays containing known angles. That amounts
to solving three second order equationsin 013, 023, 033.

\
However, this is actually exactly the same problem as we have already 1.7— Rrern g ﬂ B FaT\g
solved in Section(7.3} Flgure shows animage plane 7 with a coordinate ﬁ l% 2
°

system (o0,0’) with ¢’ = (bl,bz,b ) derived from the image coordinate
system (o0, ). Having square pixels, vectors by, by can be complemented
with 5§ to form an orthogonal coordinates system (O = 0,0’). Next, w M (au.;a/
we choose the global orthonormal coordinate system, (O = 0,0), 6 =
(dy, d», ds), such that /("WW( dlﬂ’l ug
- b > b 5 !
b=l b= and &= 2

(G T Abeak S”(WV‘
and hence CO\AUNA \{y(),u/e.g

Bl 0 0

s=1 0 |l 0 | % (11.28) \l/ ‘(\A ‘\)
0 0 b M A ¢ erS \
We know angles /(¥),%2), £ (%2, %3) and £ (¥3,%;). We also know image M

. - 3 - 7 - 54
points 11, = Xi5/, e = Xos/, Uze = X3s» and thus we can compute
177
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distances d12 = H}_()z(y _X)lé’H/ d23 = HX)%/ —Xzy” and d31 = HX)35/ —X)lélﬂ.
Having that, we can find the pose 65/ = [cq, ¢, C3,]T of the camera center
Cin (O, 06’) by solving the absolute pose problem from Chapter We
will select a solution with c3 < 0 and, if necessary, use a fourth point in
7 to choose the right solution among them. To find K, we can form the
following equation

01 4 ,
(; =?[KR]—KRC5]

(11.29)

—_ o O O

since point o is represented by [0,0,1]" in g and by [0,0,0]" in 6. Coordi-
nate system (O, 0) is chosen such that R = I and Cs = Hl;lﬂ Cs' and thus

we get
O -
bi|| =
K1 [o] = —”—j}”cé, (11.30)

Now, let us consider matrix K as in Equation|11.16and use the intepretation
of elements of K from Chapter Equations|7.16 7.17] We can write

S

f
-— 0 k I _1
11| ; 13 . : 7 9 7 ki3 ( |
K=10 —=— &k anthus K = [V Y] 11.31
ol " 0 T — ks
o 0 1 0 0 1
and use it in Equation(11.30|to get
k13 a
kf23 =|c (11.32)
c3
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—C3 0
K= 0 —c3 o (11.33)

and thus

0 0 1

11.3 Camera calibration from vanishing points

Let us first make an interesting observation about parallel lines in spade
an its corresponding vanishing point in an image. Let us consider a pair
of parallel lines K, L in space as shown in Figurea). There is an gftfine
plane ¢ containing the lines. The lines K, L are projected to image plane 7t
into lines k, [, respectively.

Now, first extend affine plane o to a projective plane X using thé camera
center C. Then, define a coordinate system (C, ) with orthongfmal basis

o= (d_;, d_;, d_;) such that vectors d_;, d_; span affine plane o.
Let 125, ig be homogeneous coordinates of lines K, L w.pA. 6.

N
wWs

<
P%
i=7]

are homogeneous coordinates of the 1nterse fon of lines K, L in X.
Next, extend the affine plane 7 to a projéctive plane IT using the camera
center C with the (camera) coordinat

Let 1?5, l_;; be homogeneous coordihates of lines k, l w.r.t. E Then

(
77ﬁ = kg X lﬁ (11.35)

are homogeneous coordinates of the intersection of lines k, [ in I1.
Now, consider Equationfor planes X and I'l. Since 6 is orthonormal,
we have K’ = I and thus that there is a homoghraphy

H=KR (11.36)
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which maps plane L to plane Il. Matrices K and R of the camera are here
w.r.t. the world coordinate system (C, ).
We see that there is a real A such that there holds

/\’(75 = KR s (11.37)

true.

§1 Pairs of “orthogonal” vanishing points and camera with square
pixels Let us have two pairs of parallel lines in space, Figure b),
such that they are also orthogonal, i.e. let K; be parallel with L; and K; be
parallel with L, and at the same time let K; be orthogonal to K> and L;
be orthogonal to L,. This, for instance, happens when lines Ky, L1, Ky, L»
form a rectangle but they also may be arranged in the three-dimensional
space as non-intersecting.

Let lines kq, 11, ks, I» be the pr0]ect10ns of K1, L1, Kz, Ly, respectively, rep-
resented by the corresponding vectors klﬁ, llﬁ,kzﬁ,lzﬁ in the camera coor-
dinates system with (in general non-orthogonal) basis . Lines ki and [;,
resp. kp and I, generate vanishing points

?3)1’5 = I?lﬁ—xllﬁ—

52ﬁ = Kop X inp
The perpendicularity of W1 to imil) the camera orthogonal basis 9,
modeled by

(11.38)

A |'v\ "D /‘7 _— v/ ey
Lo = (L (1139 — G R N
(11.40) — ¢ R = g

(11.41)

>T =2
W5 Was =0
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which is a linear homogeneous equation in @
pixels, we get, §2,

further square

T - _
vlﬁa)vzﬂ = 0 2
=T - _
vlﬁszﬁ =0
013 U21
[v11 vz 013 ] 03| [v2| = 0

013 023 033 | | 023 |
—
013 /Q
[023 U11 + 021013 V23012 + V22013 V23 013] 023 = —(v21 711 + v22012)

[ 033 |

Now, we need only 3 pairs of perpendicular vanishing points, e.g. to
observe 3 rectangles not all in one plane to compute 013, 023, 033 and then

ki3 = —o13

ko3 = —o023

= o, R
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— Y5 — 5 &= Uk
R i
whichs.a linear homogeneous equation in w. Assuming further square P ;/ %i{ /
. 3 N1 R
b
@) do J] [ fA
7 K
& Ny /
"N g
llé oo
’ Yo
(c) € = [é1, €2, 65): §. =Ry,
V:[fl,ﬁ i] UI/—Ky(
KR
-
11.4 Camera calibration from images of squares P- [A \ -A r:\
Let us exploit the relationship between the coordinates of points X, which ~—
all lie in a plane ¢ and are measured in a coordinate system (O, dq,d;) - Z’
in o, Figure (8.2] E The points X are projected by a perspectlve camera %
with the camera coordinate system is (C, ), = (bl, b, b3) and projection
matrix P into image coordinates [u v ] T, w.r.t.animage coordinate system —l’ I’ -
(o, by, 52), Equation(8.16 See paragraph to recall that the columns of P . v Ry 93y
can be writen as
P—|kr| ~KRCs| = |[di o db —C.] (11.42)
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and therefore we get the columns

@=p1 = dy,

(11.43)
(11.44)
(11.45)

=
(11.46)
(11.47)
(11.48)
(11.49)

0 \/ «L (11.50)

0
0
1
1

We see that we get two constraints on d—ié, dos

ARET
R{ ( || dlydis — s = (11.51) C\ Lo - C XL
1\ N
which lead to ¢S N ?
e (11.52) —
dj k" Tx™ =
dls kT K Yy —dl kTR D, = 0 (11.53) = KR "L‘{

Co — L

=" LW = 9 K K s
(11.54) Ky ko ) ‘
s I Supk

by using d,v = KRdl(g fori = 1 2,andRTR=1.
These are two linear e

d ady, = 0
d ody, —d) od,
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on w in terms of estimated A H

h/ oh,
h/ @h; —h) Qh,

(11.56)
(11.57)

One square provides two equations and therefore three squares in two
planes in a general position suffice to calibrate full K. Actually, such three
squares provide one more equations than necessary since €2 has only five
parameters. Hence, it is enough observe two squares and one rectangle
to get five constraints. Similarly, one square and one rectangle in a plane
then suffice to calibrate K when pixels are square.

Notice also that we have never used the special choice of coordinates of
Xs. Indeed, point X4 could be anywhere provided that we know how to
assign it coordinates in (O, d_;, d;).

To calibrate the camera, we first assign coordinates to the corners of the
square as above, then find the homography H from the plane to the image

Ai¥ig = HX;p (11.58)

fora; =1,...,4 and finally use columns of H the find Q.
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