Below we apply β-reductions to the expression $2 S 1$ in the normal order which means that we reduce the left-most redex first. The location of a redex is determined by its beginning. The reduced redex is highlighted.

$$
\begin{aligned}
2 S 1 & \equiv(\lambda a \cdot \lambda b \cdot a(a b)) S 1 \\
& \equiv(\lambda b \cdot S(S b)) 1 \\
& \equiv S(S 1) \\
& \equiv(\lambda w \cdot \lambda x \cdot \lambda y \cdot x(w x y))(S 1) \\
& \equiv \lambda x \cdot \lambda y \cdot x((S 1) x y) \\
& \equiv \lambda x \cdot \lambda y \cdot x(((\lambda w \cdot \lambda a \cdot \lambda b \cdot a(w a b)) 1) x y) \\
& \equiv \lambda x \cdot \lambda y \cdot x((\lambda a \cdot \lambda b \cdot a(1 a b)) x y) \\
& \equiv \lambda x \cdot \lambda y \cdot x((\lambda b \cdot x(1 x b)) y) \\
& \equiv \lambda x \cdot \lambda y \cdot x(x(1 x y)) \\
& \equiv \lambda x \cdot \lambda y \cdot x(x((\lambda a \cdot \lambda b \cdot a b) x y)) \\
& \equiv \lambda x \cdot \lambda y \cdot x(x((\lambda b \cdot x b) y)) \\
& \equiv \lambda x \cdot \lambda y \cdot x(x(x y)) \\
& \equiv 3
\end{aligned}
$$

