Lecture 9: Haskell Types

Viliam Lisy

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague

viliam.lisy©fel.cvut.cz

April, 2020

Viliam Lisy Functional Programming

What is a Type?

A type is a name for a collection of related values (e.g., basic,
composed, functions, etc.). For example, in Haskell the basic type

contains the two logical values:

Viliam Lisy Functional Programming 2/35

Applying a function to one or more arguments of the wrong type is
called a type error.

Prelude> 1 + False

error

1 is a number and False is a logical value, but + requires two
numbers.

Viliam Lisy Functional Programming 3/35

Errors prevented by types

@ Applying a function to the wrong number of arguments
@ Permuting the arguments of a function

e Forgetting the application of a (conversion) function

Viliam Lisy Functional Programming 4/35

Types in functional languages

Java types: A function defined to return a string may return

e a String

e null

@ an exception

e in addition to that, it can also return a " modified state of the
world” (e.g. it can print a line of text to the console)

e not return at all (e.g. run into an infinite loop)

Functional languages can be (and often are) completely rigorous
about types

o If it says it returns a String, it does that and only that
e No side effects!

Types in functional languages often more expressive

e They allow representing more complex properties of programs

Viliam Lisy Functional Programming 5/35

Static typing

o Types are checked without executing a function

e E.g., type error in an unreachable branch is still detected
o infinite stream can have a clear type

@ All type errors are found at compile time

+
+
+

safer: if it compiles, there is not type mismatch
faster: no need for type checks at run time
clearer?: can serve as documentation / specification
sometimes more verbose code

slower compilation

more complex compiler implementation

Viliam Lisy Functional Programming 6/35

Types in Haskell

If evaluating an expression e would produce a value of type t, then
e has type t, written

Every well-formed expression has a type automatically calculated at
compile time using a process called type inference.

In GHCi, the :type command calculates the type of an expression,
without evaluating it:

> :type not False
not False :: Bool

Viliam Lisy Functional Programming 7/35

Haskell has a number of basic types, including:

Bool logical values

Char single characters

String strings of characters

Int fixed-precision integers
Integer | arbitrary-precision integers
Float floating-point numbers

Viliam Lisy Functional Programming 8/35

Tuple types

A tuple is a sequence of values of possibly different types:

(False, 'a',True) :: (Bool,Char,Bool)
(False,True) :: (Bool,Bool)

The type of n-tuples whose i-th element has type ti is
(t1,t2,...,tn)

@ The type of a tuple encodes its size

@ The type of the components is unrestricted

Viliam Lisy Functional Programming 9/35

A list is a sequence of values of the same type:

[False,True,False] :: [Bool]
[Ia','bl,|c','d|] 5o [Char]

In general, for any type a
[a] is the type of lists with elements of type a

@ The type of a list says nothing about its length

@ The type of the elements can be arbitrary (not only basic)

Viliam Lisy Functional Programming 10/35

Function types

Types of functions are denoted using —>

add :: (Int,Int) -> Int
add (x,y) = xty

zeroto :: Int -> [Int]
zeroto n = [0..n]

@ The argument and result types are unrestricted

@ It is encouraged to write types above each function

Viliam Lisy Functional Programming 11/35

Curried functions

Functions with multiple arguments are also possible by returning
functions as results:

add :: (Int,Int) -> Int
add (x,y) = x+y

add' :: Int -> (Int -> Int)
add' x y = xty

add and add’ produce the same final result, but add take
arguments in a different form

Viliam Lisy Functional Programming 12/35

Curried functions

It transparently works for multiple arguments

mult :: Int -> (Int -> (Int -> Int))
mult x y z = x*y*z

mult takes an integer x and returns a function mult x, which in turn
takes an integer y and returns a function mult x y, which finally takes
an integer z and returns the result x*y*z.

Viliam Lisy Functional Programming 13/35

Partial function application

Curried functions are more flexible than functions on tuples,
because useful functions can often be made by partially applying
a curried function.

add' 1 :: Int -> Int
take 5 :: [Int] -> [Int]

drop 5 :: [Int] -> [Int]

Viliam Lisy Functional Programming 14 /35

Currying Conventions

To avoid excess parentheses when using curried functions, two
conventions are adopted:

1) The arrow operator > associates to the right.
\Int -> Int -> Int -> Int\
means Int -> (Int -> (Int -> Int))

2) As a consequence, it is then natural for function application to
associate to the left.

means ((mult x) y) z

Unless tupling is explicitly required, all functions in Haskell are
normally defined in curried form.

Viliam Lisy Functional Programming 15/35

Polymorphic functions

A function is called polymorphic (of many forms) if its type
contains type variables.

length :: [a] —> Int‘

Type variables can be instantiated to different types in different
circumstances

> length [False,True] -- a = Bool
2
> length [1,2,3,4] -— a = Int
4

Viliam Lisy Functional Programming 16 /35

Polymorphic functions

Many of the functions defined in the standard prelude are
polymorphic.

fst :: (a,b) —> a

head :: [a] > a

take :: Int -> [a] -> [al
zip :: [al > [b] -> [(a,b)]

id :: a —> a

Viliam Lisy Functional Programming 17 /35

Overloaded functions

A polymorphic function is called overloaded if its type contains
one or more class constraints.

\(+) :: Num a => a -> a —> a\

For any numeric type a, (+) takes two values of type a and returns a
value of type a.

Constrained type variables can be instantiated to any types that
satisfy the constraints:

>1 + 2 == @ = I

3

> 1.0 + 2.0 -— a = Float

3.0

> 'a' + 'b' —— Char 1s not numeric
ERROR

Viliam Lisy Functional Programming 18/35

Type classes

Haskell has a number of type classes, including:
Num| Numeric types
Eq Equality types
Ord| Ordered types

For example, you can verify by calling :type:

(+) :: Numa=>a->a-> a
(==) :: Eq a => a -> a -> Bool
(<) :: 0rd a => a -> a —> Bool

Viliam Lisy Functional Programming 19/35

@ When defining a new function in Haskell, it is useful to begin
by writing down its type;

e Within a script, it is good practice to state the type of every
new function defined;

@ When stating the types of polymorphic functions that use
numbers, equality or orderings, take care to include the
necessary class constraints.

Viliam Lisy Functional Programming 20/35

Type declarations

In Haskell, a new name for an existing type can be defined using
a type declaration.

type String = [Char]

Type declarations make other types easier to read.

type Pos = (Int,Int)

left :: Pos —-> Pos
left (x,y) = (x-1,y)

Viliam Lisy Functional Programming 21/35

Parametrized types

Like function definitions, type declarations can also have
parameters. With

type Pair a = (a,a)

we can define:

mult :: Pair Int -> Int
mult (m,n) = m*n

copy :: a —> Pair a
copy x = (x,x)

Viliam Lisy Functional Programming 22/35

Type declarations

Type declarations can be nested:

type Pos = (Int,Int) V

type Trans = Pos -> Pos

However, they cannot be recursive: x

type Tree = (Int, [Tree])

Viliam Lisy Functional Programming 23/35

Data declarations

Define a completely new type by specifying its values

data Bool = False | True‘

Values False and True are the constructors for the type

Type and constructor names begin with a capital letter

Viliam Lisy Functional Programming 24 /35

Data declarations

Values of new types can be used in the same ways as those of built
in types. Given

‘data Answer = Yes | No | Unknown

we can define:

answers :: [Answer]
answers = [Yes,No,Unknown]

flip :: Answer —-> Answer
flip Yes = No
flip No = Yes

flip Unknown = Unknown

Viliam Lisy Functional Programming 25/35

Parametric constructors

The constructors in a data declaration can have parameters. Given

‘data Shape = Circle Float | Rect Float Float‘

we can define:

square :: Float -> Shape
square n = Rect n n

Circle and Rect can be viewed as functions that construct values
of type Shape

New composed data types can be decomposed by pattern
matching

area :: Shape -> Float
area (Circle r) = pi * r°2
area (Rect x y) = x * y

Viliam Lisy Functional Programming 26 /35

Parametric data declarations

One of the most common Haskell types

data Maybe a = Nothing | Just a

allows defining safe operations.

safediv :: Int -> Int -> Maybe Int
safediv _ O = Nothing
safediv m n = Just (m “div" n)

safehead :: [a] -> Maybe a

safehead [] = Nothing
safehead xs = Just (head xs)

Viliam Lisy Functional Programming 27/35

Recursive types

New types can be declared in terms of themselves. That is, types
can be recursive. (just not with type keyword)

‘data Nat = Zero | Succ Nat‘

A value of type Nat is either Zero, or Succ n wheren :: Nat.
Nat contains infinite sequence of values:

Zero
Succ Zero

‘Succ (Succ Zero)‘

Viliam Lisy Functional Programming 28/35

Recursive types

We can use pattern matching and recursion to translate from Int
to Nat and back

nat2int :: Nat -> Int
nat2int Zero =0
nat2int (Succ n) = 1 + nat2int n

int2nat :: Int -> Nat
int2nat O
int2nat n

Zero
Succ (int2nat (n-1))

Viliam Lisy Functional Programming 29/35

Recursive types

Two naturals can be added by converting them to integers, adding,
and then converting back:

add :: Nat -> Nat -> Nat
add m n = int2nat (nat2int m + nat2int n)

However, using recursion the function add can be defined without
the need for conversions:

add Zero n-=n
add (Succ m) n = Succ (add m n)

Viliam Lisy Functional Programming 30/35

Purely positional data declarations are impractical with a large
number of fields. Therefore, the fields can be named:

data Person = Person { firstName :: String,
lastName :: String,
age :: Int,

height :: Float,
phone :: String,
address :: String}

This allows to define records in arbitrary order

defaultPerson = Person {lastName="Smith",
firstName="John", ...

And access fields using automatically generated functions, e.g.,

firstName :: Person -> String

Viliam Lisy Functional Programming 31/35

Example: Arithmetic expressions

Recursive typed can represent tree structures, such as expressions
from numbers, plus, multiplication.

Add Expr Expr

data Expr = Val Int
|
| Mul Expr Expr

14-2*3

Add (val 1) (Mul (Val 2) (Val 3))

Viliam Lisy Functional Programming 32/35

Example: Arithmetic expressions

Using recursion, it is now easy to define functions that process
expressions. For example:

size :: Expr -> Int
size (Val n) =1
size (Add x y) = size x + size y
size (Mul x y) = size x + size y
eval :: Expr -> Int
eval (Val n) =n
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y

Viliam Lisy Functional Programming 33/35

Homework assignment 4

Viliam Lisy Functional Programming 34 /35

Everything has a type known in compile time
e basic values
e functions
e data structures

Types are key for data structures in Haskell

Algebraic types
compose complex types from simpler as products and unions

Types can be instances of classes

e polymorphic functions

Viliam Lisy Functional Programming 35/35

