
Lecture 9: Haskell Types

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.

Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

April, 2020

Viliam Lisý Functional Programming 1 / 35

What is a Type?

A type is a name for a collection of related values (e.g., basic,
composed, functions, etc.). For example, in Haskell the basic type

Bool

contains the two logical values:

True False

Viliam Lisý Functional Programming 2 / 35

Type errors

Applying a function to one or more arguments of the wrong type is
called a type error.

Prelude> 1 + False

... error ...

1 is a number and False is a logical value, but + requires two
numbers.

Viliam Lisý Functional Programming 3 / 35

Errors prevented by types

Applying a function to the wrong number of arguments

Permuting the arguments of a function

Forgetting the application of a (conversion) function

Viliam Lisý Functional Programming 4 / 35

Types in functional languages

Java types: A function defined to return a string may return

a String
null
an exception
in addition to that, it can also return a ”modified state of the
world” (e.g. it can print a line of text to the console)
not return at all (e.g. run into an infinite loop)

Functional languages can be (and often are) completely rigorous
about types

If it says it returns a String, it does that and only that
No side effects!

Types in functional languages often more expressive

They allow representing more complex properties of programs

Viliam Lisý Functional Programming 5 / 35

Static typing

Types are checked without executing a function

E.g., type error in an unreachable branch is still detected
infinite stream can have a clear type

All type errors are found at compile time

+ safer: if it compiles, there is not type mismatch
+ faster: no need for type checks at run time
+ clearer?: can serve as documentation / specification
– sometimes more verbose code
– slower compilation
– more complex compiler implementation

Viliam Lisý Functional Programming 6 / 35

Types in Haskell

If evaluating an expression e would produce a value of type t, then
e has type t, written

e :: t

Every well-formed expression has a type automatically calculated at
compile time using a process called type inference.

In GHCi, the :type command calculates the type of an expression,
without evaluating it:

> :type not False

not False :: Bool

Viliam Lisý Functional Programming 7 / 35

Basic types

Haskell has a number of basic types, including:

Bool logical values

Char single characters

String strings of characters

Int fixed-precision integers

Integer arbitrary-precision integers

Float floating-point numbers

Viliam Lisý Functional Programming 8 / 35

Tuple types

A tuple is a sequence of values of possibly different types:

(False,'a',True) :: (Bool,Char,Bool)

(False,True) :: (Bool,Bool)

The type of n-tuples whose i-th element has type ti is
(t1,t2,...,tn)

The type of a tuple encodes its size

The type of the components is unrestricted

Viliam Lisý Functional Programming 9 / 35

List types

A list is a sequence of values of the same type:

[False,True,False] :: [Bool]

['a','b','c','d'] :: [Char]

In general, for any type a

[a] is the type of lists with elements of type a

The type of a list says nothing about its length

The type of the elements can be arbitrary (not only basic)

Viliam Lisý Functional Programming 10 / 35

Function types

Types of functions are denoted using ->

add :: (Int,Int) -> Int

add (x,y) = x+y

zeroto :: Int -> [Int]

zeroto n = [0..n]

The argument and result types are unrestricted

It is encouraged to write types above each function

Viliam Lisý Functional Programming 11 / 35

Curried functions

Functions with multiple arguments are also possible by returning
functions as results:

add :: (Int,Int) -> Int

add (x,y) = x+y

add' :: Int -> (Int -> Int)

add' x y = x+y

add and add’ produce the same final result, but add take
arguments in a different form

Viliam Lisý Functional Programming 12 / 35

Curried functions

It transparently works for multiple arguments

mult :: Int -> (Int -> (Int -> Int))

mult x y z = x*y*z

mult takes an integer x and returns a function mult x, which in turn

takes an integer y and returns a function mult x y, which finally takes

an integer z and returns the result x*y*z.

Viliam Lisý Functional Programming 13 / 35

Partial function application

Curried functions are more flexible than functions on tuples,
because useful functions can often be made by partially applying
a curried function.

add' 1 :: Int -> Int

take 5 :: [Int] -> [Int]

drop 5 :: [Int] -> [Int]

Viliam Lisý Functional Programming 14 / 35

Currying Conventions

To avoid excess parentheses when using curried functions, two
conventions are adopted:

1) The arrow operator -> associates to the right.
Int -> Int -> Int -> Int

means Int -> (Int -> (Int -> Int))

2) As a consequence, it is then natural for function application to
associate to the left.

mult x y z means ((mult x) y) z

Unless tupling is explicitly required, all functions in Haskell are
normally defined in curried form.

Viliam Lisý Functional Programming 15 / 35

Polymorphic functions

A function is called polymorphic (of many forms) if its type
contains type variables.

length :: [a] -> Int

Type variables can be instantiated to different types in different
circumstances

> length [False,True] -- a = Bool

2

> length [1,2,3,4] -- a = Int

4

Viliam Lisý Functional Programming 16 / 35

Polymorphic functions

Many of the functions defined in the standard prelude are
polymorphic.

fst :: (a,b) -> a

head :: [a] -> a

take :: Int -> [a] -> [a]

zip :: [a] -> [b] -> [(a,b)]

id :: a -> a

Viliam Lisý Functional Programming 17 / 35

Overloaded functions

A polymorphic function is called overloaded if its type contains
one or more class constraints.

(+) :: Num a => a -> a -> a

For any numeric type a, (+) takes two values of type a and returns a
value of type a.

Constrained type variables can be instantiated to any types that
satisfy the constraints:

> 1 + 2 -- a = Int

3

> 1.0 + 2.0 -- a = Float

3.0

> 'a' + 'b' -- Char is not numeric

ERROR

Viliam Lisý Functional Programming 18 / 35

Type classes

Haskell has a number of type classes, including:
Num Numeric types

Eq Equality types

Ord Ordered types

For example, you can verify by calling :type:

(+) :: Num a => a -> a -> a

(==) :: Eq a => a -> a -> Bool

(<) :: Ord a => a -> a -> Bool

Viliam Lisý Functional Programming 19 / 35

Hints and tips

When defining a new function in Haskell, it is useful to begin
by writing down its type;

Within a script, it is good practice to state the type of every
new function defined;

When stating the types of polymorphic functions that use
numbers, equality or orderings, take care to include the
necessary class constraints.

Viliam Lisý Functional Programming 20 / 35

Type declarations

In Haskell, a new name for an existing type can be defined using
a type declaration.

type String = [Char]

Type declarations make other types easier to read.

type Pos = (Int,Int)

left :: Pos -> Pos

left (x,y) = (x-1,y)

Viliam Lisý Functional Programming 21 / 35

Parametrized types

Like function definitions, type declarations can also have
parameters. With

type Pair a = (a,a)

we can define:

mult :: Pair Int -> Int

mult (m,n) = m*n

copy :: a -> Pair a

copy x = (x,x)

Viliam Lisý Functional Programming 22 / 35

Type declarations

Type declarations can be nested:

type Pos = (Int,Int)

type Trans = Pos -> Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])

Viliam Lisý Functional Programming 23 / 35

Data declarations

Define a completely new type by specifying its values

data Bool = False | True

Values False and True are the constructors for the type

Type and constructor names begin with a capital letter

Viliam Lisý Functional Programming 24 / 35

Data declarations

Values of new types can be used in the same ways as those of built
in types. Given

data Answer = Yes | No | Unknown

we can define:

answers :: [Answer]

answers = [Yes,No,Unknown]

flip :: Answer -> Answer

flip Yes = No

flip No = Yes

flip Unknown = Unknown

Viliam Lisý Functional Programming 25 / 35

Parametric constructors

The constructors in a data declaration can have parameters. Given

data Shape = Circle Float | Rect Float Float

we can define:

square :: Float -> Shape

square n = Rect n n

Circle and Rect can be viewed as functions that construct values
of type Shape

New composed data types can be decomposed by pattern
matching

area :: Shape -> Float

area (Circle r) = pi * r^2

area (Rect x y) = x * y

Viliam Lisý Functional Programming 26 / 35

Parametric data declarations

One of the most common Haskell types

data Maybe a = Nothing | Just a

allows defining safe operations.

safediv :: Int -> Int -> Maybe Int

safediv _ 0 = Nothing

safediv m n = Just (m `div` n)

safehead :: [a] -> Maybe a

safehead [] = Nothing

safehead xs = Just (head xs)

Viliam Lisý Functional Programming 27 / 35

Recursive types

New types can be declared in terms of themselves. That is, types
can be recursive. (just not with type keyword)

data Nat = Zero | Succ Nat

A value of type Nat is either Zero, or Succ n where n :: Nat.
Nat contains infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

...

Viliam Lisý Functional Programming 28 / 35

Recursive types

We can use pattern matching and recursion to translate from Int

to Nat and back.

nat2int :: Nat -> Int

nat2int Zero = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int -> Nat

int2nat 0 = Zero

int2nat n = Succ (int2nat (n-1))

Viliam Lisý Functional Programming 29 / 35

Recursive types

Two naturals can be added by converting them to integers, adding,
and then converting back:

add :: Nat -> Nat -> Nat

add m n = int2nat (nat2int m + nat2int n)

However, using recursion the function add can be defined without
the need for conversions:

add Zero n = n

add (Succ m) n = Succ (add m n)

Viliam Lisý Functional Programming 30 / 35

Records

Purely positional data declarations are impractical with a large
number of fields. Therefore, the fields can be named:

data Person = Person { firstName :: String,

lastName :: String,

age :: Int,

height :: Float,

phone :: String,

address :: String}

This allows to define records in arbitrary order

defaultPerson = Person {lastName="Smith",

firstName="John",...

And access fields using automatically generated functions, e.g.,

firstName :: Person -> String

Viliam Lisý Functional Programming 31 / 35

Example: Arithmetic expressions

Recursive typed can represent tree structures, such as expressions
from numbers, plus, multiplication.

data Expr = Val Int

| Add Expr Expr

| Mul Expr Expr

1+2*3

Add (Val 1) (Mul (Val 2) (Val 3))

Viliam Lisý Functional Programming 32 / 35

Example: Arithmetic expressions

Using recursion, it is now easy to define functions that process
expressions. For example:

size :: Expr -> Int

size (Val n) = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y

eval :: Expr -> Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y

Viliam Lisý Functional Programming 33 / 35

Homework assignment 4

Viliam Lisý Functional Programming 34 / 35

Summary

Everything has a type known in compile time

basic values
functions
data structures

Types are key for data structures in Haskell

Algebraic types
compose complex types from simpler as products and unions

Types can be instances of classes

polymorphic functions

Viliam Lisý Functional Programming 35 / 35

