
Functional Programming
Lecture 9: Haskell Types

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science

FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz
1

2

What is a Type?

A type is a name for a collection of related values. For
example, in Haskell the basic type

TrueFalse

Bool

contains the two logical values:

3

Type Errors

Applying a function to one or more arguments of the
wrong type is called a type error.

> 1 + False

error ...

1 is a number and False is a logical value, but + requires two
numbers.

4

Types in Haskell

If evaluating an expression e would produce a
value of type t, then e has type t, written

e :: t

Every well formed expression has a type, which can be
automatically calculated at compile time using a
process called type inference.

Static typing

• All type errors are found at compile time

– safer: if it compiles, there is not type mismatch

– faster: no need for type checks at run time

• In GHCi, the :type command calculates the type of
an expression, without evaluating it:

5

> :type not False

not False :: Bool

6

Basic Types

Haskell has a number of basic types, including:

Bool - logical values

Char - single characters

Integer - arbitrary-precision integers

Float - floating-point numbers

String - strings of characters

Int - fixed-precision integers

List Types

A list is a sequence of values of the same type:

In general, for any type a

[a] is the type of lists with elements of type a

The type of a list says nothing about its length

The type of the elements can be arbitrary

7

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

Tuple Types

A tuple is a sequence of values of different types:

The type of n-tuples whose i-th element has type ti is

(t1,t2,…,tn)

The type of a tuple encodes its size

The type of the components is unrestricted

8

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

9

Function Types

not :: Bool → Bool

even :: Int → Bool

In general:

A function is a mapping from values of one type to
values of another type:

t1 → t2 is the type of functions that map values of
type t1 to values to type t2.

The arrow → is typed at the keyboard as ->

The argument and result types are unrestricted

It is encouraged to write types above each function

10

add :: (Int,Int) → Int

add (x,y) = x+y

zeroto :: Int → [Int]

zeroto n = [0..n]

Function Types

11

Functions with multiple arguments are also possible by
returning functions as results:

add’ :: Int → (Int → Int)

add’ x y = x+y

Curried Functions

add and add’ produce the same final result, but add
take arguments in a different form

add :: (Int,Int) → Int

add’ :: Int → (Int → Int)

Curried Functions

Transparently works for multiple arguments

12

mult :: Int → (Int → (Int → Int))

mult x y z = x*y*z

mult takes an integer x and returns a function mult x, which in turn takes an
integer y and returns a function mult x y, which finally takes an integer z and

returns the result x*y*z.

13

Partial function application

Curried functions are more flexible than functions on
tuples, because useful functions can often be made by
partially applying a curried function.

add’ 1 :: Int → Int

take 5 :: [Int] → [Int]

drop 5 :: [Int] → [Int]

Currying Conventions

To avoid excess parentheses when using curried
functions, two conventions are adopted:

• The arrow → associates to the right.

means Int→ (Int→ (Int→ Int))

• As a consequence, it is then natural for function
application to associate to the left.

means ((mult x) y) z

14

Int → Int → Int → Int

mult x y z

Polymorphic Functions

A function is called polymorphic (“of many
forms”) if its type contains type variables.

Type variables can be instantiated to different
types in different circumstances

15

length :: [a] → Int

> length [False,True]

2

> length [1,2,3,4]

4

a = Bool

a = Int

16

Many of the functions defined in the standard prelude
are polymorphic.

fst :: (a,b) → a

head :: [a] → a

take :: Int → [a] → [a]

zip :: [a] → [b] → [(a,b)]

id :: a → a

17

Overloaded Functions

A polymorphic function is called overloaded if its type
contains one or more class constraints.

(+) :: Num a  a -> a -> a

For any numeric type a, (+) takes two values of type a and returns a value of
type a.

Constrained type variables can be instantiated
to any types that satisfy the constraints:

18

> 1 + 2

3

> 1.0 + 2.0

3.0

> ’a’ + ’b’

ERROR

Char is not a numeric
type

a = Int

a = Float

19

Num - Numeric types

Eq - Equality types

Ord - Ordered types

Haskell has a number of type classes, including:

For example:

(+) :: Num a  a → a → a

(==) :: Eq a  a → a → Bool

(<) :: Ord a  a → a → Bool

20

Hints and Tips

• When defining a new function in Haskell, it is
useful to begin by writing down its type;

• Within a script, it is good practice to state the
type of every new function defined;

• When stating the types of polymorphic functions
that use numbers, equality or orderings, take
care to include the necessary class constraints.

21

Type Declarations

In Haskell, a new name for an existing type can be
defined using a type declaration.

type String = [Char]

String is a synonym for the type [Char].

Type declarations make other types easier to read.

type Pos = (Int,Int)

left :: Pos → Pos

left (x,y) = (x-1,y)

Parametrized Types

Like function definitions, type declarations can
also have parameters. With

we can define:

22

type Pair a = (a,a)

mult :: Pair Int → Int

mult (m,n) = m*n

copy :: a → Pair a

copy x = (x,x)

23

Type declarations can be nested:

type Pos = (Int,Int)

type Trans = Pos → Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])

Data Declarations

Define a completely new type by specifying its values

Values False and True are the constructors for the type

Type and constructor names begin with a capital letter

24

data Bool = False | True

25

answers :: [Answer]

answers = [Yes,No,Unknown]

flip :: Answer → Answer

flip Yes = No

flip No = Yes

flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways as
those of built in types. Given

Parametric Constructors

26

The constructors in a data declaration can also have
parameters. Given

data Shape = Circle Float

| Rect Float Float

square :: Float → Shape

square n = Rect n n

we can define:

Circle and Rect can be viewed as functions that
construct values of type Shape

27

New composed data types can still be decomposed by
pattern matching

area :: Shape → Float

area (Circle r) = pi * r^2

area (Rect x y) = x * y

Parametric Data Declarations

One of the most common Haskell types

28

data Maybe a = Nothing | Just a

safediv :: Int → Int → Maybe Int

safediv _ 0 = Nothing

safediv m n = Just (m `div` n)

safehead :: [a] → Maybe a

safehead [] = Nothing

safehead xs = Just (head xs)

allows defining safe operations.

Recursive Types

New types can be declared in terms of themselves.
That is, types can be recursive. (just not with type keyword)

A value of type Nat is either Zero, or Succ n where n ::
Nat. Nat contains infinite sequence of values:

29

data Nat = Zero | Succ Nat

Zero

Succ Zero

Succ (Succ Zero)

30

We can use pattern matching and recursion to
translate from Int to Nat and back.

nat2int :: Nat → Int

nat2int Zero = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int → Nat

int2nat 0 = Zero

int2nat n = Succ (int2nat (n-1))

31

Two naturals can be added by converting them to
integers, adding, and then converting back:

However, using recursion the function add can be
defined without the need for conversions:

add :: Nat → Nat → Nat

add m n = int2nat (nat2int m + nat2int n)

add Zero n = n

add (Succ m) n = Succ (add m n)

32

Example: Arithmetic Expressions

Recursive typed can represent tree structures, such as
expressions from numbers, plus, multiplication.

data Expr = Val Int

| Add Expr Expr

| Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))

1 + 2 ∗ 3

33

Using recursion, it is now easy to define functions that
process expressions. For example:

size :: Expr → Int

size (Val n) = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y

eval :: Expr → Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y

Homework assignment 4

Evaluating a log of card game Sedma

– we provide the basic types to use

– just implementing the function (no I/O)

– will need implementing instances

• next lecture

• use deriving for now

– deadline is two weeks form your lab

34

Summary

• Everything has a type known in compile time

– basic values

– functions

– data structures

• Types are key for data structures in Haskell

• Types can be instances of classes

– polymorphic functions

35

