Lecture 8: Introduction to Haskell

Viliam Lisy

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

April, 2020

Viliam Lisy Functional Programming

Acknowledgement

Slides for next few lectures based on slides for the book:

Viliam Lisy Functional Programming 2/35

Why Haskell?

Purely functional language
e promotes understanding the paradigm

Rich syntactic sugar (contrast to Lisp)
Rich system of types (contrast to Lisp)
Most popular purely functional language

Fast prototyping of complex systems

Active user community

o Haskell platform, packages, search
e https://haskell.org/

Viliam Lisy Functional Programming 3/35

https://haskell.org/

Main properties

@ Purely functional language

o necessary exceptions (10) wrapped as monads
@ Statically typed

e types are derived and checked at compile time

e types can be automatically inferred

e have a crucial role in controlling flow of the program
o Lazy

e function argument evaluated only when needed
o almost everything is initially a thunk

Viliam Lisy Functional Programming 4/35

Haskell standard

Haskell is a standardization of ideas in over a dozen of pre-existing
(often proprietary) lazy functional languages

@ Haskell 1.0 to 1.4
e standardization efforts since 1990

@ Haskell 98

o first stable standard

@ Haskell 2010

e minor changes based on best practices in existing
implementations
@ integration with other programming languages
@ hierarchical module names
@ pattern guards

Viliam Lisy Functional Programming 5/35

Haskell implementations

Glasgow Haskell Compiler (GHC)
@ the leading implementation of Haskell
@ comprises a compiler and interpreter
@ written in Haskell

@ is freely available from: www.haskell.org/platform

Haskell Users Gofer System (Hugs)
@ small and portable interpreter
@ Windows version with simple GUI called WinHugs

@ no longer in development

Viliam Lisy Functional Programming 6/35

www.haskell.org/platform

Starting GHCi

The interpreter can be started from the terminal command prompt
$ by simply typing ghci:

$ ghci
GHCi, version X: http://www.haskell.org/ghc/ :7 for help

Prelude>

The GHCi prompt ">" means that the interpreter is now ready to
evaluate an expression.

Viliam Lisy Functional Programming 7/35

Basic interaction

@ REPL interaction as in scheme

@ Common infix syntax

@ Space denotes function application
°

Infix operators have priorities

e function application is first
o otherwise use brackets

Left associativity for functions (as in lambda calculus)

Up arrow recalls the last entered expression

Viliam Lisy Functional Programming 8/35

The basic data structure

[1,2,3,4,5]
[1..10]
[1,3..]

Build by "cons” operator : , ended by the empty list []

All elements must be of the same type

Includes all basic functions
o take, length, reverse, ++, head, tail

In addition, you can index by !!

Viliam Lisy Functional Programming 9/35

Special commands

Commands to the interpreter start with ":
:? for help
:load <module>

:reload

:quit

Can be abbreviated to the first letter

Viliam Lisy Functional Programming 10/35

Haskell scripts

New functions are defined within a script
@ Text file comprising a sequence of definitions

@ Usually have a .hs suffix
o Can by loaded by

$ ghci <filename>
> :load <filename>

Viliam Lisy Functional Programming 11/35

Defining functions

=
[

=1
n * factl (n-1)

factl
factl n

fact2 n = product [1..n]

1
power n k = n * power n (k-1)

power n O

Viliam Lisy Functional Programming 12/35

Comments

—-— Comment until the end of the line

e
A long comment
over multiple
lines.

-}

Viliam Lisy Functional Programming 13/35

Naming requirements and conventions

Function and argument names must begin with a lower-case
letter. For example:

By convention, list arguments usually have an s suffix on their
name. For example:

[as]

Names with only special symbols are infix operators:

7z

Viliam Lisy Functional Programming 14 /35

Infix operators

Can be defined in prefix notations:
X +/+y = 2%x + y

A prefix function turns infix by ¢ ¢ and infix turns prefix by ()
‘mod‘, ‘elem‘, (+), (+/+)

Precedence/asociativity of infix operators set by

infixr <0-9> <name>
infixl <0-9> <name>
infix <0-9> <name>

Information about associativity, precedence, and much else
> :info
Interesting infix operators
$ unary -

Viliam Lisy Functional Programming 15/35

Pattern matching

The first LHS that matches the function call is executed

not False True

not True = False

not maps False to True, and True to False

Viliam Lisy Functional Programming 16 /35

Pattern matching

Functions can often be defined in many different ways using
pattern matching.

True && True True
True && False = False
False && True = False
False && False = False

The underscore symbol _ is a wildcard pattern that matches any
argument value.

True && True True

&&

False
A more efficient definition does not evaluate the second argument:

True && Db
False && _

b
False

Viliam Lisy Functional Programming 17 /35

Pattern matching

The order of the definitions matters

&& = False

True && True = True

Patterns may not repeat variables, due to efficiency. The
following gives an error:

b & b
&&

b
False

Viliam Lisy Functional Programming 18/35

List patterns

Functions on lists can be defined using x:xs patterns

head (x:_) = x
tail (_:xs) = xs

We will see later it works similarly for other composite data types.
x:xs patterns only match non-empty lists:

> head []
*** Exception: empty list

x:xs patterns must be parenthesised, because application has
priority over (:). The following definition gives an error:

head x:_ = x

Viliam Lisy Functional Programming 19/35

Tuples are fixed length sequences of elements of arbitrary types

(1,2)
(Ial,lbl)
(1,2,'c',False)

Their element can be accessed by pattern matching

first (x,_,.) = x
second (_,x,.) =y

third (_,_,x) X

Pattern matching can be nested

f (1, (x:xs), 'a', (2,y)) = x:y:xs

Viliam Lisy Functional Programming 20/35

As pattern

Sometimes it is useful to repeat larger parts of patterns form RHS
on the LHS

copyfirst x:xs = x:X:XS
A part of the pattern can be assigned a name

copyfirst s@(x:xs) = x:s

Viliam Lisy Functional Programming 21/35

distl (x1,y1) (x2,y2) =
let dl = x1-x2
d2 = yl-y2

in sqrt(d1°2+d2°2)

dist2 (x1,y1) (x2,y2) = sqrt(d1~2+d272)
where dl = x1-x2
d2 = yl-y2

Viliam Lisy Functional Programming 22/35

The layout rule

The layout rule avoids the need for explicit syntax to indicate the
grouping of definitions.

a = b + ¢ where
b=1
c =2

means

a =b + ¢ where {b=1; c=2}

Viliam Lisy Functional Programming 23/35

The layout rule

Keywords (such as where, let, etc.) start a block:
@ The first word after the keyword defines the pivot column.
@ Lines exactly on the pivot define a new entry in the block.
@ Start a line after the pivot to continue the previous lines.

@ Start a line before the pivot to end the block.

Viliam Lisy Functional Programming 24 /35

Conditional expressions

abs n = if n >= 0 then n else -n
Conditional expressions can be nested:

signum n = if n < O then -1 else
if n == 0 then O else 1

The must always have an else branch.

Viliam Lisy Functional Programming 25/35

Guarded equations

As an alternative to conditionals, functions can also be defined
using guarded equations.

absn | n>0 =n
| otherwise = -n

Definitions with multiple conditions are then easier to read:

signum n | n < O = -1
I n ==

| otherwise 1

otherwise is defined in the prelude by otherwise = True

Viliam Lisy Functional Programming 26 /35

Set comprehensions

In mathematics, the comprehension notation can be used to
construct new sets from old sets.

{x*|xe{l...5}}

The set {1,4,9,16,25} of all numbers x? such that x is an
element of the set {1...5}.

Viliam Lisy Functional Programming 27/35

List comprehensions

In Haskell, a similar comprehension notation can be used to
construct new lists from old lists.

[x"2 | x <- [1..5]]
x <= [1..5] is called a generator.
Comprehensions can have multiple generators

> [(x,y) | x <= [1,2,3], y <~ [4,5]]
[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

Viliam Lisy Functional Programming 28/35

Generator order

Changing the order of the generators changes the order of the
elements in the final list:

> [(x,y) | y <= [4,5], x <~ [1,2,3]]
[(1,4),(2,4),(,4),(1,5),(2,5),(3,5)]
Multiple generators are like nested loops, with later generators as

more deeply nested loops whose variables change value more
frequently.

Viliam Lisy Functional Programming 29/35

Dependent generator

Later generators can depend on the variables that are introduced
by earlier generators.

[(x,y) | x <= [1..3], y <= [x..3]]

Using a dependant generator we can define the library function
that concatenates a list of lists:

concat xss = [x | xs <- xss, x <- xs]

Viliam Lisy Functional Programming 30/35

Infinite generator

Generators can be infinite (almost everything is lazy)

[x"2 | x <= [1..]]

The order then matters even more
x7y | x <= [1..1, y <= [1,2]]
VS.

xy | y <= [1,2], x <= [1..]]

Viliam Lisy Functional Programming 31/35

List comprehensions can use guards to restrict the values produced
by earlier generators.

[x | x <- [1..10], even x]

Using a guard we can define a function that maps a positive
integer to its list of factors:

factors n = [x | x <- [1..n], mod n x == 0]

Viliam Lisy Functional Programming 32/35

Example: primes

A prime's only factors are 1 and itself

prime n = factors n == [1,n]

List of all primes

[x | x <- [2..], prime x]

Viliam Lisy Functional Programming 33/35

Example: quicksort

gsort [] = []

gsort (x:xs) = gsort [a | a <- xs, a < x]
++ [x] ++
gsort [a | a <- xs, a >= x]

gsort [1 = []
gsort (x:xs) = gsort smalls ++ [x] ++ gsort larges
where
smalls = [a | a <- xs, a <= x]
larges = [b | b <- xs, b > x]

Viliam Lisy Functional Programming 34 /35

Haskell is the unified standard for FP
@ purely functional, lazy, statically typed

It has rich 2D syntax to write compactly

Functions are defined by pattern matching

Viliam Lisy Functional Programming 35/35

