UNIVERSITY

IN PRAGUE CENTER

/‘g”%é - /\i

Functional Programming
Lecture 1: Introduction

Viliam Lisy
Rostislav Horcik

Artificial Intelligence Center
Department of Computer Science
FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz
xhorcik@fel.cvut.cz



Acknowledgements

This course is based on materials created by:
e Jifi Vyskocil, Michal Péchoucek
— CVUT, Czech Republic
Koen Claessen and Emil Axelsson
— Chalmers University of Technology, Sweden
H. James Hoover
— University of Alberta, Canada
Ben Wood
— Wellesley College, USA
H. Abelson, G. J. Sussman and Julie Sussman
— Massachusetts Institute of Technology, USA
Alan Borning
— University of Washington, USA
R. Kent Dybvig
— Indiana University, USA



What is functional programming?

Wikipedia: Functional programming is a
programming paradigm that treats computation
as the evaluation of mathematical functions.

Programming paradigm: a style of building the
structure and elements of computer programs.



Goal of the course

1. Improve your programming skills!
— master recursion
— master problem decomposition
— rethink side effects (stateless programs)
— different perspective to the same problems

2. Learn principles of functional programming
— has clear benefits for SOME problems
— it is used in many other languages



Why do | care?

quickly learn new programming languages
programming paradigms change and develop

no side effects is great for
— parallelization
— verification

— communication with many clients

understanding fundamentals of computation



Does anyone use it?

Lisp: AutoCAD, Emacs, Gimp
Haskell: Facebook, Google, Intel
Scala: Twitter, eBay, Linkedin
Erlang: Facebook, Pinetrest
Clojure: Walmart, Atlassian
Javascript: React (Redux)



Imperative vs. Declarative

Instructions to change
the computer’s state

— X:=x+1
— deleteFile(“slides.pdf”)
Are executed

— have effects

Run program by following
instructions top-down

e Functions used to declare
dependences between
data values:

— z=gly)
— y=1(x)

* Expressions are evaluated
— result to a value

 Run program by
evaluating dependencies



Pure functional programming

* No side effects
— output of a function depends only on its inputs
— function does not change anything in evaluation
— can be evaluated in any order (many times, never)

* No mutable data
 More complex function based on recursion

— no for/while cycles

— natural problem decomposition
* mathematical induction



Pure functional programming

Forbids most of what you use in (C/Java)
— we will show you do really not loose anything
— it can be useful for many tasks

— it often leads to more compact code !?!

Substantially less time spent debugging
— encapsulation, repeatability, variety of mistakes

Focus on operations with symbols
Easier parallelization and verification
Generally less computationally efficient



Brief History
Lambda calculus (1930s)
— formal theory of computation older than TM

Lisp = List processor (1950s)
— early practical programming language
— second oldest higher level language after Fortran

ML = Meta language (1970s)

— Lisp with types, used in compilers

Haskell = first name of Curry (1990s)

— standard for functional programming research

Python, Scala, Java8, C++ 11, ....



What will we learn?

Lisp (Scheme)
_lambda calculus
Haskell




Why LISP?

Extremely simple

Reasonably popular

Allows deriving all concepts from principles
Directly matches lambda calculus



Why Haskell?

Purely functional language
— promotes understanding the paradigm

Rich syntactic sugar (contrast to Lisp)

Most popular functional language

Standard for functional programming research
Fast prototyping of complex systems

Why not Scala?



Course organization

Web: cw.fel.cvut.cz/wiki/courses/fup
Lectures + Labs

Homework — every 2 weeks (50 %)

— 3x10 Scheme

— 2x10 Haskell

— must have at least 1 point from each and >= 25
— Deadlines: -3 + -1 per day until +1 is left

Programming exam (30 %)
Test (20 %)



Suggested literature

1] R. Kent Dybvig: The Scheme Programming
language, Fourth Edition, MIT Press, 2009.

https://www.scheme.com/tspl4/

2] Greg Michaelson: An Introduction to Functional

Programming Through Lambda Calculus, Dover
edition, 2011.

[3] Harold Abelson and Gerald Jay Sussman and
Julie Sussman: Structure and Interpretation of
Computer Programs, MIT Press, 1996.

https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html

For further resources see CourseWiki


https://www.scheme.com/tspl4/
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html

Scheme

Dialect of Lisp (such as Common Lisp, Racket)
Created in 1970 at MIT by Steele and Sussman

Last standard from 2007

— The Revised® Report on the Algorithmic Language
Scheme (R6RS)

Supports imperative programming
— we will initially not use it (we want to learn FP)

DrRacket: racket-lang.org
— text editor + REPL (read-evaluate-print loop)



Scheme syntax

Scheme program is a collection of expressions

1.Primitive expressions
2.Compound expressions
3.Abstractions

4.Comments, conventions



Primitive expressions

Expression Evaluates to
0 D
"abc" "abc"
‘abc abc
#t #t
#\A #\A
+ #<procedure:+>

a ?



Basics data types

Numbers (infinite precision, complex, etc.)

+, -, *, /, abs, sqgrt, number?, <, >, =

Logical values

#t, #f, and, or, not, boolean?

Strings
"abc", "Hello !!!", string?, substring
Other types

symbol?, char?, procedure?, pair?, port?,
vector?



Conventions

Special suffixes
? for predicates
| for procedures with side effects
-> in procedures that transform a type of an object
Prefix of character / string / vector procedures
char-, string-, and vector-



Comments

: starts a comment until the end of the line

on the line before the explained expression

-+ still start a comment until the end of the line

used to comment a function or code segment

#| |# delimit block comments



Compound expressions

Infix notation
1+2*5

Prefix notation
+1*25

In Scheme, there are no operator preferences
(+1(*25))



S - expression

(fn argl arg2 ... argN)

( “operator of calling a function”

fn  expression that evaluates to a procedure
argX arguments of the function

) end of function call



Conditional expressions

if
(1f test-exp then-exp else-exp)
cond
(cond
(test—expl exp)
(test-exp2 exp)
(#t exp)
.)



Quote

Do not evaluate, just to return the argument

(quote exp)
Abbreviated by '

A quoted expression can be evaluated by eval
(eval (quote (+ 1 2))

Evaluate part of the argument
(quasiquote (* 1 2 3 (unquote (+ 2 2)) 4 5)

Abbreviated by " and, respectively



Define

Naming expressions
(define 1d exp)

Defining functions
(define (name <formals>) <body>)

Nested defines
(define (name <formals>)
(define (fn <formals>)
<body-using-fn>)



|dentifiers

Keywords, variables, and symbols may be
formed from the following set of characters:

t
t
t
t

ne lowercase letters a through z,
ne uppercase letters A through 7,
ne digits 0 through 9, and

ne characters? 1. +-*/<=>:S%"& ~@

cannot start with 0-9, +, -, @ (still usually works)



Recursion

A function calling itself

(define (fact n)
(cond ((= 0 n) 1)
(#t (* n (fact

(- n 1))))



=

Avoiding infinite recursion

First expression of the function is a cond

The first test is a termination condition
The "then" of the first test is not recursive

The cond pairs are in increasing order of the
amount of work required

5. The last cond pair is a recursive call

6. Each recursive call brings computations

closer to the termination condition



Recursion

Tail recursion

Last thing a function does is the recursive call
Analytic / synthetic

Return value from termination condition / composed

Tree recursion
Function is called recursively multiple times (gsort)

Indirect recursion
Function A calls function B which calls A



Pairs

Allow to construct compound data structures

(cons 1 2) / \]
1. 2) A
(cons
(cons 1 2) //L’
(cons 3 4)) 21\ /
/\[;Z
) @)




1 2 3 l 4
e/

Lists are linked lists of pairs with ' () at the end

S-expressions are just lists
'"(+ 1 2 3 4 5)

Lists can be created by a function cons or
(list 1teml 1tem?2 .. 1temN)



Lists

Pairs forming the lists can be decomposed by
car [car] first element of the pair
cdr [could-er] second element of the pair

(caddr x) shortcut for (car (cdr (cdr x )))

Empty list is a null pointer
null? tests whether the argument is the empty list



Last

Return the last element of a list
(define (last list)
(cond
((null? (cdr 1list)) (car list))
(#t (last (cdr list)))



What have we learned?

* Functional programming is an alternative
programming paradigm
— no side effects
— no mutable data structures
— focus on symbols

* Recursion is the key programming method
* Lists are a key data structure



