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Maybe

Remember the definition

data Maybe a = Nothing | Just a deriving (Eq, Show)

Nice working with partial functions:

g::Int -> Maybe Int

g 0 = Nothing

g x = Just (div 10 x)

sq :: Maybe Int -> Maybe Int

sq Nothing = Nothing

sq (Just x) = Just (x ^ 2)

Not really, it is a pain!
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Maybe Functor

Functor: Class of structures you can map over

class Functor f where

fmap :: (a -> b) -> f a -> f b

instance Functor Maybe where

fmap f (Just x) = Just (f x)

fmap f Nothing = Nothing

infixl 4 <$>

(<$>) :: Functor f => (a -> b) -> f a -> f b

(<$>) = fmap

($) :: (a -> b) -> a -> b
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Maybe Applicative Functor

Functors work well for unary functions, what about binary?

> (g 3) + (g 3)

> fmap (+) (f 3)

>:t fmap (+) (f 3)

No way to apply the function without pattern matching Just.
We want a generall approach applicable for any functor.

class Functor f => Applicative (f :: * -> *) where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

Allows any number of arguments through currification.

> (*) <$> (Just 2) <*> ((+) <$> (f 3) <*> (f 3))
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Monad

Applicative does not constraint the order of execution. Syntax
of applicative functors may not be intuitive for everyone.

class Applicative m => Monad (m :: * -> *) where

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

return :: a -> m a

fail :: String -> m a

Strict generalization of Functor and Applicative (since 2014).

fmap f xs = xs >>= (\x -> return (f x))

pure = return

fs <*> as = do f <- fs

a <- as

return (f a)
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do Notation

Using monads leads to long sequences of operations chained by
operators >>, >>=

main = putStrLn "Hello, what is your name?" >>

getLine >>= \name ->

putStrLn ("Hello, " ++ name ++ "!")

Do notation just makes these sequences more readable
(it is rewritten to monad operators before compilation)

main = do putStrLn "Hello, what is your name?"

name <- getLine

putStrLn ("Hello, " ++ name ++ "!")
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Maybe Monad

instance Monad Maybe where

(Just x) >>= k = k x

Nothing >>= _ = Nothing

return x = Just x
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Maybe Monad

Since it is a monad, we can use the do notation:

h :: Int -> Maybe Int

h x = do u <- g x

v <- g 5

return (u+v)
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Exception Handling

Exceptions in Haskell are represented by special types
such as Maybe, Either

Explicit handling of errors makes code hard to read
the special values of the types must be handled everywhere

import qualified Data.Map as M

lookUp :: Char -> Either String Int

lookUp name = case M.lookup name vars of

Just x -> Right x

Nothing -> Left ("Variable not found: " ++ show name)

eval (Add l r) = case eval l of

m@(Left msg) -> m

Right x -> case eval r of

m@(Left msg) -> m

Right y -> Right (x + y)
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Exception Handling

Use of monads can hide the error handling

Evaluator a = Ev (Either String a)

instance Monad Evaluator where

(Ev ev) >>= k = case ev of

Left msg -> Ev (Left msg)

Right v -> k v

return v = Ev (Right v)

fail msg = Ev (Left msg)

Since 2014, instance of Functor and Applicative also necessary!

eval :: Expr -> Evaluator Int

eval (Mul l r) = do lres <- eval l

rres <- eval r

return (lres*rres)

https://www.schoolofhaskell.com/user/bartosz/basics-of-haskell/10 Error Handling
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List Monad

Suitable for combining non-deterministic computations
can return multiple results and we want to continue with all

(>>=) :: [a] -> (a -> [b]) -> [b]

xs >>= k = concat (map k xs)

return :: a -> [a]

return x = [x]
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List Comprehensions

squares lst = do

x <- lst

return (x * x)

squares lst = lst >>= \x -> return (x * x)

squares lst = concat $ fmap k lst

where k = \x -> [x * x]
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List Comprehensions

pairs l1 l2 = do

x <- l1

y <- l2

return (x, y)

pairs l1 l2 = [(x, y) | x <- l1, y <- l2]

pairs l1 l2 = l1 >>= \x -> l2 >>= \y -> return (x,y)

Guards can also be added, but it requires MonadPlus, for more
advanced combinations of computations.
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Understanding IO Monad

Assume we are implementing getchar in Haskell
what type should it have?

getchar :: Char

We can then implement

get2chars :: String

get2chars = [getchar, getchar]

Haskell functions are pure, hence the compiler will

remove the double call by caching the return value

if it called the function twice, it would be in arbitrary order
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How to solve caching?

Adding a (fake) parameter makes the calls different

getchar :: Int -> Char

get2chars _ = [getchar 1, getchar 2]

The calls can still be executed in an arbitrary order

Data dependency can order function execution
(if a result of one function is used by another function)

getchar :: Int -> (Char, Int)

get2chars i0 = [a,b] where (a,i1) = getchar i0

(b,i2) = getchar i1
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Sequencing Through Data Dependency

The same sequencing problems would reoccur

get4chars = [get2chars 1, get2chars 2]

Hence we want

get4chars :: Int -> (String, Int)

get4chars i0 = ([a,b],i2) where (a,i1) = get2chars i0

(b,i2) = get2chars i1

We are forcing a specific sequence of executing functions using
data dependencies
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RealWorld

Good intuition for how IO works

type IO a = RealWorld -> (a, RealWorld)

> :i IO

RealWorld is a fake type serving as the Int from above

The main function is of type IO ()

main :: RealWorld -> ((), RealWorld)

All IO functions take the real world as an argument and return (a
possibly modified) new version of the world
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Example

Function main calling getChar two times:

getChar :: RealWorld -> (Char, RealWorld) -- IO Char

main :: RealWorld -> ((), RealWorld) -- IO ()

main world0 = let (a, world1) = getChar world0

(b, world2) = getChar world1

in ((), world2)

Only main gets the RealWord. Therefore only main can execute
IO actions.
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IO Monad

Hides passing of the RealWorld value from the programmer

(>>) :: IO a -> IO b -> IO b

(action1 >> action2) world0 =

let (a, world1) = action1 world0

(b, world2) = action2 world1

in (b, world2)
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IO Monad

Hides passing of the RealWorld value from the programmer

(>>=) :: IO a -> (a -> IO b) -> IO b

(action1 >>= action2) world0 =

let (a, world1) = action1 world0

(b, world2) = action2 a world1

in (b, world2)

return :: a -> IO a

return x world0 = (x, world0)

Monad is just a convenient abstraction to do something like this!
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Monads Summary

IO in pure functional programming is problematic

it prevents optimization possible with pure functions
it requires explicit ordering of pseudo-function calls

Haskell encloses these operations to IO actions

no result of pseudo-function can leave the IO ”container”

Monads are a useful abstraction for

sequencing operations on containers
making operation within containers

Build-in Monads

Maybe, Either e, [], IO
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Random numbers

Decent random numbers

System.Random (may not be installed by default in GHC)

Cryptographically secure random numbers

Crypto.Random

Getting random numbers generator

mkStdGen <seed>

getStdGen
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Random numbers

Getting a random number

randomR :: (RandomGen g, Random a) => (a, a) -> g

-> (a, g)

Range can be inferred from output type

random :: (RandomGen g, Random a) => g -> (a, g)

Using the standard generator in the IO monad

randomRIO (0,1)

randomRIO (0,1::Float)

randomIO :: IO Float
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Random sequence

myRnds :: Int -> [Float]

myRnds seed = randSeq (mkStdGen seed)

where randSeq gen = let (v,g2) = random gen

in v:randSeq g2

Build-in variant

randoms <generator>

randomRs <range> <generator>
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Random with IO

*Main> :t getStdGen

getStdGen :: IO StdGen

*Main> :t random

random :: (RandomGen g, Random a) => g -> (a, g)

import System.Random

main = do

g <- getStdGen

print . take 10 $ (randomRs ('a', 'z') g)

print . take 10 $ (randomRs ('a', 'z') g)
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Random values of custom type

Type must be an instance of class Random

data Coin = Heads |

Tails deriving (Show, Enum, Bounded)

instance Random Coin where

randomR (a, b) g =

let (x, g') = randomR (fromEnum a, fromEnum b) g

in (toEnum x, g')

random g = randomR (minBound, maxBound) g
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