CZECH TECHNICAL A I

UNIVERSITY

IN PRAGUE CENTER

Functional Programming
Lecture 11: Haskell I/O

Viliam Lisy

Artificial Intelligence Center
Department of Computer Science
FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

Haskell is Purely Functional

 Functions have no side effects
— outputs depend only on inputs

— calling function with same arguments multiple
times produces the same output

— order of executing independent functions is
arbitrary

— Haskell functions cannot change files or print
e Pseudo-functions like rand() or getchar() in C

— return different value each call
— change files, network, content of the screen

Haskell is Purely Functional

Optimizations are pure function transformations
— rearrange calls, cache results
— omits calling functions, unless their results are used (lazy)
— might automatically parallelize (but granularity ®)
— easier to proof correctness of optimizations

Optimization in C must be more conservative

We want to keep purely functional nature
But we want to be able to interact, change files, etc.

|O Actions

* Haskell separates the part of the program with side
effects using values of special types

e (10 a)is an action, which when executed produces a
value of type a

getChar :: IO Char
getLine :: IO String
putStrLn :: String -> I0 O

* |0 actions are can be passed from function to
function, but are not executed in standard evaluation

Main

Haskell program executes an action returned by
function main in module Main

main :: I0 O
main = putStrLn "Hello, World!"

Running the program
ghc <filename.hs>; ./<filename>
runhugs <filename.hs>

Sequencing actions

In order to call multiple functions, they need to provide
arguments for some other function

g1 f2r s)

In pure functional programming
* f; can be called in arbitrary order

e are called only when we need the return value
— When do we need the return value of putStrLn?

Combining actions

(>>) :: I0a ->I0b ->1I00Db
infixl 1 >>

(x >>vy) is the action that performs x, dropping the
result, then performs y and returns its result.

main

putStrLn "Hello" >> putStrLn "World"

Combining actions: bind

(>>=) :: I0a > (a->I0b) ->1I00Db

x >>= f is the action that first performs x, passed its
result to f, which then computes a second action to be
performed. That action is then executed.

main = putStrLn "Hello, what i1s your name?"
>> getlLine
>>= \nhame -> putStrLn ("Hello,

++ name ++ "I')

X > Yy = X >>= _ -> VY

Combining actions: return

return :: a -> I0 a

Transforms a value to 10 action
Used to define the return value of a composed action

main :: I0 O
main = return "Viliam" >>= \name
-> putStrLn ("Hello, " ++ name ++ "!")

Did we solve the problem?

There is no function

unsafe :: I0 a -> a

hence all values related to side effects are "in" 10.
Everything outside 10 is safe for all optimizations.
IO can be seen as

— a flag for values that came form functions with side effects

— a container for separating unsafe operations

Monad

O is a special case of generally useful pattern
class Applicative m => Monad (m :: * -> *) where
(>>=) ::ma->(->mb) >mb
(>>) ::ma->mb->mb
return :: a -> m a
fail :: String -> m a

Based on category theory

Way of meaningfully sequencing computations

1. Creating a (separated) boxed value
2. Creating functions for modifying them within the boxes

do Notation

Using monads leads to long sequences of operations
chained by operators >>, >>=

main = putStrLn "Hello, what i1s your name?" >>
getLine >>= \name ->
putStrLn ("Hello, " ++ name ++ "!")

Do notation just makes these sequences more readable

(it is rewritten to monad operators before compilation)

main = do putStrLn "Hello, what i1s your name?"
name <- getlLine
putStrLn ("Hello, " ++ name ++ "!")

do Notation

do is a syntax block, such as where and let
— action on a separate line gets executed
— Vv <- Xxruns action x and bounds the result to v

— let a = b defines a to be the same as b until
the end of the block (no need forin)

Derived Primitives

Creating more complex 10 actions from simpler

getLine :: IO String
getLine = do x <« getChar
1f x == '"\n' then
return []
else
do xs « getlLine
return (X:xs)

Derived Primitives

The same without the do notation

getLine2 :: IO String
getLine2 = getChar >>= \Xx
-> 1f x == '"\n' then
return []
else getlLine2 >>=

-> return (X:

XS)

15

Writing a string to the screen:

putStr :: String —» I0 QO

putStr [] = return ()

putStr (x:xs) = do putChar x
putStr xs

Writing a string and moving to a new line:

putStrLn :: String —» I0 O
putStrLn xs = do putStr xs
putChar '\n'

16

|O Actions as Values

|O actions cannot be executed outside of 10

(there is no world value they could use)

They can still be used as any other values

— return them from functions
— add them to lists

ioActions :: [I0 ()]

ioActions = [print "Hello!",
putStr "just kidding",
getChar >> return ()]

Combining a list of actions

sequence_ :: [I0O a] -> IO ()

sequence_ [] = return ()

sequence_ (Xx:xs) = do x
sequence_ XS

main = sequence_ IoActions

Hangman

Consider the following version of hangman:

* One player secretly types in a word.

* The other player tries to deduce the word, by entering a
sequence of guesses.

* For each guess, the computer indicates which letters in the
secret word occur in the guess

 The game ends when the guess is correct.

19

We adopt a top down approach to implementing
hangman in Haskell, starting as follows:

hangman :: I0 ()

hangman = do putStrLn "Think of a word:
word <« sgetlLine
putStrLn "Try to guess 1t:"
play word

20

The action sgetlLine reads a line of text from the
keyboard, echoing each character as a dash:

21

sgetLine :: I0 String
sgetLine = do x « getCh
1f x == "\n' then
do putChar x
return []
else
do putChar '-'
XS <« sgetlLine
return (X:xs)

The action getCh reads a single character from the
keyboard, without echoing it to the screen:

import System.IO

getCh :: I0 Char

getCh = do hSetEcho stdin False
X <« getChar
hSetEcho stdin True

return X

22

The function play is the main loop, which requests and
processes guesses until the game ends.

play :: String — I0 ()
play word =
do putStr "7 "
guess <« getlLine

1f guess == word then
putStrLn "You got 1t!"
else

do putStrLn (match word guess)
play word

23

The function match indicates which characters in one
string occur in a second string:

For example:

> match "haskell" "pascal”

"-as--11"

match :: String — String — String

match xs ys =

[1T elem x ys then x else '-

| X <« xs]

24

Case Expressions
f pll .. plk = el

f pnl ... pnk = en
where each pij is a pattern, is semantically

equivalent to:

f x1 x2 ... xk = case (x1, ... , xk) of
(pll, ..., plk) -> el

(pnl, ..., pnk) -> en

Assignment 5

