
Functional Programming
Lecture 11: Haskell I/O

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science

FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz
1

Haskell is Purely Functional

• Functions have no side effects
– outputs depend only on inputs

– calling function with same arguments multiple
times produces the same output

– order of executing independent functions is
arbitrary

– Haskell functions cannot change files or print

• Pseudo-functions like rand() or getchar() in C
– return different value each call

– change files, network, content of the screen

2

Haskell is Purely Functional

• Optimizations are pure function transformations

– rearrange calls, cache results

– omits calling functions, unless their results are used (lazy)

– might automatically parallelize (but granularity )

– easier to proof correctness of optimizations

• Optimization in C must be more conservative

• We want to keep purely functional nature

• But we want to be able to interact, change files, etc.

3

IO Actions

• Haskell separates the part of the program with side
effects using values of special types

• (IO a) is an action, which when executed produces a
value of type a

• IO actions are can be passed from function to
function, but are not executed in standard evaluation

4

getChar :: IO Char

getLine :: IO String

putStrLn :: String -> IO ()

Main

Haskell program executes an action returned by
function main in module Main

Running the program

ghc <filename.hs>; ./<filename>

runhugs <filename.hs>

5

main :: IO ()

main = putStrLn "Hello, World!"

Sequencing actions

In order to call multiple functions, they need to provide
arguments for some other function

𝑔(𝑓1, 𝑓2, … , 𝑓𝑛)

In pure functional programming

• 𝑓𝑖 can be called in arbitrary order

• are called only when we need the return value

– When do we need the return value of putStrLn?

6

Combining actions

(x >> y) is the action that performs x, dropping the
result, then performs y and returns its result.

7

(>>) :: IO a -> IO b -> IO b

infixl 1 >>

main = putStrLn "Hello" >> putStrLn "World"

Combining actions: bind

x >>= f is the action that first performs x, passed its
result to f, which then computes a second action to be
performed. That action is then executed.

8

(>>=) :: IO a -> (a -> IO b) -> IO b

main = putStrLn "Hello, what is your name?"

>> getLine

>>= \name -> putStrLn ("Hello, " ++ name ++ "!")

x >> y = x >>= _ -> y

Combining actions: return

Transforms a value to IO action

Used to define the return value of a composed action

9

return :: a -> IO a

main :: IO ()

main = return "Viliam" >>= \name

-> putStrLn ("Hello, " ++ name ++ "!")

Did we solve the problem?

There is no function

hence all values related to side effects are "in" IO.

Everything outside IO is safe for all optimizations.

IO can be seen as

– a flag for values that came form functions with side effects

– a container for separating unsafe operations

10

unsafe :: IO a -> a

Monad

IO is a special case of generally useful pattern

Based on category theory

Way of meaningfully sequencing computations

1. Creating a (separated) boxed value

2. Creating functions for modifying them within the boxes

11

class Applicative m => Monad (m :: * -> *) where

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

return :: a -> m a

fail :: String -> m a

do Notation

Using monads leads to long sequences of operations
chained by operators >>, >>=

Do notation just makes these sequences more readable

(it is rewritten to monad operators before compilation)

12

main = putStrLn "Hello, what is your name?" >>

getLine >>= \name ->

putStrLn ("Hello, " ++ name ++ "!")

main = do putStrLn "Hello, what is your name?"

name <- getLine

putStrLn ("Hello, " ++ name ++ "!")

do Notation

do is a syntax block, such as where and let

– action on a separate line gets executed

– v <- x runs action x and bounds the result to v

– let a = b defines a to be the same as b until
the end of the block (no need for in)

13

Derived Primitives

Creating more complex IO actions from simpler

14

getLine :: IO String

getLine = do x  getChar

if x == '\n' then

return []

else

do xs  getLine

return (x:xs)

Derived Primitives

The same without the do notation

15

getLine2 :: IO String

getLine2 = getChar >>= \x

-> if x == '\n' then

return []

else getLine2 >>= \xs

-> return (x:xs)

16

putStr :: String → IO ()

putStr [] = return ()

putStr (x:xs) = do putChar x

putStr xs

Writing a string to the screen:

Writing a string and moving to a new line:

putStrLn :: String → IO ()

putStrLn xs = do putStr xs

putChar '\n'

IO Actions as Values

IO actions cannot be executed outside of IO

(there is no world value they could use)

They can still be used as any other values

– return them from functions

– add them to lists

17

ioActions :: [IO ()]
ioActions = [print "Hello!",

putStr "just kidding",
getChar >> return ()]

Combining a list of actions

18

sequence_ :: [IO a] -> IO ()
sequence_ [] = return ()
sequence_ (x:xs) = do x

sequence_ xs

main = sequence_ ioActions

19

Hangman

Consider the following version of hangman:

• One player secretly types in a word.

• The other player tries to deduce the word, by entering a
sequence of guesses.

• For each guess, the computer indicates which letters in the
secret word occur in the guess

• The game ends when the guess is correct.

20

hangman :: IO ()

hangman = do putStrLn "Think of a word: "

word  sgetLine

putStrLn "Try to guess it:"

play word

We adopt a top down approach to implementing
hangman in Haskell, starting as follows:

21

The action sgetLine reads a line of text from the
keyboard, echoing each character as a dash:

sgetLine :: IO String

sgetLine = do x  getCh

if x == '\n' then

do putChar x

return []

else

do putChar '-'

xs  sgetLine

return (x:xs)

22

import System.IO

getCh :: IO Char

getCh = do hSetEcho stdin False

x  getChar

hSetEcho stdin True

return x

The action getCh reads a single character from the
keyboard, without echoing it to the screen:

23

The function play is the main loop, which requests and
processes guesses until the game ends.

play :: String → IO ()

play word =

do putStr "? "

guess  getLine

if guess == word then

putStrLn "You got it!"

else

do putStrLn (match word guess)

play word

24

The function match indicates which characters in one
string occur in a second string:

For example:

> match "haskell" "pascal"

"-as--ll"

match :: String → String → String

match xs ys =

[if elem x ys then x else '-' | x  xs]

Case Expressions

f p11 … p1k = e1

...

f pn1 ... pnk = en

where each pij is a pattern, is semantically
equivalent to:

f x1 x2 ... xk = case (x1, ... , xk) of

(p11, ..., p1k) -> e1

...

(pn1, ..., pnk) -> en

25

Assignment 5

26

