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Example: Arithmetic expressions

Recursive types can represent tree structures, such as expressions
from numbers, plus, multiplication.

data Expr = Val Int

| Add Expr Expr

| Mul Expr Expr

1+2*3

Add (Val 1) (Mul (Val 2) (Val 3))
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Example: Arithmetic expressions

Using recursion, it is now easy to define functions that process
expressions. For example:

size :: Expr -> Int

size (Val n) = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y

eval :: Expr -> Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y
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Type Classes

Collection of types that can be used with the same functions Eq,

Ord, Show. Functions required by a class can be accessed by

:info <classname> .

> :info Eq

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

Functions can often be implemented based on other. Only minimal
complete definition (one of the above) is required.
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Show Class

A class values convertible to a readable string

class Show a where

showsPrec :: Int -> a -> ShowS

show :: a -> String

showList :: [a] -> ShowS

type ShowS = String -> String

This allows constant-time concatenation of results using function
composition (optimization)

Minimal complete definition: showsPrec | show
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Instance of a Class

A new instance can be added to a class by

instance Show Nat where

show n = "N" ++ show (nat2int n)

instance Show Expr where

show (Val n) = show n

show (Add e1 e2) = "(+ " ++ show e1 ++ " "

++ show e2 ++ ")"

show (Mul e1 e2) = "(* " ++ show e1 ++ " "

++ show e2 ++ ")"
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Class Contexts

Remember the definition

data Maybe a = Nothing | Just a

To make Maybe an instance of Eq, a has to be in Eq

instance Eq a => Eq (Maybe a) where

Nothing == Nothing = True

(Just x) == (Just x') = x == x'
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Deriving Classes

Obvious definition of instances are automated

data Shape = Circle Float

| Rect Float Float

deriving (Show, Eq)

The implemented function bodies determine the minimum required
functions

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x == y = not (x /= y)

x /= y = not (x == y)
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Functor Class

Class of structures you can map over

class Mapable f where

mmap :: (a -> b) -> f a -> f b

instance Mapable[] where

mmap = map

instance Mapable Maybe where

mmap f (Just x) = Just (f x)

mmap f Nothing = Nothing
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Kinds

Types of types and type constructors
* A specific type
* -> * A type that given a type creates a type
Constraint A constructor of a type constraint
:k
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Types Summary

Everything has a type known in compile time

basic values
functions
data structures

Types are key for data structures in Haskell

Types can be instances of classes

overloaded functions

”Types” of types are kinds
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Higher Order Functions

The same functions as in scheme are available

map :: (a -> b) -> [a] -> [b]

filter :: (a -> Bool) -> [a] -> [a]

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]
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Foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

sum [1,2,3]

=
foldr (+) 0 [1,2,3]

=
foldr (+) 0 (1:(2:(3:[])))

=
1+(2+(3+0))

=
6

fold fn el list can be interpreted as:
replace each (:) by ‘fn‘ and [] by el.
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Lambda Expressions

Functions can be constructed without naming the functions by
using lambda expressions.

\x -> x + x

As in scheme,

add x y = x + y

means

add = \x -> (\y -> x + y)

We also have the automated currying

add = \x y -> x + y
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Lambda Expressions

We can use lambda expressions and local functions interchangeably

odds n = map f [0..n-1]

where

f x = x*2 + 1

can be simplified to

odds n = map (\x -> x*2 + 1) [0..n-1]

The earlier may be better if the local function has a natural name
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Operator Sections

An infix operator can be converted into a curried prefix function
by using parentheses.

> (+) 1 2

3

This convention also allows one of the arguments of the operator
to be included in the parentheses.

> (1+) 2

3

> (+2) 1

3

If ⊕ is an operator then (⊕), (x⊕) and (⊕y) are called sections.
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Custom Data Constructors

Begin with :

:#, :+, :::

infixr :+

data MList a = Empty | a :+ MList a deriving Show
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Modules

Haskell program is a collection of modules

name spaces, abstract data declarations

module names start with upper-cased character

filenames must match module names in GHC

module <name> ( <exported>, <symbols> ) where

without exported symbols, everything is exported

data constructors exported with type name

Tree(Leaf,Branch), can be abbreviated to Tree(..)
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Example Module

module Tree ( Tree(Leaf,Branch), fringe ) where

data Tree a = Leaf a | Branch (Tree a) (Tree a)

fringe :: Tree a -> [a]

fringe (Leaf x) = [x]

fringe (Branch left right) =

fringe left ++ fringe right
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Importing Modules

Imports must be at the beginning of a module
Prelude module is loaded by default
We can choose names to import and hide

import Tree

import Tree hiding (tree1)

import Tree (tree1, fringe)

import qualified Tree as T hiding (tree1)

:m + Tree
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Advanced Pattern Matching

Data constructors can be matched nested

(1, (x:xs), ’a’, (2, Just y:ys))

but not x:x:xs

Top-down, left-right
Matching can succeed, fail, diverge

Refutable patterns: [], Tree x l r

Irrefutable patterns: , x, a, ~(x:xs).
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Lazy Pattern

Lazy pattern ∼ pat is irrefutable (always matches)

The variable pat is bound only when used

∼(x:xs) on LHS is equivalent to using head/tail on RHS

∼(x,y) on LHS is equivalent to using fst/snd on RHS

(\∼(a,b) -> 1) bot

A new instance can be added to a class by
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Case Expressions

f p11 ... p1k = e1

...

f pn1 ... pnk = en

where each pij is a pattern, is semantically equivalent to:

f x1 x2 ... xk = case (x1, ... , xk) of

(p11, ..., p1k ) -> e1

...

(pn1, ..., pnk ) -> en
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Pattern Matching Divergence

Assume the infinite recursion bot = bot

Pattern matching diverges if it tries to match bot
Order of definitions influences pattern matching failure

take 0 _ = []

take _ [] = []

take n (x:xs) = x : take (n-1) xs

take1 _ [] = []

take1 0 _ = []

take1 n (x:xs) = x : take1 (n-1) xs
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Summary

Type and type classes essential for Haskell

Unnecessary, but pleasant Haskell features

higher order functions
lambda functions
infix operator sections
modules
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