Map-Reduce

John Hughes

The Problem

i
; = Google ,
// 850TB

in 2006

The Solution?

B

 Thousands of commodity computers
networked together

e 1,000 computers =» 850GB each
e How to make them work together?

Early Days

 Hundreds of ad-hoc distributed algorithms
— Complicated, hard to write
— Must cope with fault-tolerance, load distribution,

av
-

MapReduce: Simplified Data Processing
on Large Clusters
by Jeffrey Dean and Sanjay Ghemawat

In Symposium on Operating Systems Designh &
Implementation (OSDI 2004)

The Idea

Many algorithms apply the same operation to
a lot of data items, then combine results

Cf map :: (a->b) -> [a] -> [b]
Cf foldr :: (a->b->b) ->b ->[a] -> b
— Called reduce in LISP

Define a higher-order function to take care of
distribution; let users just write the functions
passed to map and reduce

Pure functions are great!

 They can be run anywhere with the same
result—easy to distribute

 They can be reexecuted on the same data to
recreate results lost by crashes

”It’s map and reduce, but not as we
know them Captain”

e Google map and reduce work on collections of
key-value pairs

* map_reduce mapper reducer :: [(k,v)] -> [(k2,v2)]
— mapper :: k->v->[(k2,v2)]
— reducer :: k2 -> [v2] -> [(k2,v2)]

All the values with the Usually just O
same key are collected orl

Example: counting words

e |nput: (file name, file contents)

l mapper

e |[ntermediate pairs: (word, 1)

l reducer

e Final pairs: (word, total count)

Example: counting words

mapping

r ("baz”,”hello sky”)

"hello”,1 > .
(f,d ouds” 1)) ("clouds”,[1])

Chello”) ("hello”,[1,1]) ("hello”,2)
(IIS kyH i) (”S ky”) [1]) (”Sky)

("foo”,”hello clouds”)

("clouds”,1)

Parallelising Map-Reduce

e Divide the input into M chunks, map in
parallel
— About 64MB per chunk is good!
— Typically M ~ 200,000 on 2,000 machines (~13TB)

e Divide the intermediate pairs into R chunks,
reduce in parallel

, Problem: all {K,V} with the
— Typically R ~ 5,000

same key must end up in
the same chunk!

Chunking Reduce

e All pairs with the same key must end up in the
same chunk

e Map keys to chunk number: 0..R-1

— e.g. hash(Key) rem R
erlang:phash2(Key,R)

 Every mapper process generates inputs for all
R reducer processes

Usage

-._-. '

:

=
T X00701

—

[200601

|

™~ X501

m X401
Y 1 717 1 0301

HLL LR |

ANI] ZINOS W) SIIWRSIN JO INPURN

P8 F G

Google web search indexing

Before After

Fl o=

3300 /700
LOC LOC

Experience

“Programmers find the system easy to use: more than
ten thousand distinct MapReduce programs have been
implemented internally at Google over the

past four years, and an average of one hundred
thousand MapReduce jobs are executed on Google’s
clusters every day, processing a total of more than
twenty petabytes of data per day.”

From MapReduce: Simplified Data Processing on Large Clusters
by Jeffrey Dean and Sanjay Ghemawat, CACM 2008

Applications

large-scale machine learning
clustering for Google News and Froogle

extracting data to produce reports of popular
gueries

— e.g. Google Zeitgeist and Google Trends
processing of satellite imagery

language model processing for statistical
machine translation

large-scale graph computations.
Apache Hadoop

You may have seen...

IW Google I/O: Hello Dataflo: %
B e L] e
C' [0 www.informationweek.com/cloud/software-as-a-service/google-i-o-hello-d (@] A =
=% Appar Livedrive | The Clou... [Photography &™ Wiki - PROWESS - E... U Farslag pa webbplat... »] Ovriga bokmarken

SECTIONS w 2 Q

Google I/0: Hello
Dataflow, Goodbye
MapReduce

Google introduces Dataflow to handle
streams and batches of big data, replacing
MapReduce and challenging other public
cloud services.

What is it?

5 Appar Livedrive | The Clou...

(7 Photography &"% Wiki - PROWESS - E.. [[] Férslag pé webbplat.. [Y WebSlice-galleri [Komigéng [1 Apple [Y Yahoo! ¥ Google Maps (DB YouT

—————

FlumeJava: Easy, Efficient Data-Parallel Pipelines

Craig Chambers, Ashish Raniwala, Frances Perry,
Stephen Adams, Robert R. Henry,
Robert Bradshaw, Nathan Weizenbaum

Google, Inc.
{chambers,raniwala,fjp,sra,rrh,robertwb,nweiz } @google.com

Abstract

MapReduce and similar systems significantly ease the task of writ-
ing data-parallel code. However, many real-world computations re-
quire a pipeline of MapReduces, and programming and managing
such pipelines can be difficult. We present FlumeJava, a Java li-
brary that makes it easy to develop, test, and run efficient data-
parallel pipelines. At the core of the FlumeJava library are a cou-
ple of classes that represent immutable parallel collections, each
supporting a modest number of operations for processing them in
parallel. Parallel collections and their operations present a simple,
high-level, uniform abstraction over different data representations
and execution strategies. To enable parallel operations to run effi-
ciently, FlumeJava defers their evaluation, instead internally con-
structing an execution plan dataflow graph. When the final results

MapReduce works well for computations that can be broken
down into a map step, a shuffle step, and a reduce step, but for many
real-world computations, a chain of MapReduce stages is required.
Such data-parallel pipelines require additional coordination code
to chain together the separate MapReduce stages, and require addi-
tional work to manage the creation and later deletion of the inter-
mediate results between pipeline stages. The logical computation
can become obscured by all these low-level coordination details,
making it difficult for new developers to understand the computa-
tion. Moreover, the division of the pipeline into particular stages
becomes “baked in” to the code and difficult to change later if the
logical computation needs to evolve.

In this paper we present FlumeJava, a new system that aims to
support the development of data-parallel pipelines. FlumeJava is a

Tosrn Lhenesr anmtaead aecised o0 oo alacoan thot comeaonemdb eomwaed a0

4|

What is it?

A datatype of immutable parallel collections
— which can be distributed over a data centre
— or consist of streaming data

An APl including map, reduce, filter, group...
that apply pure functions to collections

An optimising on-the-fly compiler that
converts Flumelava pipelines to a sequence of
MapReduce jobs...

A higher-level interface built on top of
MapReduce

