
Map-Reduce

John Hughes

The Problem

850TB
in 2006

The Solution?

• Thousands of commodity computers
networked together

• 1,000 computers  850GB each
• How to make them work together?

Early Days

• Hundreds of ad-hoc distributed algorithms
– Complicated, hard to write
– Must cope with fault-tolerance, load distribution,

…

MapReduce: Simplified Data Processing
on Large Clusters
by Jeffrey Dean and Sanjay Ghemawat

In Symposium on Operating Systems Design &
Implementation (OSDI 2004)

The Idea

• Many algorithms apply the same operation to
a lot of data items, then combine results

• Cf map :: (a->b) -> [a] -> [b]
• Cf foldr :: (a->b->b) -> b -> [a] -> b

– Called reduce in LISP

• Define a higher-order function to take care of
distribution; let users just write the functions
passed to map and reduce

Pure functions are great!

• They can be run anywhere with the same

result—easy to distribute

• They can be reexecuted on the same data to
recreate results lost by crashes

”It’s map and reduce, but not as we
know them Captain”

• Google map and reduce work on collections of
key-value pairs

• map_reduce mapper reducer :: [(k,v)] -> [(k2,v2)]
– mapper :: k -> v -> [(k2,v2)]
– reducer :: k2 -> [v2] -> [(k2,v2)]

Usually just 0
or 1

All the values with the
same key are collected

Example: counting words

• Input: (file name, file contents)

• Intermediate pairs: (word, 1)

• Final pairs: (word, total count)

mapper

reducer

Example: counting words

(”foo”,”hello clouds”)
(”baz”,”hello sky”)

(”hello”,1)
(”clouds”,1)
(”hello”,1)
(”sky”,1)

(”clouds”,[1])
(”hello”,[1,1])

(”sky”,[1])

(”clouds”,1)
(”hello”,2)
(”sky”,1)

mapping

sorting reducing

Parallelising Map-Reduce

• Divide the input into M chunks, map in
parallel
– About 64MB per chunk is good!
– Typically M ~ 200,000 on 2,000 machines (~13TB)

• Divide the intermediate pairs into R chunks,
reduce in parallel
– Typically R ~ 5,000

Problem: all {K,V} with the
same key must end up in

the same chunk!

Chunking Reduce

• All pairs with the same key must end up in the
same chunk

• Map keys to chunk number: 0..R-1
– e.g. hash(Key) rem R

• Every mapper process generates inputs for all
R reducer processes

erlang:phash2(Key,R)

Usage

Google web search indexing

Before After

3800
LOC

700
LOC

Experience

“Programmers find the system easy to use: more than
ten thousand distinct MapReduce programs have been
implemented internally at Google over the
past four years, and an average of one hundred
thousand MapReduce jobs are executed on Google’s
clusters every day, processing a total of more than
twenty petabytes of data per day.”

From MapReduce: Simplified Data Processing on Large Clusters
by Jeffrey Dean and Sanjay Ghemawat, CACM 2008

Applications

• large-scale machine learning
• clustering for Google News and Froogle
• extracting data to produce reports of popular

queries
– e.g. Google Zeitgeist and Google Trends

• processing of satellite imagery
• language model processing for statistical

machine translation
• large-scale graph computations.
• Apache Hadoop

You may have seen…

What is it?

PLDI
2010

What is it?

• A datatype of immutable parallel collections
– which can be distributed over a data centre
– or consist of streaming data

• An API including map, reduce, filter, group…
that apply pure functions to collections

• An optimising on-the-fly compiler that
converts FlumeJava pipelines to a sequence of
MapReduce jobs…

• A higher-level interface built on top of
MapReduce

