Lexical Scope and Function Closures

adapted from materials by Dan Grossman at the University of Washington

Free variables

Variables used but not bound within function bodies.

(define x 1)
(define f [(lambda (v) (+ x v)))|

(define z
(let ([x 2] - - -
ly 31) x is afree variable in
(£ (+ xv)))) the definition of £.
Big question:

What is the value of xghen we evaluate the body
of (lambda (y) (+ x vy))) here?

Visualize in DrRacket, draw environments.

Example

Demonstrates lexical scope without higher-order functions:

defines a function that, when called,
evaluates body (+ x y) in an environment
where x is bound to 1

and y is bound to the argument
(define x 1)

(define f |(lambda (y) (+ x y)))
(define z
(let ([x 2]
ly 31)
(£ (+xy))))

1. Looks up £ in current environment, finding this.
2. Evaluates (+ x y) in current environment, producing 5 .
3. Calls the function with argument 5:

* Evaluates the body in the old environment, producing 6 .

Closures

revising our definition of functions

A function definition expression evaluates to
a function closure value.

A f . I h . Not a cons cell.
unction closure has two parts. Cannot access pieces.

°code of function
cenvironment where the function was defined

A function call expression:
eEvaluates the code of a function closure
¢In the environment of the function closure

Example

Demonstrates lexical scope without higher-order functions:

Creates a closure and binds £ to it:

Code: (lambda (y) (+ x v))
Environment: £ = this closure, x > 1

(define x 1)
(define f |(1ambda (v) (+ x y)))l
(define z

(let ([x 2]

. Looks up £ in current environment, finding this closure.

. Evaluates (+ x y) in current environment, producing 5.

. Evaluates the closure’s function body (+ % y) in the closures
environment (£ = the closure, x = 1), extendedwith y = 5,

producing 6.

The Rule: Lexical Scope

A function body is evaluated in the environment
where the function was defined (created),
extended with bindings for the arguments.

Next:

* Even taking / returning functions with higher-order
functions!

* Makes first-class functions much more powerful.
* Even if counterintuitive at first.

* Why alternative is problematic.

More examplesin closures.rkt, notes. Draw...

Ex: Returninga function env pointer __._--

shows env structure, by pointing to
“rest of environment”

binding >

maps variable name to value

(define x [1) E_H

(define, (£ m

(legi [|(+ ¥y 1) 1)

(define[z | (let (3]
(£ 4)]
51)

))

Ex: Returning a function

(define x |1)

(define (f m

(let ([x |(+ ¥y 1)])

env pointer .-~ >
shows env structure, by pointing to
“rest of environment”

binding >
maps variable name to value

(lambda (y)
env| (let ([* (+ y 1)1)
(lambda (z)

(+ xy 2))

Ex: Returning a function env pointer ___---»
shows env structure, by pointing to

“rest of environment”

binding >

maps variable name to value

(define x [1) E_M

(define (fm -._)E (lambda (v)
HAenv] et (1= + y 1D
\ _ (lambda (z)

(let ([x (+y 1)]) (+ xy 2)

&)
9

(lambda | (z)

(+xy 2))) \
b3

(define[z | (let (3]
(f 4)]

Gz

Ex: Returning a function

(define x |1)

(define (f m

(let ([x |(+ ¥y 1)])

(al(z)
(+ x y z)))
(define[z | (let (3]
(£ 4)]
51)

))

env pointer .-~ >
shows env structure, by pointing to
“rest of environment”

binding >

maps variable name to value

E—M

(lambda (v
env| (1et (Ix (+ ¥y 1D
N (lambda (z)
LN (+ xy 2))

‘E» ‘

Ex: Returning a function

(define x |1)

(define (f m

(let ([x |(+ ¥y 1)])

(lambda | (z)
(+ x y z)))
(defin (let (3]
(£ 4)]
51)

))

env pointer .-~ >
shows env structure, by pointing to
“rest of environment”

binding >

maps variable name to value

(lambda (v)
(let ([= (+ y 1))
lambda (z)

Ex: Returning a function

(define x |1)

env pointer .-~ >
shows env structure, by pointing to
“rest of environment”

binding >
maps variable name to value

(define (f m

(let ([x |(+ ¥y 1)])

(lambda (v)
(let ([= (+ y 1))
(lambda (z)
(+ xy 2))

Ex: Returninga function env pointer __._--

shows env structure, by pointing to
“rest of environment”
binding >

maps variable name to value

(define x [1) E_M

defi £ (lambda (v)
(define { m __env (let ([x (+ y 1)1
| (lambda (z)
(let ([(+ ¥y 1)]) \\ . (+ xy 2))
A\ ~,
(lambda [(z) \ .
(+ x y z))) \
y 4
E.]” v]
(define|z | (let (3] 5
(f 4)] ﬂ n
51) S
eb@/ ‘ 1
[i]

Ex: Returning a function

(define x |1)

(define (f m

(let ([x |(+ ¥y 1)])

(define|z | (let (3]

env pointer .-~
shows env structure, by pointing to
“rest of environment”

binding >

maps variable name to value

E—M

(lambda (v)
env| (zet (Ix (+ y 1D

\ ~ (lambda (z)

Vot (+ xy 2z))
Y

(N

\ SN

\ A
\ S
\

4
B

Ex: Returning a function env pointer __.---

shows env structure, by pointing to
“rest of environment”
binding >

maps variable name to value

(define x [1) E_M

(define (fm P (lambda (v)
Henv] (zee (1x (+ vy 11D
~ (lambda (z)
(let ([x (+ y 1)]) i\ ‘s\\ (+ xy 2))
HAY S
(lambda [(z) P \
(+ x y z))) .
1
1
(define[z](let ([%]3] :E‘:}’
(£ 4)] i
51) i (lambda (z)
1 1 I
! |
) {Oen
L] i 6
& @y 15

Why lexical scope?

Lexical scope: use environment where function is defined
Dynamic scope: use environment where function is called
History has shown that lexical scopeis almost always better.

Here are some precise, technical reasons (not opinion).

Why lexical scope?

1. Function meaning does not depend on variable names.
Example: change body of £ to replace x withq.

* Lexical scope: it cannot matter

* Dynamic scope: depends howresult is used

(define (f y)
(let ([x (+y 1))
(lambda (z) (+ x y 2))))

Example: remove unused variables.
* Dynamic scope: but maybe some g uses it (weird).
(define (f g)
(let ([x 31)
(g 2)))

Why lexical scope?

2. Functions can be understood fully where defined.
Example: dynamic scope tries to add # £, unbound variable y, and 4.

(define (f y)
(let ([x (+y 11I)
(lambda (z) (+ xy z))
(define x #f)
(define g (£ 7))
(define a (g 4))

Why lexical scope?

3. Closures automatically “remember” the data they need.
More examples, idioms later.

(define (greater-than-x x)
(lambda (y) (> y x)))

(define (no-negs xs)
(filter (greater-than-x -1) xs))

(define (all-greater xs n)
(filter (lambda (x) (> x n)) =xs))

Dynamic scope?

* Lexical scope definitely the right default for variables.
* Very common across modern languages

* Early LISP used dynamic scope.
« even though inspiration (lambda calculus) has lexical scope
* Later "fixed" by Scheme (Racket's parent) and other languages.

* Dynamic scope s very occasionally convenient:
* Racket has a special way to do it.
* Perl
* Most languages are purely lexically scoped.

