
Pairwise Sequence Alignment

BMI/CS 576
www.biostat.wisc.edu/bmi576/

Mark Craven
craven@biostat.wisc.edu

Pairwise alignment:

task definition

Given

– a pair of sequences (DNA or protein)

– a method for scoring a candidate alignment

Do

– determine the correspondences between

substrings in the sequences such that the

similarity score is maximized

Protein alignment example

Olivera et al., PNAS 95:6419-6424, 1998

Alignment of the PhaK protein

from Pseudomonas putida and

OprD protein from

Pseudomonas aeruginos

The role of homology in alignment

• homology: similarity due to descent from a common

ancestor

• often we can infer homology from similarity

• thus we can sometimes infer structure/function from

sequence similarity

Homology example:

evolution of the globins

Homology

• homologous sequences can be divided into two groups

– orthologous sequences: sequences that differ

because they are found in different species (e.g.

human a-globin and mouse a-globin)

– paralogous sequences: sequences that differ

because of a gene duplication event (e.g. human a-

globin and human b-globin, various versions of both)

DNA sequence edits

• substitutions: ACGA AGGA

• insertions: ACGA ACCGGAGA

• deletions: ACGGAGA AGA

• transpositions: ACGGAGA AAGCGGA

• inversions: ACGGAGA ACTCCGA

Mismatches and gaps

• substitutions in homologous sequences result in

mismatches in an alignment

• insertions/deletions in homologous sequences result

in mismatches in an alignment

CA--GATTCGAAT

CGCCGATT---AT
gap mismatch

Alignment scales

• for short DNA sequences (gene scale) we will
generally only consider

– substitutions

– insertions/deletions

• for longer DNA sequences (genome scale) we will
consider additional events

– transpositions

– inversions

• in this course we will focus on the case of short
sequences

Insertions/deletions and

protein structure

loop structures:

insertions/deletions

here not so significant

• Why is it that two “similar” sequences may have large

insertions/deletions?

– some insertions and deletions may not

significantly affect the structure of a protein

Example alignment: globins

• figure at right shows prototypical

structure of globins

• figure below shows part of

alignment for 8 globins

Issues in sequence alignment

• the sequences we’re comparing typically differ in

length

• there may be only a relatively small region in the

sequences that matches

• we want to allow partial matches (i.e. some amino

acid pairs are more substitutable than others)

• variable length regions may have been

inserted/deleted from the common ancestral

sequence

Types of alignment

• global: find best match of both sequences in their

entirety

• local: find best subsequence match

• semi-global: find best match without penalizing gaps

on the ends of the alignment

Scoring an alignment:

what is needed?

• substitution matrix

– s(a,b) indicates score of aligning character a with

character b

• gap penalty function

– w(g) indicates cost of a gap of length g

Blosum 62 substitution matrix

Linear gap penalty function

• different gap penalty functions require somewhat different

dynamic programming algorithms

• the simplest case is when a linear gap function is used



w (g)   g  d

 where d is a constant

• we’ll start by considering this case

Scoring an alignment

• the score of an alignment is the sum of the scores for

pairs of aligned characters plus the scores for gaps

• example: given the following alignment

 VAHV---D--DMPNALSALSDLHAHKL

 AIQLQVTGVVVTDATLKNLGSVHVSKG

• we would score it by

s(V,A) + s(A,I) + s(H,Q) + s(V,L) – 3d + s(D,G) – 2d

…

The space of global alignments

• some possible global alignments for ELV and VIS

ELV

VIS

-ELV

VIS-

--ELV

VIS--

ELV-

-VIS

ELV--

--VIS

E-LV

VIS-

EL-V

-VIS

• Can we find the highest scoring alignment by enumerating

all possible alignments and picking the best?

Number of possible alignments

• given sequences of length m and n

• assume we don’t count as distinct and

• we can have as few as 0 and as many as min{m,
n} aligned pairs

• therefore the number of possible alignments is
given by



n

k











k  0

min m ,n 


m

k









 

n  m

n











C-

-G

-C

G-

Number of possible alignments

• there are

nn

n

n

n
n



2

2

2

)!(

)!2(2
















 possible global alignments for 2 sequences of length n

• e.g. two sequences of length 100 have possible

alignments

• but we can use dynamic programming to find an optimal

alignment efficiently

77
10

Pairwise alignment via

dynamic programming

• first algorithm by Needleman & Wunsch,

Journal of Molecular Biology, 1970

• dynamic programming: solve an instance of a

problem by taking advantage of computed solutions

for smaller subparts of the problem

• determine best alignment of two sequences by

determining best alignment of all prefixes of the

sequences

Dynamic programming idea
• consider last step in computing alignment of
AAAC with AGC

• three possible options; in each we’ll choose a

different pairing for end of alignment, and add this to

best alignment of previous characters

AAA

C AG

C AAAC

C AG

-

AAA

- AGC

C consider best

alignment of

these prefixes

score of

aligning

this pair
+

Dynamic programming idea

• given an n-character sequence x, and an m-character

sequence y

• construct an (n+1)  (m+1) matrix F

• F (i, j) = score of the best alignment of x[1…i] with y[1…j]

A

A

C A G

A

C

score of best alignment of

AAA to AG

DP algorithm for global alignment with

linear gap penalty

• one way to specify the DP is in terms of its

recurrence relation:



F (i, j)  max

F (i  1, j  1)  s(x
i
, y

j
)

F (i  1, j)  d

F (i, j  1)  d









Initializing matrix: global alignment with

linear gap penalty

A -d

A -2d

C A G

A -3d

C -4d

0 -3d -d -2d

DP algorithm sketch:

global alignment

• initialize first row and column of matrix

• fill in rest of matrix from top to bottom, left to right

• for each F (i, j), save pointer(s) to cell(s) that

resulted in best score

• F (m, n) holds the optimal alignment score; trace

pointers back from F (m, n) to F (0, 0) to recover

alignment

Global alignment example

• suppose we choose the following scoring scheme:

 +1

 -1

 d (penalty for aligning with a gap) = 2

),(
ii
yxs

ii
yx when

ii
yx when

Global alignment example

A -2

A -4

C A G

A -6

C -8

0 -6 -2 -4

1 -3 -1

0 -2

-2 -1

-5 -4 -1

-1

-3

x:

y:

A

-

A

G

A

A

C

C

one optimal alignment

DP comments

• works for either DNA or protein sequences, although

the substitution matrices used differ

• finds an optimal alignment

• the exact algorithm (and computational complexity)

depends on gap penalty function (we’ll come back to

this issue)

Equally optimal alignments

• many optimal alignments may exist for a given pair of

sequences

• can use preference ordering over paths when doing

traceback

highroad lowroad 1

2

3 1

2

3

• highroad and lowroad alignments show the two most

different optimal alignments

Highroad & lowroad alignments

A -2

A -4

C A G

A -6

C -8

0 -6 -2 -4

1 -1 -3

-1 0 -2

-3 -2 -1

-5 -4 -1

x:

y:

A

G

A

A

A

-

C

C

lowroad alignment

x:

y:

A

-

A

G

A

A

C

C

highroad alignment

Computational complexity

• initialization: O(m), O(n) where sequence lengths are

m, n

• filling in rest of matrix: O(mn)

• traceback: O(m + n)

• hence, if sequences have nearly same length, the

computational complexity is

)(
2
nO

Local alignment

• so far we have discussed global alignment, where we

are looking for best match between sequences from

one end to the other

• often we want a local alignment, the best match

between subsequences of x and y

Example local alignment

• aligning my name against the sequence for

dTDP-4-dehydrorhamnose reductase from the

bacterium opitutus terrae

…LSGAYHLAASGHTSWHGFASAIIDLMPLDARKCRAVEAIT…
MARKCRAVEN

Local alignment motivation

• useful for comparing protein sequences that share a

common motif (conserved pattern) or domain

(independently folded unit) but differ elsewhere

• useful for comparing DNA sequences that share a

similar motif but differ elsewhere

• useful for comparing protein sequences against

genomic DNA sequences (long stretches of

uncharacterized sequence)

• more sensitive when comparing highly diverged

sequences

Local alignment DP algorithm

• original formulation: Smith & Waterman, Journal of

Molecular Biology, 1981

• interpretation of array values is somewhat different:

F (i, j) = score of the best alignment of a suffix of

x[1…i] and a suffix of y[1…j]

Local alignment DP algorithm



F (i, j)  max

F (i  1, j  1)  s(x
i
, y

j
)

F (i  1, j)  d

F (i, j  1)  d

0














• the recurrence relation is slightly different than for

global algorithm

Local alignment DP algorithm

• initialization: first row and first column initialized with 0’s

• traceback:

– find maximum value of F(i, j); can be anywhere in

matrix

– stop when we get to a cell with value 0

Local alignment example

0

0

0 0 0 0

0 0 0 0

0

T

T

A

A

G

0

0

0

0

0

0 0

G

0

A

0

A

0

A

1

0

1

1 2

3

1

1

x:

y:

G

G

A

A

A

A

1

More on gap penalty functions

• a gap of length k is more probable than k gaps of
length 1

– a gap may be due to a single mutational event that
inserted/deleted a stretch of characters

– separated gaps are probably due to distinct
mutational events

• a linear gap penalty function treats these cases the
same

• it is more common to use gap penalty functions
involving two terms

– a penalty d associated with opening a gap

– a smaller penalty e for extending the gap

Gap penalty functions

linear

affine



w (g)   g  d



w (g) 
 d  (g  1)e , g  1

0, g  0





Dynamic programming for the

affine gap penalty case

• to do in time, need 3 matrices instead of 1

),(jiM

),(jiI
x

),(jiI
y

best score given that y[j] is

aligned to a gap

best score given that x[i] is

aligned to a gap

best score given that x[i] is

aligned to y[j]

)(
2
nO

Global alignment DP for the

affine gap penalty case

















),()1,1(

),()1,1(

),()1,1(

max),(

ji
y

ji
x

ji

yxsjiI

yxsjiI

yxsjiM

jiM



I
x
(i, j)  max

M (i  1, j)  d

I
x
(i  1, j)  e







I
y
(i, j)  max

M (i, j  1)  d

I
y
(i, j  1)  e







Global alignment DP for the

affine gap penalty case



M (0, 0)  0

I
x
(i, 0)   d  (i  1)e for i  0

I
y
(0, j)   d  (j  1)e for j  0

other cells in top row and leftmost column  

• initialization

• traceback

– start at largest of

– stop at

– note that pointers may traverse all three matrices

),(),,(),,(nmInmInmM
yx



M (0, 0)

Global alignment example
(affine gap penalty)

M : 0

Ix : -∞

Iy : -∞

-∞

-∞

-∞

-∞

-5

-∞

-∞

-7

-∞

-∞

-6

-∞

-∞

-8

-∞

-4

-∞

-∞

-5

-∞

-∞

-6

-∞

-4

1

-∞

-∞

-3

-3

-∞

-6

-4

-∞

-4

-4

-10

-4

-∞

-4

-7

-∞

-5

-8

-∞

-6

-5

-∞

-3

0

-9

-7

-2

-8

-4

-1

-6

-8

-5

-11

-5

-3

-9

-5

-6

-12

-6

-4

-10

-6

A C A C T

A

A

T

d = 4, e = 1

Global alignment example (continued)

M : 0

Ix : -∞

Iy : -∞

-∞

-∞

-4

-∞

-∞

-5

-∞

-∞

-7

-∞

-∞

-6

-∞

-∞

-8

1

-∞

-∞

-5

-∞

-3

-7

-∞

-5

-4

-∞

-4

-8

-∞

-6

-∞

-4

-∞

-3

-3

-∞

0

-9

-7

-5

-11

-5

-2

-8

-4

-6

-12

-6

-∞

-5

-∞

-6

-4

-∞

-4

-4

-10

-3

-9

-5

-1

-6

-8

-4

-10

-6

-∞

-6

-∞

A C A C T

A

A

T

ACACT

--AAT

ACACT

A--AT

ACACT

AA--T
three optimal alignments:

Why three matrices are needed

W F P

F

W

0 -5 -6 -7

-5 1 1 -4

-6 6 2 0

s(F, W) = 1 s(W, W) = 11

s(F, F) = 6 s(W, P) = -4

s(F, P) = -4

• consider aligning the sequences WFP and FW using d = 5, e = 1 and

the following values from the BLOSUM-62 substitution matrix:

• the matrix shows the highest-scoring partial alignment for each pair

of prefixes

-WFP

FW--
optimal alignment

best alignment of these prefixes;

to get optimal alignment,

need to also remember

WF

FW
-WF

FW-

Local alignment DP for the

affine gap penalty case






















0

),()1,1(

),()1,1(

),()1,1(

max),(
ji

y

ji
x

ji

yxsjiI

yxsjiI

yxsjiM

jiM



I
x
(i, j)  max

M (i  1, j)  d

I
x
(i  1, j)  e







I
y
(i, j)  max

M (i, j  1)  d

I
y
(i, j  1)  e







Local alignment DP for the

affine gap penalty case









 , ofcolumn leftmost and row in top cells

0),0(

0)0,(

0)0,0(

yx
II

jM

iM

M

• initialization

• traceback

– start at largest

– stop at

),(jiM

0),(jiM

Gap penalty functions

• linear:

• affine:

• convex: as gap length increases, magnitude of

penalty for each additional character decreases

e.g.



w (g)   g  d



w (g) 
 d  (g  1)e , g  1

0, g  0







w (g)   d  log(g)  e

Computational complexity and gap

penalty functions

linear:

)(
2
nO

)(
3
nO

)(
2
nO

affine:

general:

convex:)log(
2

nnO

 assuming two sequences of length n

Alignment (global) with general gap

penalty function

















)(),(

)(),(

),()1,1(

max),(

kjkiF

kijkF

yxsjiF

jiF

ji





consider every previous

element in the row

consider every previous

element in the column

why the general case has time complexity O(n3)

k ranges over previous

coordinates

Pairwise alignment summary

• the number of possible alignments is exponential in

the length of sequences being aligned

• dynamic programming can find optimal-scoring

alignments in polynomial time

• the specifics of the DP depend on

– local vs. global alignment

– gap penalty function

• affine penalty functions are most commonly used

