Statistical Microarray Data Analysis

A6M33BIN

Outline

- High-throughput screening
 - microarray data origin, aims of analysis
- Hypothesis generation
 - traditional statistics vs learning patterns
- Finding differentially expressed ...
 - genes
 - often an ill-posed problem
 - gene sets
 - apriori defined,
 - Prior knowledge makes the analysis robust
- Methods (so far without annotations)
 - gene significance, clustering

Transcriptome/RNA experiments

Experimental design

- Independent variable (predictor): treatments, individuals, strains, cell types, environmental conditions, disease states, etc.
- Dependent variable (response): RNA quantities for genes, exons or other transcribed sequences

DNA microarryas (gene chips)

Courtesy of Affymetrix

Hybridization

RNA fragments with fluorescent tags from sample to be tested

Courtesy of Affymetrix

5

Oligonucleotide arrays

 given a gene to be measured, select different nmers for the gene

- can also select n-mers for noncoding regions of the genome
- selection criteria
 - specificity
 - hybridization properties
 - ease of manufacturing

Microarrays

7

One-color vs two-color microarray

Microarray data

9

Goals of transcriptomic data analysis

- Human disease diagnostics and treatment
 - disease predispositions/risk factors
 - monitor disease stage and treatment progress
- Agricultural diagnostics and development
 - find plant pathogens to improve plant protection
 - efficiacy and economy in plant biotechnology
- Analysis of food and GMOs
 - determine the integrity of food
 - detect alterations and contaminations
 - quantify GMOs
- Drug discovery and drug development

Other omics measurements

- RNA-sequencing: direct sequencing of RNA sequences to quantify transcript abundance
- Profiles of non-coding RNAs, including microRNAs, IncRNAs, ...
- Proteome: all proteins in a sample
- Metabolome: all metabolites (small molecules) in a sample
- Profiles of single nucleotide polymorphism (SNP) in a sample
- Epigenome: All modifications to DNA, such as DNA methylation arrays

11

Ways of MA data analysis

- predictive modeling: molecular classifiers
 - large potential applicability
 - but risk of low reliability and comprehensibility
 - e.g., 70% accuracy is not enough when explanation is missing
 - decision based on a large number of genes is expensive
 - SVM, RF, kNN, classification rules etc.
 - classifying samples: to which class a given sample belongs
 - classifying genes: to which functional class a given gene belongs

Transcriptomic data analysis

- rather simpler tasks of descriptive modeling
 - any genes with similar expression profiles?
 - clustering, bi-clustering
 - the genes potentially regulated together
 - any genes potentially discriminating among classes?
 - -t-tests, SAM
 - potential risk factors
 - can we characterize these genes?
 - significant GO terms, pathways, locations (chromosomes)
- focus on human disease diagnostics and treatment.

13

ALL/AML dataset

- distinguishing between two acute leukemia types
 - acute lymphoblastic leukemia (ALL)
 - largely a pediatric disease
 - acute myeloid leukemia (AML)
 - the most frequent leukemia form in adults
- first published in
 - Golub et al.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, pp. 531–537, 1999.
- Affymetrix HU6800 microarray chip
 - probes for 7129 genes, 72 class-labeled samples
 - 47 ALL (65%) and 25 AML (35%) samples

ALL/AML data analysis

Differentially expressed genes (DEGs)

- -standard t-test (or Wilcoxon test)
 - for all the genes and their gene expression:
 - compute means (and standard deviation) in both groups,
 - Null hypothesis H₀: the means are equal,
 - Alternative hypothesis H_a: the means disagree,
 - compute t, compare with T, determine p-value,

Significantly diff. expressed genes

bottleneck

- p-value = probability that a difference occurred by chance
- p<= α_i =0.01 works when evaluating a small number of genes
 - a microarray experiment for 10,000 genes may identify up to 100 significant genes by chance

- multiple comparisons

- familywise error rate α is the probability of rejecting at least one H₀ given that all H₀ are true
- considering k independent comparisons:
 - $-\alpha=1-(1-\alpha_i)^k$
 - for α_i =0.01:

k	1	5	10	50	100	500	1000
α	0.01	0.05	0.10	0.39	0.63	0.99	1.00

19

Multiple comparison strategies

- FWER family-wise error rate
 - $-\alpha$ value prob that at least one comparison is FP,

- Bonferroni correction

- the simplest (and most conservative) approach,
- valid regardless correlation/dependence among comparisons,
- α_i value for each comparison equals to α/k ,
- − too restrictive: 30.000 genes, α =0.01 $\rightarrow \alpha_i$ =3*10⁻⁷

- Holm-Bonferroni method

- start by ordering the p-values in increasing order,
- compare the smallest p-value to α/k ,
- compare the second smallest p-value to $\alpha/(k-1)$ etc.,
- continue until the next hypothesis cannot be rejected,
- stop and accept all hypotheses that have not been rejected yet,
- step-wise method, has more power than Bonferroni.

Wilcoxon test for DEGs

- genetic mutations BRCA1 and BRCA2 [Hedenfalk, Efron]
- BRCA1 and BRCA2 increase breast cancer risk
- are tumors with BRCA1 or BRCA2 observed genetically different?
- 15 samples (7/8), 3226 genes studied, Wilcoxon test used

Significant analysis of microarrays (SAM)

- computes false detection rate (FDR)
 - permutations of the repeated measurements to estimate the percentage of genes identified by chance

relative difference in gene exp.

$$d(i) = \frac{\bar{x}_{I}(i) - \bar{x}_{U}(i)}{s(i) + s_{0}}$$

gene-specific scatter s(i)small constant s_0 t test $\sim d(i) > c$, d(i) < -cinstead compare with d_E :

the same statistic averaged over multiple balanced random partitions

$$d(i)-d_E(i) \ge \Delta \text{ (image } \Delta=1.2)$$

Significant analysis of microarrays (SAM)

- truly significant genes (ALL/AML)
- no significant genes found (Motol bladder relapse)

23

Understanding of gene groups

- web tools such as David, eGOn, Ingenuine pathways
- occurrence of specific subgroups (GO terms, pathways, diseases etc.)

TERM1 - Structural molecule activity (Molecular function) - active in nonrelapse

Relapse group

9118, INA, Internexin neuronal intermediate filament protein, alpha

Nonrelapse group

857, CAV1, Caveolin 1, caveolae protein, 22kDa; 1278, COL1A2, Collagen, type I, alpha 2; 1281, COL3A1, Collagen, type III, alpha 1; 1289, COL5A1, Collagen, type V, alpha 1; 1292, COL6A2, Collagen, type VI, alpha 2; 1293, COL6A3, Collagen, type VI, alpha 3; 1306, COL15A1, Collagen, type XV, alpha 1; 80781, COL18A1, Collagen, type XVIII, alpha 1; 11117, EMILIN1, Elastin microfibril interfacer 1; 2192, FBLN1, Fibulin 1; 25900, HOM-TES-103, Hypothetical protein LOC25900, isoform 3; 25984, KRT23, Keratin 23 (histone deacetylase inducible); 3908, LAMA2, Laminin, alpha 2 (merosin, congenital muscular dystrophy); 4131, MAP1B, Microtubule-associated protein 1B; 4629, MYH11, Myosin, heavy chain 11, smooth muscle; 10398, MYL9, Myosin, light chain 9, regulatory; 23037, PDZD2, PDZ domain containing 2; 64711, RPS2, Ribosomal protein S2; 7148, TNXB, Tenascin XB; 7461, WBSCR1, Williams-Beuren syndrome chromosome region 1

Gene-set enrichment analysis

- Find differentially expressed groups of genes rather than single genes, such as
 - A gene set on a pathway
 - A gene set with a GO term
- Overview of methods [Goeman, Buhlmann, 2007]
 - competitive vs self-contained tests
 - H₀^{comp}: The genes in the set G are at most as often differentially expressed as the genes in its complement G^c.
 - H₀^{self}: No genes in G are differentially expressed.
 - gene vs subject sampling
 - gs: study distributions where gene is the basic unit
 - ss: compare the actual subject with other randomly sampled subjects

Competitive gene sampling

Steps:

- 1. Apply t-test (or other) for diff. expression of genes.
- 2. Apply a cut-off to separate diff. expressed genes
 - either threshold p-values (p< α),
 - or take k genes with smallest p-values.
- 3. Count frequencies in 2x2 table.
- 4. Do a test of independence
 - Chi-squared test $X^2 = \sum_{g \in \{G,G^C\}} \sum_{d \in \{D,D^C\}} \frac{(m_{gd} m_g \times m_d)^2}{m_g \times m_d} < \chi^2_{df=1,\alpha}$
 - Hypergeometric test

	Differentially expressed gene	Non-differentially expressed gene	Total
In gene set	m_{GD}	m_{GD^c}	m_G
Not in gene set	m_{G^cD}	$m_{G^cD^c}$	m_{G^c}
Total	m_D	m_{D^c}	m

27

Pathways - KEGG example

