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Outline

— High-throughput screening
— microarray data — origin, aims of analysis
— Hypothesis generation
— traditional statistics vs learning patterns
— Finding differentially expressed ...
— genes
— often an ill-posed problem
— gene sets
— apriori defined,
— Prior knowledge makes the analysis robust
— Methods (so far without annotations)
— gene significance, clustering




Transcriptome/RNA experiments
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* Independent variable (predictor): treatments, individuals,
strains, cell types, environmental conditions, disease states,
etc.

« Dependent variable (response): RNA quantities for genes
exons or other transcribed sequences

DNA microarryas (gene chips)
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6.5 million locations on each GeneChip® array
Actual strand = 25 base pairs

Courtesy of Affymetrix




Hybridization

RNA fragments with fluorescent tags from sample to be tested

RNA fragment hybridizes with DNA on GeneChip® array

Courtesy of Affymetrix

Oligonucleotide arrays

given a gene to be measured, select different n-
mers for the gene

gene

B
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can also select n-mers for noncoding regions of the
genome

selection criteria

— specificity

— hybridization properties
— ease of manufacturing




Microarrays
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One-color vs two-color microarray
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Microarray Centre, Imperial College, London, http://microarray.csc.mrc.ac.uk/




Microarray data

Goals of transcriptomic data analysis

— Human disease diagnostics and treatment

— disease predispositions/risk factors

— monitor disease stage and treatment progress
— Agricultural diagnostics and development

— find plant pathogens to improve plant protection

— efficiacy and economy in plant biotechnology
— Analysis of food and GMOs

— determine the integrity of food

— detect alterations and contaminations

— guantify GMOs
— Drug discovery and drug development
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Other omics measurements

RNA-sequencing: direct sequencing of RNA sequences to
quantify transcript abundance

Profiles of non-coding RNAs, including microRNAs,
INncCRNAsS, ...

Proteome: all proteins in a sample
Metabolome: all metabolites (small molecules) in a sample

Profiles of single nucleotide polymorphism (SNP) in a
sample

Epigenome: All modifications to DNA, such as DNA
methylation arrays
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Ways of MA data analysis

— predictive modeling: molecular classifiers
— large potential applicability
— but risk of low reliability and comprehensibility
—e.g., 70% accuracy is not enough when explanation
IS missing
— decision based on a large number of genes is
expensive
— SVM, RF, kNN, classification rules etc.

— classifying samples: to which class a given sample
belongs

— classifying genes: to which functional class a given
gene belongs
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Transcriptomic data analysis

— rather simpler tasks of descriptive modeling

— any genes with similar expression profiles?
— clustering, bi-clustering
—the genes potentially regulated together

— any genes potentially discriminating among classes?
—t-tests, SAM
— potential risk factors

— can we characterize these genes?

—significant GO terms, pathways, locations
(chromosomes)

— focus on human disease diagnostics and treatment.
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ALL/AML dataset

— distinguishing between two acute leukemia types
— acute lymphoblastic leukemia (ALL)
— largely a pediatric disease
— acute myeloid leukemia (AML)
—the most frequent leukemia form in adults
—first published in

— Golub et al.: Molecular classification of cancer:
Class discovery and class prediction by gene
expression monitoring. Science, pp. 531-537,
19909.

— Affymetrix HU6800 microarray chip
— probes for 7129 genes, 72 class-labeled samples
— 47 ALL (65%) and 25 AML (35%) samples
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ALL/AML data analysis
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Differentially expressed genes (DEGS)

—standard t-test (or Wilcoxon test)
— for all the genes and their gene expression:
— compute means (and standard deviation) in both
groups,
— Null hypothesis H,: the means are equal,
— Alternative hypothesis H,: the means disagree,
— compute t, compare with T, determine p-value,
— p<a (acceptable significance).

=2

0.025 = o/2 0.025 = /2

Sxix2: within group variance - f 3 18

-2.064 t 2.064

> t24,0.975




Significantly diff. expressed genes

— bottleneck

— p-value = probability that a difference occurred by chance

— p<=0,=0.01 works when evaluating a small number of genes
— a microarray experiment for 10,000 genes may identify up

to 100 significant genes by chance

— multiple comparisons

— familywise error rate a is the probability of rejecting at least
one H, given that all H, are true

— considering k independent comparisons:

- o=1-(1-a,)

— for a;=0.01:
K 1 S 10 50 100 500 1000
a 0.01 0.05 0.10 0.39 0.63 0.99 1.00
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Multiple comparison strategies

— FWER - family-wise error rate
— o value — prob that at least one comparison is FP,

— Bonferroni correction

the simplest (and most conservative) approach,
valid regardless correlation/dependence among comparisons,
o; value for each comparison equals to a/kK,

too restrictive: 30.000 genes, a=0.01 —» o,=3*10"

— Holm—-Bonferroni method

start by ordering the p-values in increasing order,
compare the smallest p-value to a/k,

compare the second smallest p-value to a/(k-1) etc. ,
continue until the next hypothesis cannot be rejected,
stop and accept all hypotheses that have not been rejected yet,
step-wise method, has more power than Bonferroni.
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Wilcoxon test for DEGs

— genetic mutations BRCA1 and BRCAZ2 [Hedenfalk, Efron]

— BRCA1 and BRCAZ increase breast cancer risk

— are tumors with BRCA1 or BRCAZ2 observed genetically different?
— 15 samples (7/8), 3226 genes studied, Wilcoxon test used

Q
L0 —
-

Wilcoxon Null Distribution

36 genes have W=83

g0

80
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Significant analysis of microarrays (SAM)

— computes false detection rate (FDR)

— permutations of the repeated measurements to
estimate the percentage of genes identified by chance
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Tusher, Tibshirani, Chu: Significance analysis of microarrays applied to the ionizing radiation response
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Significant analysis of microarrays (SAM)

— truly significant genes (ALL/AML)
— no significant genes found (Motol — bladder relapse)
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Understanding of gene groups

— web tools such as David, eGOn, Ingenuine pathways

— occurrence of specific subgroups (GO terms, pathways,
diseases etc.)

TERM1 - Structural molecule activity (Molecular function) - active in nonrelapse

Relapse group
9118, INA, Internexin neuronal intermediate filament protein, alpha

Nonrelapse group

857, CAV1, Caveolin 1, caveolae protein, 22kDa; 1278, COL1A2, Collagen, type I,
alpha 2; 1281, COL3A1, Collagen, type III, alpha 1; 1289, COL5A1, Collagen, type V,
alpha 1; 1292, COL6A2, Collagen, type VI, alpha 2; 1293, COL6A3, Collagen, type VI,
alpha 3; 1306, COL15A1, Collagen, type XV, alpha 1; 80781, COL18A1, Collagen, type
XVIII, alpha 1; 11117, EMILIN1, Elastin microfibril interfacer 1; 2192, FBLN1, Fibulin
1; 25900, HOM-TES-103, Hypothetical protein LOC25900, isoform 3; 25984, KRT23,
Keratin 23 (histone deacetylase inducible); 3908, LAMA2, Laminin, alpha 2 (merosin,
congenital muscular dystrophy); 4131, MAP1B, Microtubule-associated protein 1B;
4629, MYH11, Myosin, heavy chain 11, smooth muscle; 10398, MYL9, Myosin, light
chain 9, regulatory; 23037, PDZD2, PDZ domain containing 2; 64711, RPS2,
Ribosomal protein S2; 7148, TNXB, Tenascin XB; 7461, WBSCR1, Williams-Beuren
syndrome chromosome region 1
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Gene-set enrichment analysis

— Find differentially expressed groups of genes rather than
single genes, such as

— A gene set on a pathway
— A gene set with a GO term

— Overview of methods [Goeman, Buhlmann, 2007]
— competitive vs self-contained tests

—H,%™P: The genes in the set G are at most as
often differentially expressed as the genes in its
complement G°€.

—H,**": No genes in G are differentially expressed.
— gene vs subject sampling
— gs: study distributions where gene is the basic unit

—sS: compare the actual subject with other

randomly sampled subjects 26

Competitive gene sampling

Steps:
1. Apply t-test (or other) for diff. expression of genes.
2. Apply a cut-off to separate diff. expressed genes
* either threshold p-values (p<a),
 or take k genes with smallest p-values.
3. Count frequencies in 2x2 table.
4. Do atest of independence
+ Chi-squared test x*- > > ('”“"’,_;U'Z",;]'”")2 <1
. Hypergeometric test 7

Differentially Non-differentially Total
expressed gene expressed gene

In gene set Mg p Mg pe g
Not in gene set Meep M e pye .
Total mp mp m 27




Pathways — KEGG example
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